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Abstract. Singularly perturbed problems present inherent difficulty due to the pres-

ence of thin layers in their solutions. To overcome this difficulty, we propose using deep

operator networks (DeepONets), a method previously shown to be effective in approxi-

mating nonlinear operators between infinite-dimensional Banach spaces. In this paper,

we demonstrate for the first time the application of DeepONets to one-dimensional sin-

gularly perturbed problems, achieving promising results that suggest their potential as

a robust tool for solving this class of problems. We consider the convergence rate of the

approximation error incurred by the operator networks in approximating the solution

operator, and examine the generalization gap and empirical risk, all of which are shown

to converge uniformly with respect to the perturbation parameter. By utilizing Shishkin

mesh points as locations of the loss function, we conduct several numerical experiments

that provide further support for the effectiveness of operator networks in capturing the

singular layer behavior.
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1. Introduction

Singularly perturbed problems (SPP) are widely employed in diverse areas of applied

mathematics, such as fluid dynamics, aerodynamics, meteorology, and modeling of semi-

conductor devices, among others. These problems incorporate a small parameter ǫ which

typically appears before the highest order derivative term and reflects medium properties.

As ǫ → 0, the derivative (or higher-order derivative) of the solution to the problem be-

comes infinite, leading to the emergence of boundary or inner layers. In these regions, the
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solution (or its derivative) undergoes significant changes, while away from the layers, the

behavior of the solution is regular and slow. Due to the presence of thin layers, conventional

methods for solving this class of problems exhibit either high computational complexity or

significant computational expense. For a comprehensive analysis and numerical treatment

of singularly perturbed problems, refer to the books by Miller et al. [24] and Roos et al. [28].

Deep neural networks possess the universal approximation property, which allows them

to approximate any continuous or measurable finite-dimensional function with arbitrary

accuracy. Consequently, they have become a popular tool for solving partial differential

equations (PDEs) by serving as a trial space. PDE solvers based on neural networks in-

clude Feynman-Kac formula-based methods [2,6,7] and physics-informed neural networks

(PINNs) [27]. Moreover, machine learning techniques can be used for operator learning

(i.e., mapping one infinite-dimensional Banach space to another) to approximate the un-

derlying solution operator of an equation. To accomplish this, new network structures

have been proposed, such as deep operator networks (DeepONets) [21] and neural opera-

tors [14,16].

The broad adoption of machine learning techniques in solving PDEs has introduced

novel approaches for handling singularly perturbed problems. However, the spectral bias

phenomenon [26], which refers to the difficulty of neural networks in capturing sharp

fluctuations of the function, poses a significant challenge for directly applying machine

learning techniques to solve such problems. In [1], it was observed that the traditional

PINNs approach did not produce a satisfactory solution nor capture the singular behavior

of the boundary layer. To overcome this problem, a deformation of the traditional PINN

based on singular perturbation theory is presented in [1].

Operator learning techniques have received little attention in the context of singularly

perturbed problems, leaving an important research gap to be filled. Our focus is on Deep-

Onet, a simple yet powerful model. It originated from the universal approximation theorem

proved by Chen et al. [4], where the shallow network was later extended to a deep net-

work by Lu et al. [21], resulting in the proposal of DeepONets. This theorem was further

extended to more general operators in [15], thereby providing theoretical assurance of

the validity of DeepONet to approximate the solution operator. Specifically, for any error

bound ε, there exists an operator network that can approximate the operator with an accu-

racy not exceeding ε, while also guaranteeing that the size of the network is at most poly-

nomially increasing concerning 1/ε. Theoretical and experimental results [5, 15] support

the polynomially increasing property of DeepONets in some cases. DeepONet has demon-

strated promising performance in various applications, including fractional derivative oper-

ators [21], stochastic differential equations [21], and advection-diffusion equations [5]. To

extend the applicability of DeepONet to more general situations, several deformations have

been proposed, including physics-informed DeepONet [32], multiple-input DeepONet [10],

pre-trained DeepONet for multi-physics systems [3,23], proper orthogonal decomposition-

based DeepONet (POD-DeepONet) [22], and Bayesian DeepONet [17].

In this paper, we employ DeepONets to approximate the solution operator of the con-

vection-diffusion problem, with particular attention to the case of Dirichlet boundary condi-

tions. As it is known that for non-homogeneous Dirichlet boundary conditions, the solution


