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Abstract. Physics-informed neural networks (PINNs) are an efficient tool for solving

forward and inverse problems for fractional diffusion equations. However, since the

automatic differentiation is not applicable to fractional derivatives, solving fractional

diffusion equations by PINNs meets a number of challenges. To deal with the arising

problems, we propose an extension of PINNs called the Laplace-based fractional physics-

informed neural networks (Laplace-fPINNs). It can effectively solve forward and inverse

problems for fractional diffusion equations. Note that this approach avoids introducing

a mass of auxiliary points and simplifies the loss function. We validate the effectiveness

of using the Laplace-fPINNs by several examples. The numerical results demonstrate

that the Laplace-fPINNs method can effectively solve the forward and inverse problems

for fractional diffusion equations.
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1. Introduction

Fractional diffusion equations have been extensively studied in engineering, physics,

and mathematics due to their superior capability for modeling anomalous diffusion phe-

nomena. The model differs from the standard diffusion models since it follows a basic as-

sumption that the diffusion obeys the standard Brownian motion and has been applied to

animal coat patterns and nerve cell signals. A distinctive feature of standard Brownian mo-

tions is that the mean squared displacement 〈x2(t)〉 of diffusing species linearly increases

with time — i.e. 〈x2(t)〉 ∼ K1 t. However, in an anomalous diffusion, the mean squared
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displacement shows a non-linear power law growth with time — i.e. 〈x2(t)〉 ∼ Kα tα, where

0 < α < 1 represents a subdiffusion and α > 1 a superdiffusion. At the microscopic level,

such anomalous diffusion processes can be accurately described by a continuous-time ran-

dom walk where the waiting time between successive particle leaps follows a heavy-tailed

distribution with a diverging mean. At the macroscopic level, anomalous diffusion de-

scribes the evolution of the probability density function of a particle that appears at a given

spatial location x and time t. A list of successful applications of fractional diffusion equa-

tions are extensive and continually expanding. These applications include, but are not

limited to, solute transport in heterogeneous media [4,9], thermal diffusion on fractal do-

mains [31], protein transport within membranes [17,36], and flow in highly heterogeneous

aquifers [5]. Comprehensive review of the physics modeling and a diverse range of appli-

cations can be found in [6,30].

In this paper, we consider the following general time-fractional diffusion equation on

a bounded domain Ω ⊂ Rd with homogeneous Dirichlet boundary condition:
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(x , t) =∇ ·
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a(x)∇u(x , t)
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+ c(x)u(x , t) + f (x , t), x ∈ Ω, t > 0,

u(x , 0) = u0(x), x ∈ Ω,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

(1.1)

where (Dc
k
u)(x , t) denotes the Caputo type fractional derivative defined by
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and k is a nonnegative locally integrable function. Setting

k(τ) =
τ−α

Γ (1−α)
, 0< α < 1 (1.3)

in the Eq. (1.2), we have the conventional Caputo fractional derivative [33]. Another im-

portant particular case of (1.2) is given by

k(τ) =

n
∑

k=1

γk

τ−αk

Γ (1−αk)
, 0< α1 < · · ·< αn < 1. (1.4)

It corresponds to the multi-term time fractional derivatives. Γ (·) denotes the gamma func-

tion, a(x), c(x), f (x , t), and u0(x) are the diffusion coefficient, reaction coefficient, source,

and initial value, respectively.

Solving partial differential equations numerically is a well-known challenge, and it be-

comes even more difficult when dealing with fractional diffusion equations that involve

nonlocal operators. Recently, there has been a growing trend to apply machine learning

techniques for solving forward and inverse problems of partial differential equations. Sev-

eral examples include the use of Gaussian process regression [13,19,34] and deep learning-

based methods [2,10,18,28,35,44] to solve these types of problems.


