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Abstract. We propose an ODE approach to solving multiple choice polynomial program-

ming (MCPP) after assuming that the optimum point can be approximated by the ex-

pected value of so-called thermal equilibrium as usually did in simulated annealing. The

explicit form of the feasible region and the affine property of the objective function are

both fully exploited in transforming an MCPP problem into an ODE system. We also

show theoretically that a local optimum of the former can be obtained from an equilib-

rium point of the latter. Numerical experiments on two typical combinatorial problems,

MAX-k-CUT and the calculation of star discrepancy, demonstrate the validity of the ODE

approach, and the resulting approximate solutions are of comparable quality to those

obtained by the state-of-the-art heuristic algorithms but with much less cost. When

compared with the numerical results obtained by using Gurobi to solve MCPP directly,

our ODE approach is able to produce approximate solutions of better quality in most

instances. This paper also serves as the first attempt to use a continuous algorithm for

approximating the star discrepancy.
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1. Introduction

We consider the following pseudo-Boolean optimization problem:

min
x∈{0,1}n

f (x),

s.t.
∑

i∈I j

x i = 1, j = 1,2, . . . , m,
(1.1)

where f is a polynomial function, x is an n-dimensional Boolean vector, the indices [n] :=

{1,2, . . . , n} are divided into m disjoint subsets I1, I2, . . . , Im, and the cardinality of each I j ,

denoted by d j := |I j |, must be greater than 1. Then x is accordingly divided into m vectors
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x (1), x (2), . . . , x (m) where each x ( j) picks out all the entries in I j of x . The constraints mean

that, for each j, there exists exact one element that equals to 1 in the subvector x ( j), im-

plying that only one is determined from d j choices and thus m items chosen from n choices

in total. A group of entries of x in a single I j represents a decision out of finite choices.

More precisely, we use multiple choice polynomial programming to call the problem (1.1),

which is capable of dealing with various problems in diverse disciplines [2], for example,

the MAX-k-CUT [20], star discrepancy [8] problems and SAT [17]. It should be pointed

out that studies on integer linear programming problems with multiple choice constraints,

termed the multiple choice programming (MCP), can date back to [11]. Since then several

methods have been developed — cf. [27], but most of them are not designed for nonlinear

objective functions. Although MCPP can be transformed into MCP by defining new vari-

ables to represent monomials, an exploration in this direction will not be presented here.

As a typical 0-1 programming problem, MCPP can also be treated with standard mixed

integer nonlinear programming solvers, such as Gurobi [10], IBM-CPLEX [14], and SCIP [1],

but few of them are designed for general nonlinear programming. For example, to apply

Gurobi, one has to reformulate the nonlinear terms in MCPP instances into linear and/or

quadratic forms by defining new variables and new constraints, thereby greatly increasing

the problem size. This defect becomes even severer in calculating the star discrepancy since

the degree of corresponding objective function is nothing but the dimension of underlying

space and is usually much greater than 1 (see Eq. (6.13) in Section 6).

Alternatively, continuous approaches to discrete problems has attracted more attention

since the Hopfield network — cf. [13], an early ODE approach, was proposed for the 0-

1 quadratic programming in 1980s. The Hopfield network has been extended to other

combinatorial optimization problems [15,28], where many useful mathematical techniques

in dynamical system have been introduced. In the most recent work [22], an ODE approach

was proposed through a quartic penalty approximation of the Boolean polynomial program.

In line with this, here we propose to use the solutions of the following ODE system:

dy
( j)

i

dt
= −y

( j)

i
+σi

�

−Φ( j)(y); 1/T
�

, j ∈ [m], i ∈ [d j],

y(0) = y0 ∈ [0,1]n
(1.2)

to approximate the solutions of MCPP, where the time-dependent vector y(t) : [0,+∞)→

R
n is divided as x in Eq. (1.1) does, the initial data y0 is required to satisfy the continuous

multiple choice constraint:
∑d j

i=1
(y0)

( j)

i
= 1 for all j ∈ [m], Φ( j) denotes the partial deriva-

tive of f with respect to x ( j): Φ
( j)

i
= ∂ f /∂ x

( j)

i
, T is a positive parameter called temperature,

and σi(z;β) : Rd ×R+→ (0,1) gives the softmax function defined by

σi(z;β) =
exp (βzi)
∑d

k=1 exp (βzk)
(1.3)

with d being the dimension of input argument z. Note in passing that y
( j)

i
(t) ∈ (0,1) for

arbitrary t > 0, i.e. y(t) : [0,+∞) → (0,1)n. We are able to prove that the equilib-

rium points of the ODE system (1.2) represent the local optimum solutions of MCPP (1.1).


