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Abstract. High order neural networks have strong nonlinear mapping ability, but the
network structure is more complex, which restricts the efficiency of the network, and
the relevant theoretical analysis is still not perfect up to now. To solve these problems,
an online gradient learning algorithm model of Pi-Sigma neural network with a smooth
set lasso regular term is proposed. Since the original lasso regular term contains abso-
lute values and is not differentiable at the origin, it causes experiment oscillations and
poses a great challenge to the convergence analysis of the algorithm. We use grinding
technology to overcome this deficiency. The main contribution of this paper lies in the
adoption of online learning algorithm, which effectively improves the efficiency of the
algorithm. At the same time, strict theoretical proofs are presented, including strong
convergence and weak convergence. Finally, the effectiveness of the algorithm and the
correctness of the theoretical results are verified by numerical experiments.
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1. Introduction

As an important type of high order neural networks, Pi-Sigma neural network has high
learning efficiency, strong robustness, and powerful nonlinear processing ability. Therefore,
such networks have attracted wide attention and are widely used in various fields [2, 7-9,
12,27,37,38].

Backpropagation (BP) algorithm is the most popular method in supervised training of
feedforward neural networks. It takes the form of minimizing the mean square error be-
tween the expected response and the actual response [11,25,29,31]. In theory, a network
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with enough neurons can approximate any function with any accuracy, but determining
a reasonable structure of the neural network is still a challenging problem.

The gradient method is a commonly used neural network training method to minimize
the error function. This can be achieved by a batch gradient method or an online gradient
method [19,33,42]. Specifically, batch learning algorithms update weights only once after
all samples are presented to the network [6,20,32]. Online learning algorithms, on the
other hand, update the weights every time a sample is presented to the network [13].

According to the difference of input form of the sample points, it can be divided into
online gradient algorithm based on sequential input samples, online gradient algorithm
based on specific random input samples and online gradient algorithm based on completely
random input samples, including random more strong more conducive to jump out of lo-
cal minimum, however, due to the introduction of randomness, it becomes challenging to
analyze the theoretical performance of the algorithm [16,34]. In the recent years, there
are some theories and applications of gradient-based neural networks have been reported.
In [41], a novel finite-time convergent gradient-based neural network model is proposed
for solving the dynamic Moore-Penrose inverses problem, and its finite-time convergence
is preserved even in the presence of additive bounded dynamic noises. Also, a unified
gradient-based neural networks model is proposed for both static matrix inversion and
time-varying matrix inversion with finite-time convergence regardless of the existence of
bounded additive noises [40].

Generally speaking, the generalization effect of neural networks with smaller weights
is better [1]. Two main aspects of neural network learning consist in preventing the over
fitting caused by excessive weights and eliminating unnecessary weight connections to
achieve a sparse network structure. To solve these problems and optimize the network,
one often uses a simplified model, early stop, data enhancement and regularization.

As we all know, adding regularization term to traditional error function can effectively
sparsely optimize network structure and obtain better generalization performance [3,4,15].
The error function with the regularization term is as follows:

1 . .
Error = 5 Z ||[Output’ — Target'|| + AL(W),

where parameter A > 0 is the regullarization coefficient.

Here we introduce several common regularization terms, L, regularization produces
the most sparse solution, but it is not easy to calculate [21,35]. On the other hand, L,
regularization can produce sparse weight matrices — i.e. sparse models that can be used
for feature selection [24]. At the same time, the L; regularizer is the optimal convex ap-
proximation of L, regularizer. Unfortunately, they cannot sparsely select weights at the
group level, and both of them are NP-hard problems and are not easy to solve. L, regular-
ization can effectively inhibit the excessive growth of weights and prevent the model from
overfitting [18,26,39,42]. But L, regularization does not any have sparsity.

As a compromise between L, and L; regular term, a regularization method of L, is
proposed. However, the regularization term is not differentiable at the origin of coordi-
nates, which makes theoretical analysis difficult. To overcome this defect, a smoothing
technique is proposed [5,14,19,23].



