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Abstract. In this article we introduce a novel numerical method to solve the problem

of optimal transport and the related elliptic Monge-Ampère equation using neural net-

works. It is one of the few numerical algorithms capable of solving this problem effi-

ciently with the proper transport boundary condition. Unlike the traditional deep learn-

ing solution of partial differential equations (PDEs) attributed to an optimization prob-

lem, in this paper we adopt a relaxation algorithm to split the problem into three sub-

optimization problems, making each subproblem easy to solve. The algorithm not only

obtains the mapping that solves the optimal mass transport problem, but also can find

the unique convex solution of the related elliptic Monge-Ampère equation from the map-

ping using deep input convex neural networks, where second-order partial derivatives

can be avoided. It can be solved for high-dimensional problems, and has the additional

advantage that the target domain may be non-convex. We present the method and sev-

eral numerical experiments.
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1. Introduction

The motivation for this work is the problem of optimal mass transport. In 1781, Monge

proposed a study on optimal transport (OT) when considering the best way to rearrange

a pile of materials from one configuration to another. Compared to its core theories in

partial differential equations (PDEs), probability, analysis are mature enough cf. [12, 41],

numerical methods for the OT problem remain underdeveloped.

The optimal mass transport problem can be stated as follows. Suppose we are given

two probability densities:

1) f , a probability density supported on X ,

2) g, a probability density supported on Y ,
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where X , Y ⊂ Rd , d ≥ 2 are bounded and compact. The problem is to find a mapping

m : X → Y which minimizes the transportation cost

m(x) = argmin
m∈M

∫

X

|x −m(x)|p f (x)d x ,

where

M=

�
m : X → Y

����

∫

X

h
�
m(x)
�

f (x)d x =

∫

Y

h(p)g(p)dp

for all continuous test functions h

�
. (1.1)

In the original problem Monge took p = 1; the case p = 2 corresponds to the Kantorovich

(or Wasserstein) distance. Same as in the most commonly studied cases, we consider the

case of p = 2 for the remainder of this paper.

An important theorem by Brenier [5,15] states that the unique optimal mapping is the

(almost everywhere) unique gradient of a convex function, which is denoted by ∇u. By

using a change of variables and coordinates, we obtain

det(D2u) =
f

g(∇u)
, (MA)

along with the restriction

u is convex. (C)

The accompanying boundary condition is derived from the condition that m maps X to Y

and reads

∇u(∂ X ) = ∂ Y. (BV2)

The OT problem is equivalent to Monge-Ampère equation with conditions (BV2). It

is used in a wide range of fields, including computational fluid dynamics, color transfer

between multiple images or deformation in the context of image processing, interpolation

schemes in computer graphics, and economics, via matching and equilibrium problems. In

addition, optimal transport has recently attracted the attention of biomedical-related schol-

ars and is widely used as a data enhancement tool for guiding differentiation during single-

cell RNA development as well as for improving cellular observables, thereby improving the

accuracy and stability of various downstream sub-tasks. Among the many applications, we

focus on mesh generation and illumination optics. In our numerical results, we will give

two examples from each of these two applications.

Until now, the numerical solution of the Monge-Ampère equation is still being devel-

oped. However effective algorithms with transport conditions are still rare. An early numer-

ical method for the related Monge-Ampère equation introduced by Oliker and Prussner [33]

used a discretization based on the geometric interpretation of the solutions. Another re-

cent method developed by Benamou et al. [3] introduced a new discretization wide-stencil


