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Abstract. For the large-scale linear discrete ill-posed problems with multiple right-hand
sides, the global Krylov subspace iterative methods have received a lot of attention. In
this paper, we analyze the regularizing properties of the global generalized minimum
error method (GMERR), and develop a regularized global GMERR method for solving
linear discrete ill-posed problems with multiple right-hand sides. The efficiency of the
proposed method is confirmed by the numerical experiments on test matrices.
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1. Introduction

We are interested in approximate solutions of the large-scale linear discrete ill-posed
problems
AxD=pD j=12 .5 (1.1)
which have the same coefficient matrix A € R™" and different right-hand sides b¥), j =
1,2,...,s. These problems arise in real-world applications, including electromagnetic wave
scattering problem [45], pattern classification [ 12], image restoration [36], and dimension-
ality reduction [52] and so on. The difficulty in solving the problems is that the coefficient
matrix A is nonsingular, but ill-conditioned with its singular values decaying to zero with
increasing index without a noticeable gap and the right-hand vectors b¥) = b)) e R™,
j =1,2,...,s are assumed to be contaminated by unknown error-free vectors b and
unknown measurement errors or noises (). Writing

X =[x0,x®, .. x©], B=[pD,p,...,0],
B=[bM,00, . 50], E=[cD,e®,. . 0],
we refer to E as the error or noise matrix. Then B=B + E ,and (1.1) can be written as

AX = B. (1.2)
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The unavailable linear system of equations

A

AX =B (1.3)

is assumed to be consistent — i.e. the right-hand side B is in the range of A. However, it
is possible that the available error-contaminated right-hand side B is outside of the range
of A. In fact, we are interested in the minimum Frobenius norm solution of (1.3), which
will be denoted by X € R™.
Let ||E||r denote the Frobenius norm of the noise matrix E, and the bound of the norm
of the noise matrix E be § > 0, i.e.
IE|lF < 6. (1.4)

We consider how to determine a meaningful approximation of X by computing a proper
approximate solution of (1.2).

If the coefficient matrix A is well-conditioned, the linear system (1.2) may be solved
by direct or iterative methods [2,18], including matrix splitting iteration methods [2] and
Krylov subspace methods [1,18]. However, since the matrix splitting iteration methods
cannot be directly applied to large-scale linear discrete ill-posed problems, more attention
has been paid to Krylov subspace methods. Due to the ill-conditioning of the matrix A and
the presence of a noise E in B, the native solution to problem (1.2) does not furnish a useful
approximation of the true solution to problem (1.3). Therefore, regularization methods
must be used to extract as good an approximation to the true solution as possible. Two of
the most popular regularization methods are Tikhonov regularization method [37,47] and
truncated singular value decomposition regularization method (TSVD) [20-22], which are
either computationally unfeasible or extremely time-consuming for large-scale problems.
So iterative regularization has received considerable attention.

There are a number of Krylov subspace methods for solving large-scale linear discrete
ill-posed problems with a single right-hand side

Ax=b, beR. (1.5)

When A is symmetric positive definite, Gilyazov [17] and Hanke [19] developed the con-
jugate gradient (CG) method for solving the ill-posed problem (1.5). Plato [42] analyzed
the regularizing properties of CG. Using the Lanczos tridiagonalization, Paige and Saun-
ders [41] developed an MINRES method for solving the linear systems with symmetric
indefinite matrix A. Hanke [19], Kilmer and Stewart [34], Jensen and Hansen [29], Huang
and Jia [26] analyzed regularizing effects of MINRES and showed its semi-convergence.
When A is nonsymmetric, Bjorck [6] presented the CGLS algorithm, which implicitly ap-
plies CG to the normal equation ATAx = AT b. Hanke [19] studied the regularizing proper-
ties of CGLS. Based on the Lanczos bidiagonalization, Paige and Saunders [40] proposed
the LSQR algorithm, which is mathematically equivalent to CGLS. The regularizing ef-
fects of the LSQR algorithm are analyzed in [25]. Fong and Saunders [14] developed
an LSMR algorithm, which is equivalent to the MINRES method applied to the normal
equation ATAx = ATb. Jia [30] analyzed the regularization properties of the LSMR al-
gorithm. The GMRES method [44] is a popular iterative method for solving large linear



