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Abstract. We propose an ODE approach to solving multiple choice polynomial program-
ming (MCPP) after assuming that the optimum point can be approximated by the ex-
pected value of so-called thermal equilibrium as usually did in simulated annealing. The
explicit form of the feasible region and the affine property of the objective function are
both fully exploited in transforming an MCPP problem into an ODE system. We also
show theoretically that a local optimum of the former can be obtained from an equilib-
rium point of the latter. Numerical experiments on two typical combinatorial problems,
MAX-k-CUT and the calculation of star discrepancy, demonstrate the validity of the ODE
approach, and the resulting approximate solutions are of comparable quality to those
obtained by the state-of-the-art heuristic algorithms but with much less cost. When
compared with the numerical results obtained by using Gurobi to solve MCPP directly,
our ODE approach is able to produce approximate solutions of better quality in most
instances. This paper also serves as the first attempt to use a continuous algorithm for
approximating the star discrepancy.
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1. Introduction

We consider the following pseudo-Boolean optimization problem:

min X),
x€{0,1}n f( )
st >og=1, j=12,..,m, (1.1)
ieI]-

where f is a polynomial function, x is an n-dimensional Boolean vector, the indices [n] :=
{1,2,...,n} are divided into m disjoint subsets I, I,,...,I,,, and the cardinality of each I;,
denoted by d; := |I;|, must be greater than 1. Then x is accordingly divided into m vectors
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x(l), x(z), . x™ where each x) picks out all the entries in [; of x. The constraints mean
that, for each j, there exists exact one element that equals to 1 in the subvector x¥), im-
plying that only one is determined from d; choices and thus m items chosen from n choices
in total. A group of entries of x in a single I; represents a decision out of finite choices.
More precisely, we use multiple choice polynomial programming to call the problem (1.1),
which is capable of dealing with various problems in diverse disciplines [2], for example,
the MAX-k-CUT [20], star discrepancy [8] problems and SAT [17]. It should be pointed
out that studies on integer linear programming problems with multiple choice constraints,
termed the multiple choice programming (MCP), can date back to [11]. Since then several
methods have been developed — cf. [27], but most of them are not designed for nonlinear
objective functions. Although MCPP can be transformed into MCP by defining new vari-
ables to represent monomials, an exploration in this direction will not be presented here.

As a typical 0-1 programming problem, MCPP can also be treated with standard mixed
integer nonlinear programming solvers, such as Gurobi [10], IBM-CPLEX [14], and SCIP [1],
but few of them are designed for general nonlinear programming. For example, to apply
Gurobi, one has to reformulate the nonlinear terms in MCPP instances into linear and/or
quadratic forms by defining new variables and new constraints, thereby greatly increasing
the problem size. This defect becomes even severer in calculating the star discrepancy since
the degree of corresponding objective function is nothing but the dimension of underlying
space and is usually much greater than 1 (see Eq. (6.13) in Section 6).

Alternatively, continuous approaches to discrete problems has attracted more attention
since the Hopfield network — cf. [13], an early ODE approach, was proposed for the 0-
1 quadratic programming in 1980s. The Hopfield network has been extended to other
combinatorial optimization problems [15,28], where many useful mathematical techniques
in dynamical system have been introduced. In the most recent work [22], an ODE approach
was proposed through a quartic penalty approximation of the Boolean polynomial program.
In line with this, here we propose to use the solutions of the following ODE system:

dy™? . .
S =y h oy (a0 YT), jelm) icld)], 12

y(0) =y, €[0,1]"

to approximate the solutions of MCPE where the time-dependent vector y(t) : [0, +00) —

R" is divided as x in Eq. (1.1) does, the initial data y,, is required to satisfy the continuous
6

);

d; .
multiple choice constraint: Zi 21 (yo);" =1forall j €[m], &) denotes the partial deriva-

tive of f with respect to x: <1>l(.j V=3 f/o xfj ), T is a positive parameter called temperature,

and 0;(z; B) : RY x R, — (0, 1) gives the softmax function defined by
exp (Bz)

e €xp (Bzi)

with d being the dimension of input argument z. Note in passing that yl.(j )(t) € (0,1) for

arbitrary t > 0, i.e. y(t) : [0,+00) — (0,1)". We are able to prove that the equilib-
rium points of the ODE system (1.2) represent the local optimum solutions of MCPP (1.1).

oi(z;B)= (1.3)
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Therefore, we just have to numerically integrate (1.2) until we find an equilibrium (usually
fast with fewer iterations) which can be rounded into a local solution of MCPP. Along the
way, various well-established techniques in numerically solving ODEs can be incorporated
to improve the efficiency without sacrificing the solution quality. Actually, the ODE system
(1.2) can be regarded as a continuous version of simulated annealing (SA) [17] by start-
ing from a continuous-time Markov chain and exploiting two intrinsic properties of MCPP
(1.1). One is that the explicit form of the feasible region is so straightforward that the state
space of the Markov chain can be easily determined. The other is that the objective function
of MCPP f(x™M,x®, ... x(M), is affine with respect to x1) for all j € [m] (otherwise we
can modify it equivalently), with which the definition of transition rate can be significantly
simplified. It should be noted that Eq. (1.2) may recover the ODE system used in [23] for
the unconstrained binary quadratic programming — cf. Example 2.1.

We apply the proposed ODE approach into two typical NP-hard problems: MAX-k-CUT
with k = 2,3,4,5 and the star discrepancy calculation, and two state-of-the-art heuristic
algorithms: the multiple operator heuristic (MOH) [20] and the improved threshold accept-
ing (TA_improved) [8] methods are employed to as the reference of the solution quality,
respectively. For MAX-k-CUT problems, the test bed is G-Set'. More than half of the ratios
between the best cut values achieved by our ODE approach and those by MOH are above
0.99. For star discrepancy calculation, the test set is a group of good lattice point (GLP) sets
adopted in [29]. The ratios between the best lower bounds achieved by our ODE approach
and those by TA improved are at least 0.91. More important, in both problems the ODE
approach requires much fewer iterations compared to MOH or TA improved for each trial
while the cost of each iteration is linear to the problem size across these three methods. Its
iteration steps over MOH’s for MAX-k-CUT are about 1/10° to 1/10%, and about 1/10? to
1/10 over TA improved’s for calculating the star discrepancy.

To further demonstrate the capability of the proposed ODE approach, the numerical
results obtained by using Gurobi to directly solve the MCPP instances are adopted as com-
parison for which the time limit of Gurobi is set to be the very runtime of the ODE approach.
A detailed numerical comparison shows that, (1) for MAX-k-CUT with k = 3,4, 5, in more
than 80% instances, the solutions produced by the ODE approach are better than or as good
as Gurobi’s; (2) for the star discrepancy problem, in about 17% instances, Gurobi does not
even provide a feasible solution under the time limitation, and in the remaining instances,
it provides no better solutions than our ODE approach.

The paper is organized as follows. In Section 2 we show how transform the MCPP
problem (1.1) into the ODE system (1.2) step by step starting from the well-known as-
sumption (2.2) of simulated annealing. In Section 3 we prove that a local optimum of
MCPP (1.1) can be indeed obtained via an equilibrium point of the ODE system (1.2). Af-
ter that, Section 4 details the procedure of finding the equilibrium points by numerically
integrating Eq. (1.2). In Sections 5 and 6, we apply the proposed ODE approach into the
MAX-k-CUT problem and approximating the star discrepancy, respectively. The paper is
concluded in Section 7 with a few remarks.

TAvailable at https://web.stanford.edu/ yyye/yyye/Gset/
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2. The ODE Approach: A Continuous Version of Simulated Annealing

Under the multiple choice constraint in Eq. (1.1), xU) must be a standard unit vector
in RY. Let B; = {e? }?:1 c R? collects the standard base of R where e? denotes the
d-dimensional unit vector the i-th entry of which equals 1 and the rests are zeros. The
multiple choice constraint is then equivalent to xW) e ij, j=1,2,...,m. Therefore, the
feasible region for MCPP is

%Z:BdIXBdZX"'XBd . (21)

m

We should mention that it is d i the cardinality of each I is that determines the structure of
the feasible region, rather than the particular division, and a compact notation, B} := &,
will be used in Sections 5 and 6 when d; = --- = d,; = d. Then MCPP (1.1) becomes
min, cq f(x) starting from which we explain how regard the ODE system (1.2) as a con-
tinuous version of SA. The well-known SA method [17] approaches “thermal equilibrium”
by generating a Markov chain such that its stationary distribution is the Boltzmann distri-
bution, namely

Pr(X =x) o< exp(—E(x)/T), (2.2)

where X € & is a random variable, and E(x) denotes the energy at state x. We set E(x) :=
f(x) for MCPE adopt a similar approach as SA but in a continuous, ODE-type way, by
defining a continuous-time Markov chain, and then calculate the dynamics of expected
value through the forward equation.

To define a random variable of a continuous-time Markov chain, we need to determine
two things: the state space of the variable and the transition rate between states. For
MCPB the former is nothing but the feasible region (2.1). Let X, with t = 0 be the random
variable. The state change of X, is allowed to happen only in a single B;. That is, X,
changes between x = (x(, x®, ... x(™) and x’, where there exists j € [m] and i’ € [d;]
such that x’ = (x(j),esj). Here x) := (xM, ..., xUD x0+D (M) denotes the (n —
d;)-dimensional vector by deleting x), and (x, ) := (xM, ..., xU™1, & xUFD  xm)
the n-dimensional vector by replacing x) with & € R%. We are ready to determine the
transition rate. Before that, we would like to assume that f(x(l),x(z), ..., xMY is affine
with respect to xU) after fixing xU for all j € [m]

£0) = x9 - 2D (D) + £((xD, 0)), (2.3)

where the dot - gives the standard inner product, and the second RHS term is independent
of x). Eq. (2.3) can be easily verified if noting:
(j))k

(1) Every (x;)" in f can be replaced by xfj ) because the power of 0 or 1 is equal to itself.

(2) Every monomial with divisor xfj )xi(,j ), i #1i’, vanishes.

(3) The partial derivative ®)(x) is independent of x) and thus <I>(j)(x(j)) = oU)(x) is
defined unambiguously.
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< d: = d; . . .
For x = (x(]),ei’), x' = (x0), e,/), 1 # 1, according to Eq. (2.3), we have

fE)=F(P,0)+8 D), fx)=F((D,0) + (D),
and o o
)+ () = =2 (D) + o (x ). 24)

Let g(x — x’) denote the transition rate from state x to x’. It also means (x, x’)-entry of
the Q-matrix over R* ** . The detailed balance condition reads

exp(—f(x)/T)a(x = x') = exp (= f (x)/T)a(x" = x),
or

T = exp((—f (<) + f())/T) 2.5)

for non-zero entries of g, which implies x # x’. To satisfy Eq. (2.5), combining it with
Eq. (2.4), we define

ou(—eD(xMN);1/T), x= (x(j),e?j), x'= (x(j),esj), i £,

(2.6)
0, otherwise.

qlx = x") = {

Using x'@ = x), we have
q(x' = x) = 0 (oD D);1/T) = o, (D (xD);1/T),

and then Eq. (2.5) can be readily verified.
Next, let us calculate the dynamics of expected value. We denote the probability distri-
bution at time t by p(x;t) :=Pr(X, = x). Then it satisfies the forward equation

dp(x;6) _

T = DL g s xp(s— YL ko xplan.  @27)

X' €X ,x'#x X' €X ,x'#x

Let u : R"™ — R be an arbitrary vector function. From Eq. (2.7), we have

d{uX)) _ 3 (o) 250

dt = de
= > p(x30) > ux)g(x’ = x)= > plx;t) D p(x)glx — x')
x'€eX x#x! XEX X' #x
= < D () — X ))g(X, - X)>, (2.8)
x#X,

where the term in the summation only counts when both u(x) # u(X,) and x # X, hold. Let
m, = (X,) € [0,1]" be the expected value of X,. Then (mt)?) = o xl(])p(x; t) which
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assigns u to (- )(] ) ix > x ) where there are only few xs satisfies these two conditions.
Recalling the definition of g in Eq. (2.6), x # x’ if and only if x and x’ differs in only one

group I. In addition, we need x(j ) # (x’ )(j ) then k must be j. Therefore, x = ((X t)(j), e?,j )
for some e " £ (X, )(1) Accordingly, from Egs. (2.8) and (2.6), we obtain
d(m )(.])

T % (e -n)

d; .
1<i'<d; e,/ #X )N

= < Z ( i(j) _ (Xt)gj)) o (—‘I)(j)(x); 1/T) >

1<i’<dje. J#(X )

< 2 = (X)) oy (-2 (xP);1/7) >
1<ﬂ<d

< > xou(- <1>U>((Xt)(f>);1/T)>

1<i'<d;
—< > xoPoy (—eD(xD);1/7) >
1<i’<dj
= (o (~e0x);1/1) ) - (x0?) 2.9
o; (-8 (m,);1/T) — (m)?, (2.10)

where we have applied x0) = (x,)9, and xg]) # 0 if and only if i’ = i in the first RHS
term of Eq. (2.9), Zl<i’<dj ai/(—fb(j)(x); 1/T) =1 in the second RHS term of Eq. (2.9), as
well as a rough approximation (ai(—<I>(j)(Xt); 1/T)) ~ ai(—d)(j)(mt); 1/T) in the first RHS
term of Eq. (2.10). The ODE system (1.2) is manifest in Eq. (2.10) after replacing m, with
y(t) €(0,1)". Thatis, y(t) is also an approximation of the dynamics of the expected value
of a continuous-time Markov chain, and by searching for its efficient numerical approxima-
tions, we are able to approximate the Markov chain efficiently. Moreover, its equilibrium
serves as the stable distribution of the Markov chain, namely, the Boltzmann distribution
(2.2). When the temperature goes to zero, the distribution approaches the uniform distribu-
tion on the ground states, which may give the optimum solution. Therefore, the equilibrium
gives a reasonable approximation of the optimum, the proof of which is left for Section 3.

Finally, X, € & means that the multiple choice constraint Z?J: ne# )(] ) = 1forall je[m]
holds with probability 1 and so does m,. In fact, we claim that y(t) deﬁned in Eq. (1.2)
also satisfies such constraint when the initial data y(0) does, which can be readily seen
from the sum of Eq. (1.2),

d

TSO==5+1 < s0O= (s;(0—1)e™" +1,

d; i
where 5;(¢) = 370 vy (o).
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Example 2.1. The ODE approach is applicable in the unconstrained situation where the
multiple choice constraint in Eq. (1.1) is absent. By introducing extra n Boolean variables
Xp415--->X2n, the unconstrained problem min, ¢ 1}~ f (x) can be reformulated into the fol-
lowing MCPP:

min  f(xy,Xx9,...,X,),
x€{0,1}2n

s.t. xXi+xi.,=1, i=12,...,n,

where the index set [2n] are divided into n disjoint subsets: I; = {j,j +n},d; =2, j =

1,2,...,n, and <I>(1j)(x) = df(x)/9x;, <I>(2j)(x) = 0. Then from Eq. (1.2), we have that y;

(i.e., ygj )) satisfies

dy; 1 1 3f(y)
— = —y. 4+ = h| ———= 1 j=1,2,...,n. 2.11
dt y]+2(tan ( 2T ax] + b) ] ) )n ( )

As

WO+ O =50+ =1 for t>0,
we do not have to care about the dynamics of extra variable y;,,(t). Implementing a linear
transformation z; = 2y; — 1 in Eq. (2.11) yields a ODE system for z € [-1,1]"

de
—— =—z; +tanh

de ax;

J

—i—af((“l)/z)), j=1,2,...,n,
2T

which was also mentioned in [23] for the unconstrained binary quadratic programming.

3. Numerical Analysis

Let ¥(T) be an equilibrium point of the ODE system (1.2) under the parameter T,
namely,

F(TV =0 (=W (F(T));1/T) forall je[m]. (3.1)

We claim that y(T) approximates a local solution of Eq. (1.1) when T is sufficiently small.
This can be formally explained as follows. As f3 approaches +oo, the limit of softmax
function (1.3), denoted by &(z) = (&;(z)), is a kind of hard max

. . 1/r, 2; =max{z1,%,...,24},
Gila)= ﬁlgrnoo oi(z;p) = {0 oltherwise o d (3.2)

where r = |{i | z; = max{z;,2,,...,24}}| denotes the number of maximal entries of z. It
can be easily observed that the range of &(z), denoted by By, is a discrete set, i.e.,

1, ieA
xf‘={’ LA Actd), A;é@}.

_ 1

Al
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If the limit § := limy_,q+ y(T) exists, then Eq. (3.1) formally yields
IV =6 (-2V() (3.3)

for all j € [m]. Thus 1) € ij and

JE€X =By xBy, x---xBy .
Combining the Egs. (3.2) and (3.3) shows that the nonzero entries in ) correspond to the
minimal entries of ¢)( ¥). Hence, $U) minimizes the MCPP objective function f((§%, £))
for £ € RY after fixing $) in view of its affine property given in Eq. (2.3). Actually, given
Definition 3.1, we are able to prove that ¥ is indeed a local optimum of MCPP (1.1) in &,
cf. Proposition 3.1.

Definition 3.1 (Local Optimality). We call x € & a local optimum of f in &, if for any
x' € & for which exists j, € [m] such that (x")V0) = xU0) we have f(x") > f(x).

Proposition 3.1. The n-dimensional vector ¥ defined in Eq. (3.3) is a local optimum of
MCPP (1.1) in .

Proof. Let y’ € & satisfy (y’ Yo) = o). It follows from the Egs. (3.2), (3.3) that for
all i such that j/l.(]O) # 0, we have

G _ 1 200Gy = min aU0)( 4 Go)

yr=o )= 3323@0 @0 (§H), (3.4)
where r equals the number of nonzero entries of $U0). Combining Egs. (2.3) and (3.4)
yields

FO) = F@) = (")) . glio) ((y/)(jo)) — yUio) . gUio)(30io))
= (y")Uo) . glio) (o)) — min- q)(k]O)(y(jO)) >0,

\<]0

where the fact (y")00) e ijo is used in the last inequality. O

It should be noted that Eq. (3.3) does not hold in general since o (-; 8) does not converge
to & uniformly. However, in numerical experiments, the equilibriums y(T), which may
not be close to a Boolean vector, are always very close to vectors in & for sufficiently
small T. Therefore, we can reasonably assume that ¥ is an approximation of ¥ and that
o(-;1/T) is an approximation of &. Then Eq. (3.1) approximates Eq. (3.3). In fact, the
theoretical results exists and in Proposition 3.2 we give the analytical condition for the
closeness between y and % under which we can claim that Eq. (3.3) holds. Thus, by
Proposition 3.1, ¥ is a local optimum. Before that, we give some notations and definitions.

Let L be the maximal Lipschitz constant of all <I>§] ) with j €[m], i € [d;]. Namely, we
have ' _

[2() = @ ()| < Lllx = x'lloo
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forall x,x’ €[0,1]" and all j € [m], i € [d;]. Moreover, in order to measure the closeness
of different <I>§] )in &, we let

d:= max{d,,ds,...,dn,},
and define the minimal gap of & as
g:=min {87 (x) -V (x)| | 8 (x) £ 8P (x), x e &, jelm], i ield;]}. (3.5

Proposition 3.2. Let y = y(T) be an equilibrium of the ODE system (1.2), and assume that
there exists € &, whose distance to y, denoted by € := || — ¥ |leo > O, satisfies

.1 T 1+d
de<>, —— < Th ha " L ole< g. (3.6)
2" In(1/(de)—1) 2L 1—de

Then the Eq. (3.3) holds and thus ¥ must be a local optimum of f in Z.

Proof. Notice that conditions (3.6) imply
de <1, In(1/(de)—1)>0, TIn(1/(de)—1)> 2Le.

In order to obtain Eq. (3.3), according to the definition of softmax function given in Eq. (1.3),
it suffices to show that for every j € [m] we have

V(5)= min V() if iea,,
. . 3.7)
Gy s . G ra . . .
e (¥)> 1233(1). e, if 1€A;,
where A; collects the nonzero entries of 90 and r = A;].
First, we prove that @Ef)(j/) = @Ej)(y) for all i;,i, € A;. Using the fact that y is an
equilibrium, we arrive at
G WS AN () P ¢) P
(3 /5)) = = (-l +e (). (3.8)
On the other hand, the distance between  and y provides a limit for every entry of 3.

By 5 — 71 <119 — Flloo = &, We get
JOellfr—e1/r+e], if €A, 59
79 elo,¢], if i¢A;. '

Combining the Egs. (3.6), (3.8), (3.9) and using r < d gives

1/r+e¢ 1+de
/ <Tln — forall i},i; €A,
1/r—e 1—de

Deoy_aWsy] — () /o)
)5 —20)| =7 |n(57/5)| < T1n
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so that

N+ N+
|<I>i1 (J’)—‘I’iz (J’)

<|eP) -2V )| +|eP () -2V )] + 2P () -2V ()]

1+de
SLe+Tln —+Le<g,
1—de

which directly implies @EZ)(y) = <I>g)(j/) for all i;,i, € A;, because g defined in Eq. (3.5)
gives the minimal distance between two different <I>§j )sin Z.

In order to verify Eq. (3.7), the rest is to prove that @5{)@) > @Ef)(j/) for all i’ ¢ Aj.
According to Egs. (3.6), (3.8) and (3.9) and the fact that r < d, we have

1/r—e
£

V(7 -2P(3)=Tn(37/77)> T1n > Tln(T - 1) >2Le,

de

and then
393 -2V = (2P (7) -2V (7)) + (V1) -8V (7)) - (2P (3) - 2P (7))
>2Le — [27)(9) - oY (7)| - |2 (9) -2V ()|
= 2Le—Le—Le=0.

The proof is complete. O

Remark 3.1. There is a more concise condition for ¢, viz.

Ty
£ < min TRy~ A~ (>
4d 2L 34T + 2L

from which the three conditions given in Eq. (3.6) can be readily derived by direct relax-
ations. That is, for a given T, a sufficiently small ¢ guarantees an equilibrium point of
the ODE system (1.2) gives a local optimum of MCPP (1.1) in 2. However, we cannot
theoretically assure that ¢ will be small enough as T approaches O at the current stage.

4. Implementation

The biggest benefit of transforming MCPP (1.1) into the ODE system (1.2) is that various
numerical ODE solvers and related techniques come into play for complex combinatorial
problems. According to Proposition 3.2, we need to find the equilibrium of Eq. (1.2) quickly
rather than to know how we approach it. That is, we do not have to know the dynamics
evolution quite precisely. To this end, we adopt variable time step forward Euler scheme for
accelerating the calculation. Besides, also inspired by SA, we use an infinite temperatures
sequence (mostly it is decreasing) T;, T,, ..., and numerically solve Eq. (1.2) with T :=
T,, s =1,2,...,until we find an equilibrium y(T,). Except for the first numerical integration
with T = T;, the initial value for the ODE system (1.2) with T = T, can be set to be the
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previous equilibrium y(T,_;). When the distance ¢ := min,cg ||y — ¥(T)llco is less than
a prescribed accuracy tolerance g, we stop evolving the ODE system and turn to rounding
procedure.

It should be noted that there is a suitable range for T; due to the following reasons:

(1) T; should not be too large or the diversity of solutions may be insufficient. To see
this, consider the extreme case by formally letting T = +00 and replacing 1/T by 0 in
Eq. (3.1). We get y(+00)) = ldj/d]-, where 1q, is a d;-dimensional vector with every
entry identical to 1. This uninformative equilibrium is independent of the initial point
¥o- A similar phenomenon happens when T is large enough, in which the numerical
experiments show that we can only find one equilibrium y(T;) for different y,s (and
it is close to y(+00)). Then the subsequent evolutions of y will be similar. Sometimes
the method even produces the same solutions.

(2) T; should not be too small either. Otherwise the ODE will act like a greedy local
search. This phenomenon is accessible noticing that the SA method is more like greedy
algorithm when the temperature becomes smaller and so does the ODE approach.

In practice, it is not necessary to determine the range precisely. To find a reasonable assign
for T;, we first choose a small value then double it repeatedly until 2T; leads to uninfor-
mative equilibriums while T; does not. Thus the above two requirements are satisfied.

4.1. Choice of the initial data

As mentioned in Section 1, the initial data of ODE y, should satisfy the so-called con-
tinuous multiple choice constraint

4
D=1 forall je[m],

i=1
i.e. (¥9)Y belongs to the standard (d; —1)-simplex

dj
A= {zeRdf 220, ) z= 1}.
1

i=

Therefore, we generate (y,)")s by sampling from a distribution on this simplex and then
combine (yo)(j), j=1,2,...,m into one y,. In practice, we choose a symmetric Dirichlet
distribution with the concentration parameter 0.01. It is more likely to produce values,
most entries of which are close to 0. This may lead to a larger expected distance between
each pair of yys and thus a more thorough exploration of the solution space of the ODE
system.

4.2. Variable time step

The forward Euler (FE) scheme for an autonomous system dy/dt = F(y) reads

yk — yk—l + hk_le_l, (41)
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where F : R" — R" is a vector function, y* denotes the numerical approximation of y(t)
at time tK, h¥71 := tk — tk71 is the time step, and F* := F(y*). To estimate the local
truncation error of Eq. (4.1), which is dominated by (h*~')> when h*~! is small enough,
we adopt a method similar to the Richardson extrapolation [24]. Let (R 1)?c denote the
error. Assuming that the vector ¢ keeps almost unchanged for some successive time steps
and h*~! = h*=2 for even k, we have another approximation to y(t*), viz.

gk = yko2 4 (k1 4 pR2)pke2 = k=2 | gpk-1pk-2
the error of which is 4(h*~1)%c, while the method (4.1) has the error
(hk—l)ZC + (hk—Z)ZC — 2(hk_1)2c,

if staring from the same y*~2. Therefore, in order to estimate the truncation error in prac-
tice, we can use (7% — y¥)/2 ~ (h*"1)%c. Specifically, we adopt a tolerance ® > 0 for
0k := ||7% — y¥||, and a step adjust ratio p > 1. Since the error for the k-th step is pro-
portion to the square of step size h*~! and can be well approximated by 6%/2, we are able
to maintain it within a specific range according to © and p by a two-way adjustment of h¥
as follows. Reduce the time step h**! = h* = h*~1/p when 6% > ©p?2, which may avoid
the error increase by decreasing the time step; increase the time step h**! = bk = ph<—1
when 6% < ©/p?, which may exploit the maximum large time step allowed by a small er-
ror. If the errors make a small change in successive two steps, then 8% will not be far from
[©/p2, p?@]. Thus, in doing so, the errors can be controlled around a desired accuracy of
©/2, and few of them will be outside the interval [©/2p2, p?©/2].

4.3. Rounding procedure

Proposition 3.2 requires € = ||J — ¥(T)|| o to be small enough. It is natural to think of
letting ¥ reach the minimum among & . However, a naive implementation of this procedure
is impractical since each By contains 29 —1 elements and thus |Z| = ]_[;":1(2‘11' —1). In-
stead, we only generate an appropriate ¥ as follows. For each 7, let n ;= maxie[dj]{ j/l.(j )}
and r; = [1/m; + 1/2]. Then consider the largest r; entries of 71 and record the indices
insetA; € [d;]. This always can be done after noting n; > 1/d;. Let yi) = )(Ai/rj for each
j € [m] then y0) ij as |Aj| = r; < dj, and we achieve j € 2% . Tt should be pointed out
that if there exists a r]’.-element set A;. C [d;] such that || y(f) — XA3 / r]’.||oo is small enough,
1/m; will be close to r]’., thus we choose the right r; = r]’. . Moreover, the largest r; entries
of 7 will be close to 1/ r]’., which form A;. and are also chosen by A;. This explains why
9U) may serve as a good approximation for 7).

At the final step, we have to get a Boolean vector x from y. First, we let x < y. Then
sequentially change x) into a standard unit vector. This process should be done greedily.

. - ) d
More precisely, we choose and i € [d;] such that minimize <I>§] )(xU)) and let x) e’
This will not increase f(x). When x is locally optimal, the procedure ends. Thus f(x) is
no larger than f(¥).
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4.4. Cost analysis

The main cost of each FE step in the method (4.1) is calculating F(y), and according to
Eq. (1.2), the cost of F(y) consists of calculating ®(y), m softmax functions with ®(y )" as
input and @(n) basic operations. The softmax functions requires another &(n) operations.
Therefore, the computational complexity of the gradient function may dominate the cost
and it is necessary to analyze it respectively for different problems in practice.

5. Application to MAX-k-CUT

As a classical graph optimization problem, the MAX-k-CUT problem wants a k-division
of the vertex set V for a given edge-weighted graph G = (V,E, W) such that the sum of
weights across any two subsets is maximized. Let V = {vi}ll.zll, W = (w;;)jv|xv| and V3,
V,, ..., Vi denote the subsets after division. Precisely, MAX-k-CUT maximizes the following
cut function:

cut(Vy, Vo,..., Vi) = Z wij.

Vi€V, V€V, r#s,i<]

It reduces to the famous MAX-CUT problem for k = 2, one of the 21 Karp’s NP-complete
problems [16]. MAX-k-CUT is widely studied and there are a number of algorithms for find-
ing its approximating solutions, including the heuristic methods, see e.g. [20] and reference
therein, and continuous algorithms [4,9,26].

We will use the proposed ODE approach to solve the MAX-k-CUT problem and need
to transform it into MCPP at the first step. This can be readily implemented by setting
n <« k|V|, m « |V|, d; < k for any j € [m] in Egs. (1.1) and (2.1), and the feasible region
for MAX-k-CUT turns out to be BLVl. Accordingly, the belonging of each vertex v; is mapped
to an element in By as follows: v; € V, if and only if x(® = ef; v; and v; belong to the same
subset if and only if (x®)"xU) = 1. That is, the corresponding MCPP objective function
becomes

Fx) =—cut(Vy, Vy, ..., Vi) == > _wy; (1= () TxD). (5.1)
1<J
The minus sign before the cut function converts it into a minimization problem to fit the
form of (1.1). For the sake of comparison, we still regard —f as the result cut value in the
rest of the paper. Then our ODE approach can be used directly to solve the MAX-k-CUT
problem. We implement it with MATLAB R2021a and run it on AMD Ryzen 1950X with
64GB RAM.

Due to the differences in programming languages, implementation and platforms, mak-
ing a fair comparison of runtime is quite difficult. Therefore, we focus on the comparison
of solution quality where the cut values produced by MOH [20] are adopted as the refer-
ence. Tables 1-5 present the numerical results for k = 2,3,4,5 on G-Set which includes
71 randomly generated graph with 800 to 20000 vertices. So there are 4 x 71 instances in
all. We run 100 independent trials for each instance and record the best cut value among
all the results in Tables 1-4, see the columns headed by “ODE”. The initial value of each
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trial is generated randomly as described in Section 4.1. The trials are simply parallelized
with MATLAB’s parfor. Other parameters are Ty = 3, T, = ys_lTl,s =2,3,...,vy=0.95,
g0 =1x10"3,0 =1x10"%nand p = 1.1. T, is determined according to the routine
described in Section 4, and {T,} is a geometric progression since it is a simple sequence
converging to zero. For comparison, Tables 1-4 also calculate the ratio between the best
cut value achieved by our ODE approach in those 100 runs and that by MOH for each in-
stance, and one can find that, for all four problems, such ratios are larger than 0.99 for at
least 38 instances. For the remaining graphs of G-Set, the ODE method performs diversely.

For k = 2, the ratios are at least 0.96 and in only one instance is less than 0.97 (see G64
in Table 1). For k = 3, the ratios are all above 0.97. However, there are 5 instances for k = 4
the ratios of which are in (0.95,0.97] (see G18, G19, G20, G56, G61 in Table 3), and there
are 6 ratios in this interval for k =5 (see G19, G20, G21, G40, G56, G61 in Table 4). The
worst solution quality happens in solving the MAX-5-CUT problem and the ratio decreases
to 0.9472 for G18 and it is the only one less than 0.95 in Table 4. For k = 2,4, 5, the ratios
reach 0.98 in at least 56 instances, but only 46 ratios reach 0.98 for k = 3.

In order to further show the overall performance in the solution quality achieved by the
ODE approach, for all (4 x 71) x 100 trials, we calculate the ratios between the cut values
of the ODE approach and the reference values obtained from MOH, and plot the histogram
of all these ratios in Fig. 1. It can be observed that in more than 97% trials, the ratios
are greater than 0.95, thereby implying that the approximate cuts produced by the ODE
approach are of comparable quality to MOH. Moreover, we compare our ODE approach’s
solutions with those obtained by using Gurobi 10.0.1 to directly solve MCPP in the same
time duration (see the column Gurobi in Tables 1-4). We find that, for k = 2, in more than
70% instances, ODE’s solutions are better than or as good as Gurobi’s, and the proportion
gets larger and reaches 80% for k = 3,4, 5.

8,000

6,000 |-

Frequency
>
o
S
S
T

2,000 -

0 | S

0.9 0.92 0.94 0.96 0.98 1
Ratio

Figure 1: Quality check: Histogram of the ratio between the cut values of the ODE approach and the
reference values produced by MOH for all 4 x 71 x 100 trials of MAX-k-CUT.
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Table 1: Numerical cut values for MAX-CUT.

15

Graph ODE MOH  Ratio Gurobi || Graph ODE MOH  Ratio Gurobi
Gl 11623 11624 0.9999 11624 G37 7629 7691  0.9919 7535
G2 11612 11620 0.9993 11620 G38 7624 7688 0.9917 7543
G3 11621 11622 0.9999 11622 G39 2355 2408 0.9780 2250
G4 11646 11646 1.0000 11646 G40 2342 2400 09758 2198
G5 11626 11631 0.9996 11631 G41 2333 2405 0.9701 2166
G6 2173 2178 0.9977 2178 G42 2429 2481 0.9790 2307
G7 1999 2006 0.9965 2006 G43 6645 6660 0.9977 6225
G8 2005 2005 1.0000 2005 G44 6640 6650  0.9985 6173
G9 2045 2054 0.9956 2038 G45 6638 6654 0.9976 6147
G10 1993 2000 0.9965 1992 G46 6640 6649 0.9986 6282
G11 554 564 0.9823 564 G47 6644 6657 0.9980 6200
G112 548 556  0.9856 556 G48 6000 6000 1.0000 6000
G13 576 582 0.9897 582 G49 6000 6000 1.0000 6000
G114 3049 3064 0.9951 3015 G50 5880 5880 1.0000 5880
G15 3032 3050 0.9941 2993 G51 3823 3848 09935 3773
G16 3027 3052 0.9918 2989 G52 3825 3851 0.9932 3769
G117 3030 3047 0.9944 2994 GS53 3829 3850 0.9945 3781
G18 979 992 0.9869 918 G54 3820 3852 09917 3782
G19 891 906  0.9834 853 G55 10211 10299 0.9915 9906
G20 931 941  0.9894 869 G56 3954 4016 0.9846 3851
G21 914 931 09817 880 G57 3414 3494 09771 3494
G22 13325 13359 0.9975 11180 G58 19096 19288 0.9900 18928
G23 13337 13344 0.9995 12368 G59 5911 6087 0.9711 5716
G24 13325 13337 0.9991 11008 G60 14089 14190 0.9929 13989
G25 13321 13340 0.9986 12572 G61 5678 5798 0.9793 5590
G26 13308 13328 0.9985 11132 G62 4766 4868 0.9790 4872
G27 3325 3341 0.9952 2515 G63 26799 27033 0.9913 26545
G28 3286 3298 0.9964 2174 G64 8460 8747 0.9672 8239
G29 3379 3405 0.9924 2497 G65 5444 5560 0.9791 5562
G30 3389 3413 0.9930 2442 G66 6208 6360 0.9761 6364
G31 3299 3310 0.9967 2546 G67 6802 6942 0.9798 6950
G32 1384 1410 0.9816 1410 G70 9482 9544  0.9935 9546
G33 1362 1382 0.9855 1382 G72 6840 6998 0.9774 7008
G34 1362 1384 0.9841 1384 G77 9712 9928 0.9782 9940
G35 7628 7686  0.9925 7544 G81 13724 14036 0.9778 14058

G36 7612 7680 0.9911 7538
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Table 2: Numerical cut values for MAX-3-CUT.

S. Shao and Y. Wu

Graph ODE MOH  Ratio Gurobi || Graph ODE MOH  Ratio Gurobi
Gl 15158 15165 0.9995 14863 G37 9968 10052 0.9916 9893
G2 15160 15172 0.9992 14912 G38 9959 10040 0.9919 9892
G3 15167 15173 0.9996 14899 G39 2837 2903 0.9773 2369
G4 15176 15184 0.9995 14889 G40 2808 2870 09784 2357
G5 15187 15193 0.9996 14827 G41 2803 2887 0.9709 2343
G6 2631 2632 0.9996 2323 G42 2897 2980 0.9721 2445
G7 2401 2409 0.9967 2078 G43 8571 8573 0.9998 8303
G8 2420 2428 0.9967 2104 G44 8543 8571 0.9967 8286
G9 2464 2478 0.9944 2138 G45 8543 8566 0.9973 8273
G10 2401 2407 0.9975 2047 G46 8545 8568 0.9973 8279
G11 653 669  0.9761 669 G47 8548 8572 0.9972 8260
G112 645 660 09773 661 G48 6000 6000 1.0000 6000
G13 670 686 0.9767 684 G49 6000 6000 1.0000 6000
G114 3979 4012 0.9918 3939 G50 6000 6000 1.0000 6000
G15 3943 3984 0.9897 3930 G51 4992 5037 0.9911 4958
G16 3951 3991 0.9900 3924 G52 4996 5040 0.9913 4952
Gl7 3936 3983 0.9882 3924 G53 5004 5039 0.9931 4958
G18 1176 1207 0.9743 1027 G54 4993 5036 0.9915 4952
G19 1050 1081 0.9713 872 G55 12329 12429 0.9920 12047
G20 1097 1122 09777 931 G56 4610 4752 0.9701 3850
G21 1089 1109 0.9820 929 G57 3985 4083 0.9760 4101
G22 17080 17167 0.9949 16577 GS58 24977 25195 0.9913 24016
G23 17130 17168 0.9978 16587 G59 7097 7262  0.9773 5921
G24 17117 17162 0.9974 16604 G60 16946 17076 0.9924 16726
G25 17125 17163 0.9978 16631 G61 6668 6853 0.9730 5641
G26 17103 17154 0.9970 16600 G62 5566 5685 0.9791 5717
G27 3963 4020 0.9858 3338 G63 35001 35322 0.9909 33661
G28 3921 3973 09869 3325 G64 10217 10443 0.9784 8587
G29 4036 4106 0.9830 3453 G65 6341 6490 0.9770 6539
G30 4063 4119 0.9864 3489 G66 7241 7416 0.9764 7474
G31 3963 4003 0.9900 3270 G67 7904 8086 0.9775 8148
G32 1618 1653 0.9788 1653 G70 9999 9999  1.0000 9999
G33 1583 1625 0.9742 1627 G72 8010 8192 0.9778 8256
G34 1573 1607 0.9788 1609 G77 11332 11578 0.9788 11666
G35 9961 10046 0.9915 9876 G81 15985 16321 0.9794 16290
G36 9954 10039 0.9915 9911
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Table 3: Numerical cut values for MAX-4-CUT.

Graph ODE MOH  Ratio Gurobi || Graph ODE MOH  Ratio Gurobi
Gl 16789 16803 0.9992 16443 G37 11018 11117 0.9911 10967
G2 16798 16809 0.9993 16395 G38 11015 11108 0.9916 10970
G3 16799 16806 0.9996 16375 G39 2935 3006 0.9764 2449
G4 16800 16814 0.9992 16436 G40 2898 2976 0.9738 2487
G5 16798 16816 0.9989 16413 G41 2906 2983 0.9742 2423
G6 2739 2751 0.9956 2439 G42 3014 3092 0.9748 2563
G7 2497 2515 0.9928 2114 G43 9353 9376 0.9975 9089
G8 2513 2525 0.9952 2159 G44 9358 9379 0.9978 9086
G9 2574 2585 0.9957 2120 G45 9360 9376 0.9983 9112
G10 2497 2510 0.9948 2114 G46 9355 9378 0.9975 9100
Gl11 661 677  0.9764 677 G47 9372 9381 0.9990 9073
G12 652 664  0.9819 665 G48 6000 6000 1.0000 6000
G13 680 690  0.9855 690 G49 6000 6000 1.0000 6000
Gl4 4396 4440 0.9901 4363 G50 6000 6000 1.0000 6000
G15 4354 4406 0.9882 4346 G51 5518 5571 0.9905 5500
G16 4375 4415 0.9909 4353 G52 5536 5584 0.9914 5494
G17 4360 4411 0.9884 4325 G53 5528 5574 0.9917 5520
G18 1207 1261 0.9572 1031 G54 5527 5579 0.9907 5503
G19 1080 1121  0.9634 894 G55 12498 12498 1.0000 12498
G20 1119 1168 0.9580 934 G56 4722 4931 0.9576 4000
G21 1133 1155 0.9810 923 G57 4036 4112 0.9815 4148
G22 18739 18776 0.9980 18170 G58 27650 27885 0.9916 26567
G23 18736 18777 0.9978 18155 G59 7362 7539 0.9765 6090
G24 18740 18769 0.9985 18211 G60 17148 17148 1.0000 17148
G25 18742 18775 0.9982 18135 G61 6842 7110 0.9623 5850
G26 18734 18767 0.9982 18101 G62 5642 5743 0.9824 5793
G27 4159 4201 0.9900 3433 G63 38758 39083 0.9917 37386
G28 4098 4150 0.9875 3439 G64 10605 10814 0.9807 8884
G29 4245 4293 0.9888 3474 G65 6430 6534 0.9841 6608
G30 4261 4305 0.9898 3548 G66 7352 7474 0.9837 7553
G31 4131 4171  0.9904 3376 G67 8026 8155 0.9842 8256
G32 1641 1669 0.9832 1679 G70 9999 9999  1.0000 9999
G33 1602 1638 0.9780 1644 G72 8123 8264 0.9829 8358
G34 1595 1616 0.9870 1623 G77 11493 11674 0.9845 11827
G35 11017 11111 0.9915 10957 G81 16208 16470 0.9841 16670
G36 11023 11108 0.9923 10955
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Table 4: Numerical cut values for MAX-5-CUT.
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Graph ODE MOH  Ratio Gurobi || Graph ODE MOH  Ratio Gurobi
Gl 17695 17703 0.9995 17326 G37 11562 11603 0.9965 11354
G2 17693 17706 0.9993 17364 G38 11552 11601 0.9958 11493
G3 17691 17701 0.9994 17390 G39 2944 3022 0.9742 2479
G4 17687 17709 0.9988 17341 G40 2884 2986 0.9658 2384
G5 17697 17710 0.9993 17326 G41 2925 2986 0.9796 2475
G6 2763 2781  0.9935 2317 G42 3037 3109 0.9768 2574
G7 2495 2533 0.9850 2183 G43 9747 9770 0.9976 9487
G8 2516 2535 0.9925 2121 G44 9742 9772  0.9969 9509
G9 2574 2601 0.9896 2226 G45 9747 9771 0.9975 9471
G10 2503 2526 0.9909 2147 G46 9742 9774 0.9967 9481
G11 667 677 09852 677 G47 9745 9775 0.9969 9471
G112 654 662  0.9879 665 G48 6000 6000 1.0000 6000
G13 680 689 0.9869 690 G49 6000 6000 1.0000 6000
G114 4611 4639 0.9940 4568 G50 6000 6000 1.0000 6000
G15 4580 4606 0.9944 4548 G51 5802 5826 0.9959 5753
G16 4588 4613 0.9946 4546 G52 5802 5837 0.9940 5761
Gl7 4575 4603 0.9939 4514 G53 5807 5829 0.9962 5707
G18 1201 1268  0.9472 1013 G54 5806 5830 0.9959 5723
G19 1083 1132 0.9567 918 G55 12498 12498 1.0000 12498
G20 1132 1172 0.9659 937 G56 4733 4971 0.9521 3866
G21 1115 1162 09596 963 G57 4049 4111 0.9849 4148
G22 19513 19553 0.9980 18989 GS58 29019 29105 0.9970 28017
G23 19513 19558 0.9977 18883 G59 7443 7566  0.9837 6191
G24 19507 19555 0.9975 19063 G60 17148 17148 1.0000 17148
G25 19506 19554 0.9975 18989 G61 6866 7188 0.9552 5946
G26 19504 19552 0.9975 18949 G62 5650 5744 09836 5793
G27 4178 4236 0.9863 3449 G63 40692 40786 0.9977 39540
G28 4117 4182 0.9845 3429 G64 10732 10896 0.9849 8809
G29 4255 4327 0.9834 3548 G65 6428 6540 0.9829 6608
G30 4268 4340 0.9834 3563 G66 7364 7476  0.9850 7553
G31 4157 4211 09872 3461 G67 8035 8165 0.9841 8256
G32 1644 1670 0.9844 1679 G70 9999 9999  1.0000 9999
G33 1612 1638 0.9841 1644 G72 8145 8266 0.9854 8358
G34 1589 1615 0.9839 1623 G77 11516 11687 0.9854 11827
G35 11547 11605 0.9950 11477 G81 16227 16501 0.9834 16670
G36 11543 11601 0.9950 11416
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Table 5: Approximate total steps and time in seconds on G-Set used by running the ODE approach once
for MAX-k-CUT from a given initial data.

X % IE| Number Time Time
of steps per step
8x10% | 2x10% [ 3.0x10* | 1.3 | 43x10™°
) 2x10% | 2x10* | 1.0x10° | 4.0 | 4.0x107°
1x10% | 2x10* | 9.0x10* | 15 | 1.7x10™*
2x10% | 4x10* | 1.5x10° | 30 | 2.0x10~*
8x10% | 2x10* [ 9.1x10* | 7.8 | 8.6 x10™°
3 2x10% | 2x10* | 1.7x10° | 28 | 1.6x107*
1x10* | 2x10* | 1.1x10° | 55 | 5.0x10™*
2x10% | 4x10* | 1.2x10° | 84 | 7.0x107*
8x10%2 | 2x10* [ 1.2x10° | 20 | 1.5x10~*
4 2%x10% | 2x10* | 1.4x10° | 28 | 2.0x107*
1x10* | 2x10* | 1.0x10° | 60 | 6.0x10°*
2x10% | 4x10* | 1.2%x10° | 90 | 7.5x107%
8x10% | 2x10* | 1.1 x10° 13 | 1.2x107
s 2x10% | 2x10* | 1.5x10° | 30 | 2.0x107*
1x10% | 2x10* | 1.2x10° | 70 | 55x10™*
2x10% | 4x10% | 1.3x10° | 8 | 6.6x107*

It should be noted that, given an initial data, the ODE approach is deterministic, and
there is no heuristic operations dedicated to MAX-k-CUT since the implementation and the
running parameters strictly follow the general guidelines detailed in Section 4. Hence, we
may conclude that, the proposed ODE approach can produce relatively good results without

any ad hoc designs.
Next, we are going to show the efficiency of our ODE approach. Let wy, = >, <j Wij
represent the total weight of all edges and P = (p;;) € {0, 1}Vl 3 matrix satisfying pij =

xfj ) It is easy to check that
1 T
f(xX)=—wy + ETrace(PWP ),

yielding df /0P = PW. Here we use the denominator layout, thereby implying that the
complexity of calculating Vf is @(k|E|). To obtain this order we have used that W is
a sparse matrix with 2|E| nonzero elements and calculating each row of PW requires O(|E|)
operations. By the observation in Section 4.4, we deduce that the time complexity of each
FE step is O(k(|E| + |V])).

Table 5 reports the approximate total steps and time needed by running the ODE ap-
proach once and shows clearly that the computing cost is not expensive compared to MOH.
In MOH, each iteration step has a time complexity of @(|E|+ k|V|) and the total iteration
steps may be up to 10° ~ 108 [20].
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6. Application to the Star Discrepancy

For a positive integer d, vectors a, b € R? and relation A € {<,>,<,>}, leta A b mean
that the relation holds for every entry — i.e. a; A b; for all i € [d]. For a < b, we define
the closed interval [a, b] by

[a,b] :={u€Rd|u>aandu<b}.

The half-open and open cases can be similarly expressed. The volume for an interval de-
notes as vol([a, b]) := [ [(b; — a;). If a = 0, we write it simply as vol(b). To represent
a series of vector with indices, we let those indices appear as superscripts of a single sym-
bol. The subscripts are left for denoting the entries of these vectors. Given an N-point
set

U={d,....,u"} c[0,1)%, u=(uy,...,uy) €[0,11%,

we let 1
Alw; U)=[0,u)nU|, D(u;U)=vol(u)— ﬁA(u; U). (6.1)

The star discrepancy of the N-point set U is defined by

di,(U)= sup [D(u;U)l, (6.2)
uel0,1]4

which measures the uniformity of U, and has been widely used in high dimensional numer-
ical integration [12,18] as well as in high dimensional statistics such as number-theoretical
methods [6] and density estimation [19,25]. However, calculating d}_(U) admits NP-
hardness [7] and only a few algorithms are developed, including the exact algorithm [3],
a threshold-accepting algorithm [29] and its variation, dubbed the TA improved algo-
rithm [8]. In this section, we will apply the proposed ODE approach for MCPP to approx-
imate d’_(U). To the best of our knowledge, this is the first attempt to use a continuous
algorithm for approximating the star discrepancy.
For j € [d], we define

LW)={uli=1,2,...,N}, W) =TW)u{l}, L,U)=rw)uio}

and set
T(U):=T1(U) x --- x Ty(U).

The terms T'(U) and I'(U) are defined analogously. It can be readily observed that on each
open sub-domain of [0,1]¢ divided by the grids in I'(U), A(u; U) keeps unchanged and thus
|D(u; U)| reaches its maximum at one of the extreme points of vol(u), i.e. either the lower
left or upper right corner. Since I'(U) and T'(U) respectively collect all the lower left and
upper right corners in [0,1]¢, an equivalent form for the star discrepancy in Eq. (6.2) was
obtained in [21]

d:, (U)= max{ max D(u; U), max D(u; U)}, (6.3)
uer(U) uer(v)



An ODE Approach to MCPP 21

where 1
A(w; U)=|[0,u]nU|, DwU)= NA(H; U) —vol(w).

We should mention that, ['(U), the feasible region for maximizing D(u; U), can be slightly
narrowed to I'(U) due to the following reasons. For each j € [d], if 0 € T;(U), then Ej(U)
equals T;(U). Otherwise, A(u; U) = 0 if u; = 0, thus D(u; U) = 0 < d%,(U), indicating that
we can drop out that kind of u when maximizing D(u; U). In either case, we can modify
the Cartesian product expression of I'(U) by using I;(U) instead of T ].(U). Therefore, from
Eq. (6.3), we achieve a more concise form for calculating the star discrepancy,

d; (U)= max{ max D(u;U), max D(u; U)} (6.4)

uel (V) uer(u)

The equivalent form (6.4) transforms the star discrepancy into two optimization problems
on discrete sets with which we are able to obtain MCPP forms.

Let us start from the first optimization problem max,c5(;;) D(u; U) in Eq. (6.4). Inspired
by the Cartesian-product structure of I'(U), the feasible region of corresponding MCPP
instance should be Bl‘f, +1 since the cardinality of f‘] is no larger than N + 1. That is, the
key parameters which shape the MCPP problem in Egs. (1.1) and (2.1) are: n « (N +1)d,
m «d,d; < N +1 for any j € [m]. However, mapping I'(U) into Bl‘\i, +1 and defining an
objective functlon over BN 1 that represents D(u; U) need meticulous designs we are about
to state below.

For j € [d], sort fj(U) into iy; S Uy; < +++ Sy < dgy41); = 1, which also sorts T;(U)
in the same order for T;(U) = {iy;,...,ly;}. Fori € [N +1], let Uy, j = uj. record the
order of u;. and {o;;|i € [N + 1]} be the corresponding permutation of [N + 1]. When
some elements of T;(U) are identical, such permutation may not be unique, and it is viable

to choose one of them arbitrarily. Let x € BY
©))

y41- For each j € [d], there is a unique entry

of x), denoted by Xs; with s; € [N + 1], that equals 1. Then we have a surjection from

x€BY, toue FU)
x(J)—>sJ - u; —us] (6.5)
for all j € [d]. Let
N+1 0. N d N+l 0 1
— j j —
v(x) = l_[ Z x5, alx): Zl_[ xg’, 6(x):=v(x)— ﬁa(x), (6.6)
j=1i=1 i=1 j=1 k=0;+1

all of which are affine with respect to each x1). In fact, ¥(x), a(x) and §(x) act as vol(u),
A(u; U) and D(u; U), respectively. For x € BN +1» it should be noticed that the inner sum can
be replaced by the logical disjunction “V” and the product can be replaced by the logical
conjunction “A” (regarding 0-1 variables as boolean variables) , namely,

N+1

a(x)_z/\ \/ <9,

i=1j=1k=0;;+1

since ZQH; 1 ]((]) €{0,1}.
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Proposition 6.1. Let u € T'(U) be the image of x € Bl‘f, 4+ under the surjection (6.5). Then we
have

vol(u) = v(x), (6.7)
Alu; U) < a(x), (6.8)
D(u;U) = 6(x). (6.9)

Moreover, D(u; U) and 6(x) admit a deeper connection — viz.

max D(u;U) = max 5(x) (6.10)
uel(U) xeB
Proof. The Eq. (6.7) immediately follows from the relation Z lU )ﬂ ij =u;. Now we

express |[0,u) N {u'}| by x. For each i € [N], we have

uelou) u§=ﬂaijj<uj=ﬂ forall jel[d],

sjj
= 04 <s; forall jel[d], (6.11)
N+1 ,
= \/ x]E])zl forall jel[d].
k:UU+1
Thus
N+1 0
[0,w)n {u' }|</\ \VAREE
j=lk=0+1

and summing the above inequalities for i € [N] leads to Eq. (6.8). Combining Egs. (6.1)
and (6.6)-(6.8), we arrive at the inequality (6.9). It follows that max,ecp ) D(u; U) =

max, cpd 5(x) since the mapping (6.5) from B, to T'(U) is surjective.

N+1
To prove Eq. (6.10), we only have to show that

max D(u;U) € max 6(x).

uel'(U) x€Bd

This follows from the fact that for each u € T'(U), there exists a preimage of u, X = X(u) €
Bﬁ, +1» such that A(u; U) = a(X(u)). The X is defined by letting s; equal the minimal index
that u; = i ; holds and % “(]) =1,j €[d]. Thus U(s;—1); < Us,j whenever s; > 1, otherwise
contradictmg to the mlnlmality of s;. When o;; <s;, we then have
Oij < Sj -1 = ﬁo'ijj < ﬁ(sj—l)j < L_lsjj.

Therefore, the “=” in Eq. (6.11) becomes “<”, which results in the equivalence between
[[0,u) N {u'}| and /\;.1:1 \/gi - )“c,(cj ) rather than an inequality. Hence, we get A(u; U) =
a(X(u)). Let u* reaches the max1mum of D(u; U). Then

max D(u;U) =D(u*;U) = 6(x(u*)) < max 5(x)
uerl'(U) xeB

The proof is complete. O
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Eq. (6.10) gives an MCPP form for the first optimization problem in Eq. (6.4) and the
same treatment can be also applied to the second one. The key parameters which shape the
MCPP problem in Egs. (1.1) and (2.1) become n <~ Nd, m < d, d; < N for any j € [m],
and we need the following functions defined on Bj‘f,:

d d
P(x") :=]_[i Wiy, alx) ﬁ:]_[ i Y, 5(x) = —a(x )— ¥(x"),
j=1i=1

i=1 j=1k=0y;
to present the MCPP form
max D(u;U) = max 5(x"). (6.12)
uer(v) x'eBY

The proof of this is similar to that of Eq. (6.10) and is omitted. In a word, according to
Egs. (6.10) and (6.12), the star discrepancy is now determined by two MCPP problems

d: (U)= max{ max 5(x), max S(X’)}, (6.13)
X€By 4, x'€By
which can be solved approximately by the proposed ODE approach in a straightforward
manner.

Compared to the quadratic objective function of MAX-k-CUT problem in Eq. (5.1), both
5(x) and 6(x’) in Eq. (6.13) are of degree of d and it may be more complicated to store
and calculate these function values as well as their gradients when d > 2. For example,
calculating the gradients of § and & may involve high computational cost if handling it
inappropriately. It forms the main cost in using FE scheme (4.1) to solve Eq. (6.13), thereby
requiring careful optimization. More precisely; it is easy to check that fori € [N+1],j € [d],

av(x) ) N+1
i dN\{j}i'=1

N+1 (6.14)
aa(x)
PYG) Z l_[ Z x
X; i’e[N]j/eld1\{j} k=0 +1
O'l-/j<i

The directly computation of the sums and products in da(x)/d x(] ) requires at least @(N2d)
operations. Since there are (N + 1)d entries, the complex1ty of V&(x) will be at least
0(N3d?), which is barely acceptable. However, we would like to point out that the com-
plexity can be limited to @(Nd) according to the following procedure. First, it should be
observed that given U, Eq. (6.14) can be rewritten as

ov(x)
5 0 = uij ' l_[ ' bj/(X),
X jeld\{j}

da(x)
ax(']) - Z ' l_[ ' Zi/]'/(X),
i i’e[N1j€ld]\{j}

O'l-/j<l
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where the vector function b : [0,1]" — R? and the matrix function z : [0,1]* — RN*4
do not depend on i and j. Thus b and z can be calculated in advance. Noting that

_ G . . . G :
zyj(x) = D oy X182 partial sum of the entries x"’ in the reverse order, we can com-

pute each column of z in a group within a cost of only &@(N). Therefore, z can be computed
at the cost 0(Nd). To get g;j(x) := I Jeld]\G) B #(x) fast, we replace the multiplication
by [] eld) 3 #(x)/z;(x), whose numerator can be reused for fixed i’. Therefore, the com-
plexity of computing g from z is also #(Nd). To get Va from g, the partial sum trick can
also be applied in the summation ). o <i 81 j(x), albeit o.; determining the order of en-
tries in g.;. Hence, the total time cost is 0(Nd). In the same spirit, we are able to get Vv
with cost of @(Nd). By these means, the complexity of V§ is limited to &(Nd). This is
also true for V§. Since n = @(Nd) for these two MCPP instances, the cost of a FE step is
also @(Nd) by the observation in Section 4.4.

The GLP sets used in [29] are adopted for test in this work, and include 30 small sets
with N ranging from 28 to 487 and d from 4 to 6 as well as 6 large sets with N from around
2000 to 5000 and d from 6 to 11. The parameters for our ODE approach are T; = 1 x 10™%,
T, =yT;,s =2,3,..., v =095, 6 =1x10"2, 0 =1x 10°Nd and p = 1.1. The
parameters are similar to those in MAX-k-CUT (see Section 5). Numerical values of the
star discrepancy obtained by re-running the ODE approach 100 times are listed in Table 6,
where those obtained by TA_improved are directly copied from [8].

We list the ratios between the best discrepancy values achieved by our ODE method and
by TA_improved in Table 6. Note that the ODE method gives the same value as TA_improved
did, except for 4 out of 30 small instances — cf. (N,d) = (312,4),(376,4),(487,4),(73,6)
in Table 6. For these four instances, the ratios are at least 0.98, and for the last 6 large
instances, the ratios are at least 0.91.

The histogram of the ratios between the discrepancy values of the ODE approach and
the reference values obtained from TA improved for 36 x 100 trials is plotted in Fig. 2. In
more than 85% trials, the ratios are greater than 0.9. Compared to TA_improved’s 100000
iterations per trial used in [8] and the same ¢(Nd) complexity per iteration, our method
requires much less computational resource overall while producing solutions with similar
quality. We also record the approximate typical runtime and steps for different sizes of sets
in Table 7. It can be seen there that the time consumed per iteration is roughly proportional
to Nd.

Since Gurobi 10.0.1 can only deal with quadratic objective functions and constraints, we
need to reformulate Eq. (6.13). For the v(x) part of 6(x), the procedure is straightforward.
We create d variables u;,j = 1,2,...,d and constrain them by u; = 25\1:11 xfj )ﬂi - Then
the product of u; is modeled in a standard way as follows. We create 7;,j = 2,3,...,d,
satisfying T; = uyu, - u;, which can be done by quadratic constraints T, = Uy, T; =
Ti_1Mj, j = 3,4,...,d. For the a(x) part, we need 0(Nd) variables representing the sub-
sum terms. The products in a(x) are modelled by Gurobi’s standard general constraints
“AND”. 5(x) is handled in a similar way.

The values obtained by Gurobi limited to the same runtime of ODE approach are also
listed in Table 6. Since in some instances, Gurobi fails to produce any feasible solutions,
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Table 6: Numerical values of the star discrepancy on GLP sets. Values in the columns headed by “TA”
are directly copied from [8] as reference and obtained there by the TA improved algorithm. Values
in the columns headed by "Gurobi” are either the objective values or the quotients of runtimes (in
parentheses). A dash “-” means Gurobi fails to provide a competitive solution compared to the ODE
method after running for more than 20 hours.

N d ODE TA Ratio  Gurobi N d ODE TA Ratio  Gurobi
145 4 0.0731 0.0731 1.0000 0.0731 28 6 0.5360 0.5360 1.0000 0.5360
255 4 0.1093 0.1093 1.0000 0.1016 29 6 0.2532 0.2532 1.0000 0.2532
312 4 0.0617 0.0618 0.9974 0.0595 35 6 0.3431 0.3431 1.0000 0.3431
376 4 0.0752 0.0753 0.9979 0.0682 50 6 0.3148 0.3148 1.0000 0.3148
388 4 0.1297 0.1297 1.0000 0.0989 61 6 0.1937 0.1937 1.0000 0.1937
442 4 0.0620 0.0620 1.0000 0.0424 73 6 0.1467 0.1485 0.9876 0.1406
448 4 0.0548 0.0548 1.0000 0.0178 81 6 0.2500 0.2500 1.0000 0.2498
451 4 0.0271 0.0271 1.0000 0.0146 88 6 0.2658 0.2658 1.0000 0.2658
471 4 0.0286 0.0286 1.0000 0.0225 90 6 0.1992 0.1992 1.0000 0.1605
487 4 0.0413 0.0413 0.9995 0.0138 92 6 0.1635 0.1635 1.0000 0.1631
102 5 0.1216 0.1216 1.0000 0.1160 || 2129 6 0.0246 0.0254 0.9685 (1.1)
122 5 0.0860 0.0860 1.0000 0.0791 || 3997 7 0.0251 0.0254 0.9882 (8.3)
147 5 0.1456 0.1456 1.0000 0.1107 [[ 3997 8 0.0242 0.0254 0.9528 (29)
153 5 0.1075 0.1075 1.0000 0.0871 [[{ 3997 9 0.0387 0.0387 1.0000 -
169 5 0.0755 0.0755 1.0000 0.0710 || 4661 10 0.0256 0.0272 0.9412 -
170 5 0.0860 0.0860 1.0000 0.0771 || 4661 11 0.0259 0.0283 0.9152 -
195 5 0.1574 0.1574 1.0000 0.1193
203 5 0.1675 0.1675 1.0000 0.1260
235 5 0.0786 0.0786 1.0000 0.0606
236 5 0.0582 0.0582 1.0000 0.0466

Table 7: Approximate total steps and time in milliseconds used by the ODE approach for approximating
the star discrepancy in Eq. (6.13).

. Number Time
N d Time of steps per step
1.0x10% | 4 | 40x10' | 8.0x10? | 5.0x 1072
25x10% | 4 | 6.0x10' | 8.0x10% | 6.0 x 1072
50x10% | 4 | 1.0x10% | 1.5x10% | 7.0 x 1072
50x10% | 6 | 6.0x10% | 5.0x10% | 1.2x 107}
20x10° | 6 | 3.2x10% [ 8.0x10% | 40x 107!
40x10% | 10 | 1.3x10* | 1.3x10* | 1.0x 10°

we let it run until it finds a solution no worse than our approach’s, then we record the
runtime (as there are two maximum problems in one instance, we choose the one with
larger objective value found by ODE approach). The columns headed by “Gurobi” in Ta-
ble 6 show the results by two means. That is, the numbers without parentheses repre-
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Figure 2: Quality check: Histogram of the ratios between the discrepancy values of the ODE approach
and the reference values produced by TA _improved for all 36 x 100 trials.

sent the objective function values found by Gurobi under the limitation of runtime, while
the ones in parentheses represent the quotients of runtimes of Gurobi and our method
(total time for two problems). In the first 30 instances, Gurobi manages to find feasi-
ble solutions, but the objective values are all less than or equal to our method’s. For
(N,d) = (3997,9),(4661,10),(4661,11), Gurobi fails to provide a competitive solution
compared to ODE method after running for more than 20 hours (therefore, we leave a dash
there).

7. Conclusion and Discussion

We proposed an ODE approach for multiple choice polynomial programming (MCPP)
and demonstrated its validity via both theoretical analysis and numerical experiments. It
fully exploits a connection between the discrete MCPP problem and the continuous ODE
system through revealing the relation between local optima of the MCPP and equilibriums
of the ODE. The resulting solutions of MCPP instances representing two specific problems
are relatively good compared to dedicated algorithms’, and are mostly competitive com-
pared to Gurobi’s. We are conducting analysis on the existence of equilibrium points and
the realizability of conditions that ensures the local optimality, and trying more advanced
numerical techniques for evolving an ODE to its equilibrium points. We are going to extend
the proposed ODE approach to some kinds of mixed integer programming problems with
more constraints rather than multiple choice. On the other hand, although the polytope
of unconstrained pseudo-boolean optimization has been thoroughly studied [5], there is
very limited research on the polytope of MCPE and thus accelerating the ODE approach
with the aid of polyhedral property and/or cutting-plane method is also a subject of future
research. Moreover, we hope that our preliminary attempt in this work may inspire more
new connections between discrete data world and continuous math field.
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