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Abstract. In this paper, we consider the electromagnetically and thermally driven flow

which is modeled by evolutionary magnetohydrodynamic equations and heat equation

coupled through generalized Boussinesq approximation with temperature-dependent

coefficients. Based on a third-order backward differential formula for temporal dis-

cretization, mixed finite element approximation for spatial discretization and extrap-

olated treatments in linearization for nonlinear terms, a linearized backward differenti-

ation formula type scheme for the considered equations is proposed and analysed. Op-

timal L2-error estimates for the proposed fully discretized scheme are obtained by the

temporal-spatial error splitting technique. Numerical examples are presented to check

the accuracy and efficiency of the scheme.
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1. Introduction

The hydrodynamical behavior of conducting fluids subject to external magnetic fields

can be well described by magnetohydrodynamic (MHD) equations which are governed by

a combination of Navier-Stokes equations and Maxwell’s equations. Due to wide appli-

cations of MHD systems in astronomy, geophysics and engineering, such as metallurgical

engineering, contactless electromagnetic stirring, the design of cooling systems with liquid

metals for a nuclear reactor, damping convective flow in metal-like melt and so on [6,37],

it is important to find accurate effective numerical methods for their solution.

Besides, the buoyancy effect can not be ignored in the momentum equation since the

fluid will produce temperature difference during conduction. Therefore, MHD systems are
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usually coupled with the heat equation. Furthermore, in many applications, the properties

of fluids and materials in MHD system may not be constant. For example, viscosity, thermal

diffusivity and magnetic diffusivity can be strongly dependent on temperature, which will

lead to the original system becoming a stronger nonlinearity and coupling system [5,14,48].

Let Ω be a connected bounded open set in Rd , d = 2 or 3, either convex or having a C1,1

boundary ∂Ω and [0, T ] an interval of R. In this paper, we deal with a time-dependent

thermally coupled incompressible MHD flow. More exactly, we consider the following in-

compressible Navier-Stokes and Maxwell equations coupled with the heat equation by the

well-known Boussinesq approximation

∂tu−∇ ·
�
ν(θ)∇u

�
+ (u · ∇)u+∇p+ sb× curlb− β(θ)θ j = f in Ω× (0, T ],

∂tb+ curl
�
µ(θ)curlb

�
− curl(u× b) = 0 in Ω× (0, T ],

∂tθ −∇ ·
�
κ(θ)∇θ

�
+ (u · ∇)θ =ψ in Ω× (0, T ],

div u = 0, div b = 0 in Ω× (0, T ],

(1.1)

where the fluid viscous diffusivity ν, the magnetic diffusivity µ, the thermal conductivity κ

and the thermal expansion coefficient β depend on the temperature. The unknowns are ve-

locity field u, temperature θ , pressure p, and magnetic field b. Functions f andψ are respec-

tively a known body force and a heat source, ν(θ) denotes the fluid viscous diffusivity, κ(θ)

the thermal conductivity, β(θ) the thermal expansion coefficient, and µ(θ) := 1/η0δ(θ)

the magnetic diffusivity, where η0 and δ denote the magnetic permeability and the elec-

trical conductivity. Besides, j is the unit vector in the direction opposite to the gravitation,

and s := 1/η0ρ0 the coupling coefficient, where ρ0 is the reference density.

The system (1.1) is considered in conjunction with the following initial values and

boundary conditions:

u(x, 0) = u0,b(x, 0) = b0,θ(x, 0) = θ0 for all x ∈ Ω,

u|∂ΩT
= 0, (no-slip condition),

b · n|∂ΩT
= 0, curlb× n|∂ΩT

= 0, (perfectly conducting wall),

θ |∂ΩT
= 0,

(1.2)

where n is the outer unit normal of ∂Ω, ∂ΩT = ∂Ω× (0, T ] and the initial magnetic induc-

tion b0 satisfies div b0 = 0.

It is worth noting that in recent years, various analytical investigations and have been

carried out and numerous efficient numerical methods for solving MHD systems have been

developed. For stationary MHD problems, error estimates of finite element methods are

given in [9, 12, 15, 16, 43, 46, 52]. On the other hand, for time-dependent MHD systems,

the convergence analysis and error estimates of first- and second-order-in-time for fully

discrete finite element methods are respectively established in [11, 17, 28, 30, 38, 54, 56]

and [8,19,41,47,55,57]. For example, a fully discrete linearized H1-conforming Lagrange

finite element method for a 2D vector potential MHD model is proposed in [25]. Wang et

al. [47] introduced a numerical scheme based on the modified Crank-Nicolson finite ele-

ment projection method and obtained optimal error estimates for MHD equations. Kanbar


