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Abstract. We propose an ODE approach to solving multiple choice polynomial program-

ming (MCPP) after assuming that the optimum point can be approximated by the ex-

pected value of so-called thermal equilibrium as usually did in simulated annealing. The

explicit form of the feasible region and the affine property of the objective function are

both fully exploited in transforming an MCPP problem into an ODE system. We also

show theoretically that a local optimum of the former can be obtained from an equilib-

rium point of the latter. Numerical experiments on two typical combinatorial problems,

MAX-k-CUT and the calculation of star discrepancy, demonstrate the validity of the ODE

approach, and the resulting approximate solutions are of comparable quality to those

obtained by the state-of-the-art heuristic algorithms but with much less cost. When

compared with the numerical results obtained by using Gurobi to solve MCPP directly,

our ODE approach is able to produce approximate solutions of better quality in most

instances. This paper also serves as the first attempt to use a continuous algorithm for

approximating the star discrepancy.

AMS subject classifications: 90C59, 35Q90, 90C09, 90C23
Key words: Pseudo-Boolean optimization, multiple choice constraint, continuous approach, MAX-

CUT, star discrepancy.

1. Introduction

We consider the following pseudo-Boolean optimization problem:

min
x∈{0,1}n

f (x),

s.t.
∑

i∈I j

x i = 1, j = 1,2, . . . , m,
(1.1)

where f is a polynomial function, x is an n-dimensional Boolean vector, the indices [n] :=

{1,2, . . . , n} are divided into m disjoint subsets I1, I2, . . . , Im, and the cardinality of each I j ,

denoted by d j := |I j |, must be greater than 1. Then x is accordingly divided into m vectors
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x (1), x (2), . . . , x (m) where each x ( j) picks out all the entries in I j of x . The constraints mean

that, for each j, there exists exact one element that equals to 1 in the subvector x ( j), im-

plying that only one is determined from d j choices and thus m items chosen from n choices

in total. A group of entries of x in a single I j represents a decision out of finite choices.

More precisely, we use multiple choice polynomial programming to call the problem (1.1),

which is capable of dealing with various problems in diverse disciplines [2], for example,

the MAX-k-CUT [20], star discrepancy [8] problems and SAT [17]. It should be pointed

out that studies on integer linear programming problems with multiple choice constraints,

termed the multiple choice programming (MCP), can date back to [11]. Since then several

methods have been developed — cf. [27], but most of them are not designed for nonlinear

objective functions. Although MCPP can be transformed into MCP by defining new vari-

ables to represent monomials, an exploration in this direction will not be presented here.

As a typical 0-1 programming problem, MCPP can also be treated with standard mixed

integer nonlinear programming solvers, such as Gurobi [10], IBM-CPLEX [14], and SCIP [1],

but few of them are designed for general nonlinear programming. For example, to apply

Gurobi, one has to reformulate the nonlinear terms in MCPP instances into linear and/or

quadratic forms by defining new variables and new constraints, thereby greatly increasing

the problem size. This defect becomes even severer in calculating the star discrepancy since

the degree of corresponding objective function is nothing but the dimension of underlying

space and is usually much greater than 1 (see Eq. (6.13) in Section 6).

Alternatively, continuous approaches to discrete problems has attracted more attention

since the Hopfield network — cf. [13], an early ODE approach, was proposed for the 0-

1 quadratic programming in 1980s. The Hopfield network has been extended to other

combinatorial optimization problems [15,28], where many useful mathematical techniques

in dynamical system have been introduced. In the most recent work [22], an ODE approach

was proposed through a quartic penalty approximation of the Boolean polynomial program.

In line with this, here we propose to use the solutions of the following ODE system:

dy
( j)

i

dt
= −y

( j)

i
+σi

�

−Φ( j)(y); 1/T
�

, j ∈ [m], i ∈ [d j],

y(0) = y0 ∈ [0,1]n
(1.2)

to approximate the solutions of MCPP, where the time-dependent vector y(t) : [0,+∞)→

R
n is divided as x in Eq. (1.1) does, the initial data y0 is required to satisfy the continuous

multiple choice constraint:
∑d j

i=1
(y0)

( j)

i
= 1 for all j ∈ [m], Φ( j) denotes the partial deriva-

tive of f with respect to x ( j): Φ
( j)

i
= ∂ f /∂ x

( j)

i
, T is a positive parameter called temperature,

and σi(z;β) : Rd ×R+→ (0,1) gives the softmax function defined by

σi(z;β) =
exp (βzi)
∑d

k=1 exp (βzk)
(1.3)

with d being the dimension of input argument z. Note in passing that y
( j)

i
(t) ∈ (0,1) for

arbitrary t > 0, i.e. y(t) : [0,+∞) → (0,1)n. We are able to prove that the equilib-

rium points of the ODE system (1.2) represent the local optimum solutions of MCPP (1.1).
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Therefore, we just have to numerically integrate (1.2) until we find an equilibrium (usually

fast with fewer iterations) which can be rounded into a local solution of MCPP. Along the

way, various well-established techniques in numerically solving ODEs can be incorporated

to improve the efficiency without sacrificing the solution quality. Actually, the ODE system

(1.2) can be regarded as a continuous version of simulated annealing (SA) [17] by start-

ing from a continuous-time Markov chain and exploiting two intrinsic properties of MCPP

(1.1). One is that the explicit form of the feasible region is so straightforward that the state

space of the Markov chain can be easily determined. The other is that the objective function

of MCPP, f (x (1), x (2), . . . , x (m)), is affine with respect to x ( j) for all j ∈ [m] (otherwise we

can modify it equivalently), with which the definition of transition rate can be significantly

simplified. It should be noted that Eq. (1.2) may recover the ODE system used in [23] for

the unconstrained binary quadratic programming — cf. Example 2.1.

We apply the proposed ODE approach into two typical NP-hard problems: MAX-k-CUT

with k = 2,3,4,5 and the star discrepancy calculation, and two state-of-the-art heuristic

algorithms: the multiple operator heuristic (MOH) [20] and the improved threshold accept-

ing (TA_improved) [8] methods are employed to as the reference of the solution quality,

respectively. For MAX-k-CUT problems, the test bed is G-Set†. More than half of the ratios

between the best cut values achieved by our ODE approach and those by MOH are above

0.99. For star discrepancy calculation, the test set is a group of good lattice point (GLP) sets

adopted in [29]. The ratios between the best lower bounds achieved by our ODE approach

and those by TA_improved are at least 0.91. More important, in both problems the ODE

approach requires much fewer iterations compared to MOH or TA_improved for each trial

while the cost of each iteration is linear to the problem size across these three methods. Its

iteration steps over MOH’s for MAX-k-CUT are about 1/105 to 1/104, and about 1/102 to

1/10 over TA_improved’s for calculating the star discrepancy.

To further demonstrate the capability of the proposed ODE approach, the numerical

results obtained by using Gurobi to directly solve the MCPP instances are adopted as com-

parison for which the time limit of Gurobi is set to be the very runtime of the ODE approach.

A detailed numerical comparison shows that, (1) for MAX-k-CUT with k = 3,4,5, in more

than 80% instances, the solutions produced by the ODE approach are better than or as good

as Gurobi’s; (2) for the star discrepancy problem, in about 17% instances, Gurobi does not

even provide a feasible solution under the time limitation, and in the remaining instances,

it provides no better solutions than our ODE approach.

The paper is organized as follows. In Section 2 we show how transform the MCPP

problem (1.1) into the ODE system (1.2) step by step starting from the well-known as-

sumption (2.2) of simulated annealing. In Section 3 we prove that a local optimum of

MCPP (1.1) can be indeed obtained via an equilibrium point of the ODE system (1.2). Af-

ter that, Section 4 details the procedure of finding the equilibrium points by numerically

integrating Eq. (1.2). In Sections 5 and 6, we apply the proposed ODE approach into the

MAX-k-CUT problem and approximating the star discrepancy, respectively. The paper is

concluded in Section 7 with a few remarks.

†Available at https://web.stanford.edu/ yyye/yyye/Gset/
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2. The ODE Approach: A Continuous Version of Simulated Annealing

Under the multiple choice constraint in Eq. (1.1), x ( j) must be a standard unit vector

in Rd j . Let Bd = {e
d
i
}d

i=1 ⊂ R
d collects the standard base of Rd where ed

i
denotes the

d-dimensional unit vector the i-th entry of which equals 1 and the rests are zeros. The

multiple choice constraint is then equivalent to x ( j) ∈ Bd j
, j = 1,2, . . . , m. Therefore, the

feasible region for MCPP is

X := Bd1
× Bd2

× · · · × Bdm
. (2.1)

We should mention that it is d j, the cardinality of each I j , that determines the structure of

the feasible region, rather than the particular division, and a compact notation, Bm
d

:= X ,

will be used in Sections 5 and 6 when d1 = · · · = dm = d . Then MCPP (1.1) becomes

minx∈X f (x) starting from which we explain how regard the ODE system (1.2) as a con-

tinuous version of SA. The well-known SA method [17] approaches “thermal equilibrium”

by generating a Markov chain such that its stationary distribution is the Boltzmann distri-

bution, namely

Pr(X = x)∝ exp
�

− E(x)/T
�

, (2.2)

where X ∈ X is a random variable, and E(x) denotes the energy at state x . We set E(x) :=

f (x) for MCPP, adopt a similar approach as SA but in a continuous, ODE-type way, by

defining a continuous-time Markov chain, and then calculate the dynamics of expected

value through the forward equation.

To define a random variable of a continuous-time Markov chain, we need to determine

two things: the state space of the variable and the transition rate between states. For

MCPP, the former is nothing but the feasible region (2.1). Let X t with t ¾ 0 be the random

variable. The state change of X t is allowed to happen only in a single B j . That is, X t

changes between x = (x (1), x (2), . . . , x (m)) and x ′, where there exists j ∈ [m] and i′ ∈ [d j]

such that x ′ = (x ( j̄), e
d j

i′
). Here x ( j̄) := (x (1), . . . , x ( j−1), x ( j+1), . . . , x (m)) denotes the (n −

d j)-dimensional vector by deleting x ( j), and (x ( j̄),ξ) := (x (1), . . . , x ( j−1),ξ, x ( j+1), . . . , x (m))

the n-dimensional vector by replacing x ( j) with ξ ∈ Rd j . We are ready to determine the

transition rate. Before that, we would like to assume that f (x (1), x (2), . . . , x (m)) is affine

with respect to x ( j) after fixing x ( j̄) for all j ∈ [m]

f (x) = x ( j) ·Φ( j)
�

x ( j̄)
�

+ f
�

(x ( j̄), 0)
�

, (2.3)

where the dot · gives the standard inner product, and the second RHS term is independent

of x ( j). Eq. (2.3) can be easily verified if noting:

(1) Every (x
( j)

i
)k in f can be replaced by x

( j)

i
because the power of 0 or 1 is equal to itself.

(2) Every monomial with divisor x
( j)

i
x
( j)

i′
, i 6= i′, vanishes.

(3) The partial derivative Φ( j)(x) is independent of x ( j) and thus Φ( j)(x ( j̄)) = Φ( j)(x) is

defined unambiguously.
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For x = (x ( j̄), e
d j

i
), x ′ = (x ( j̄), e

d j

i′
), i 6= i′, according to Eq. (2.3), we have

f (x) = f
�

(x ( j̄), 0)
�

+Φ
( j)

i
(x ( j̄)), f (x ′) = f

�

(x ( j̄), 0)
�

+Φ
( j)

i′
(x ( j̄)),

and

− f (x ′) + f (x) = −Φ
( j)

i′
(x ( j̄)) +Φ

( j)

i
(x ( j̄)). (2.4)

Let q(x → x ′) denote the transition rate from state x to x ′. It also means (x , x ′)-entry of

the Q-matrix over RX×X . The detailed balance condition reads

exp
�

− f (x)/T
�

q
�

x → x ′
�

= exp
�

− f (x ′)/T
�

q
�

x ′→ x
�

,

or
q(x → x ′)

q(x ′→ x)
= exp
�

(− f (x ′) + f (x))/T
�

(2.5)

for non-zero entries of q, which implies x 6= x ′. To satisfy Eq. (2.5), combining it with

Eq. (2.4), we define

q(x → x ′) =

¨

σi′

�

−Φ( j)(x ( j̄)); 1/T
�

, x =
�

x ( j̄), e
d j

i

�

, x ′ =
�

x ( j̄), e
d j

i′

�

, i 6= i′,

0, otherwise.
(2.6)

Using x ′( j̄) = x ( j̄), we have

q(x ′→ x) = σi

�

−Φ( j)(x ′( j̄)); 1/T
�

= σi

�

−Φ( j)(x ( j̄)); 1/T
�

,

and then Eq. (2.5) can be readily verified.

Next, let us calculate the dynamics of expected value. We denote the probability distri-

bution at time t by p(x ; t) := Pr(X t = x). Then it satisfies the forward equation

dp(x ; t)

dt
=
∑

x ′∈X ,x ′ 6=x

q(x ′→ x)p(x ′; t)−
∑

x ′∈X ,x ′ 6=x

q(x → x ′)p(x ; t). (2.7)

Let µ : Rn→ R be an arbitrary vector function. From Eq. (2.7), we have

d 〈µ(X t)〉

dt
=
∑

x∈X

µ(x)
dp(x ; t)

dt

=
∑

x ′∈X

p(x ′; t)
∑

x 6=x ′

µ(x)q(x ′→ x)−
∑

x∈X

p(x ; t)
∑

x ′ 6=x

µ(x)q(x → x ′)

=

�

∑

x 6=X t

(µ(x)−µ(X t))q(X t → x)

�

, (2.8)

where the term in the summation only counts when both µ(x) 6= µ(X t) and x 6= X t hold. Let

mt = 〈X t〉 ∈ [0,1]n be the expected value of X t . Then (mt)
( j)

i
=
∑

x∈X x
( j)

i
p(x ; t) which
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assigns µ to (·)
( j)

i
: x 7→ x

( j)

i
where there are only few xs satisfies these two conditions.

Recalling the definition of q in Eq. (2.6), x 6= x ′ if and only if x and x ′ differs in only one

group Ik. In addition, we need x
( j)

i
6= (x ′)

( j)

i
then k must be j. Therefore, x = ((X t)

( j̄), e
d j

i′
)

for some e
d j

i′
6= (X t)

( j). Accordingly, from Eqs. (2.8) and (2.6), we obtain

d(mt)
( j)

i

dt
=

�

∑

1¶i′¶d j ,e
d j

i′
6=(X t)

( j)

�

x
( j)

i
− (X t)

( j)

i

�

q(X t → x)

�

=

�

∑

1¶i′¶d j ,e
d j

i′
6=(X t)

( j)

�

x
( j)

i
− (X t)

( j)

i

�

σi′

�

−Φ( j)(x); 1/T
�

�

=

�

∑

1¶i′¶d j

�

x
( j)

i
− (X t)

( j)

i

�

σi′

�

−Φ( j)(x ( j̄)); 1/T
�

�

=

�

∑

1¶i′¶d j

x
( j)

i
σi′

�

−Φ( j)((X t)
( j̄)); 1/T
�

�

−

�

∑

1¶i′¶d j

(X t)
( j)

i
σi′

�

−Φ( j)(x ( j̄)); 1/T
�

�

=
¬

σi

�

−Φ( j)(X t); 1/T
�
¶

−
¬

(X t)
( j)

i

¶

(2.9)

≈ σi

�

−Φ( j)(mt); 1/T
�

− (mt)
( j)

i
, (2.10)

where we have applied x ( j̄) = (X t)
( j̄), and x

( j)

i
6= 0 if and only if i′ = i in the first RHS

term of Eq. (2.9),
∑

1¶i′¶d j
σi′(−Φ

( j)(x); 1/T ) = 1 in the second RHS term of Eq. (2.9), as

well as a rough approximation 〈σi(−Φ
( j)(X t); 1/T )〉 ≈ σi(−Φ

( j)(mt); 1/T ) in the first RHS

term of Eq. (2.10). The ODE system (1.2) is manifest in Eq. (2.10) after replacing mt with

y(t) ∈ (0,1)n. That is, y(t) is also an approximation of the dynamics of the expected value

of a continuous-time Markov chain, and by searching for its efficient numerical approxima-

tions, we are able to approximate the Markov chain efficiently. Moreover, its equilibrium

serves as the stable distribution of the Markov chain, namely, the Boltzmann distribution

(2.2). When the temperature goes to zero, the distribution approaches the uniform distribu-

tion on the ground states, which may give the optimum solution. Therefore, the equilibrium

gives a reasonable approximation of the optimum, the proof of which is left for Section 3.

Finally, X t ∈ X means that the multiple choice constraint
∑d j

i=1
(X t)

( j)

i
= 1 for all j ∈ [m]

holds with probability 1 and so does mt . In fact, we claim that y(t) defined in Eq. (1.2)

also satisfies such constraint when the initial data y(0) does, which can be readily seen

from the sum of Eq. (1.2),

d

dt
S j(t) = −S j(t) + 1 ⇔ S j(t) =

�

S j(0)− 1
�

e

−t + 1,

where S j(t) =
∑d j

i=1
y
( j)

i
(t).
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Example 2.1. The ODE approach is applicable in the unconstrained situation where the

multiple choice constraint in Eq. (1.1) is absent. By introducing extra n Boolean variables

xn+1, . . . , x2n, the unconstrained problem minx∈{0,1}n f (x) can be reformulated into the fol-

lowing MCPP:

min
x∈{0,1}2n

f (x1, x2, . . . , xn),

s.t. x i + x i+n = 1, i = 1,2, . . . , n,

where the index set [2n] are divided into n disjoint subsets: I j = { j, j + n}, d j = 2, j =

1,2, . . . , n, and Φ
( j)

1 (x) = ∂ f (x)/∂ x j, Φ
( j)

2 (x) = 0. Then from Eq. (1.2), we have that y j

(i.e., y
( j)

1 ) satisfies

dy j

dt
= −y j +

1

2

�

tanh

�

−
1

2T

∂ f (y)

∂ x j

�

+ 1

�

, j = 1,2, . . . , n. (2.11)

As

y
( j)

1 (t) + y
( j)

2 (t) = y j(t) + y j+n(t) = 1 for t ¾ 0,

we do not have to care about the dynamics of extra variable y j+n(t). Implementing a linear

transformation z j = 2y j − 1 in Eq. (2.11) yields a ODE system for z ∈ [−1,1]n

dz j

dt
= −z j + tanh

�

−
1

2T

∂ f ((z + 1)/2)

∂ x j

�

, j = 1,2, . . . , n,

which was also mentioned in [23] for the unconstrained binary quadratic programming.

3. Numerical Analysis

Let ȳ(T ) be an equilibrium point of the ODE system (1.2) under the parameter T ,

namely,

ȳ(T )( j) = σ
�

−Φ( j)( ȳ(T )); 1/T
�

for all j ∈ [m]. (3.1)

We claim that ȳ(T ) approximates a local solution of Eq. (1.1) when T is sufficiently small.

This can be formally explained as follows. As β approaches +∞, the limit of softmax

function (1.3), denoted by σ̂(z) = (σ̂i(z)), is a kind of hard max

σ̂i(z) = lim
β→+∞

σi(z;β) =

¨

1/r, zi =max{z1, z2, . . . , zd},

0, otherwise,
(3.2)

where r = |{i | zi = max{z1, z2, . . . , zd}}| denotes the number of maximal entries of z. It

can be easily observed that the range of σ̂(z), denoted by B̄d , is a discrete set, i.e.,

B̄d =

¨

1

|A|
χA ∈ Rd

�

�

�

�

�

χA
i =

¨

1, i ∈ A,

0, i /∈ A,
A⊆ [d], A 6= ∅

«

.
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If the limit ŷ := limT→0+ ȳ(T ) exists, then Eq. (3.1) formally yields

ŷ( j) = σ̂
�

−Φ( j)( ŷ)
�

(3.3)

for all j ∈ [m]. Thus ŷ( j) ∈ B̄d j
and

ŷ ∈ X̄ := B̄d1
× B̄d2

× · · · × B̄dm
.

Combining the Eqs. (3.2) and (3.3) shows that the nonzero entries in ŷ( j) correspond to the

minimal entries of Φ( j)( ŷ). Hence, ŷ( j) minimizes the MCPP objective function f (( ŷ( j̄),ξ))

for ξ ∈ Rd j after fixing ŷ( j̄) in view of its affine property given in Eq. (2.3). Actually, given

Definition 3.1, we are able to prove that ŷ is indeed a local optimum of MCPP (1.1) in X̄ ,

cf. Proposition 3.1.

Definition 3.1 (Local Optimality). We call x ∈ X̄ a local optimum of f in X̄ , if for any

x ′ ∈ X̄ for which exists j0 ∈ [m] such that (x ′)( j̄0) = x ( j̄0), we have f (x ′) ¾ f (x).

Proposition 3.1. The n-dimensional vector ŷ defined in Eq. (3.3) is a local optimum of

MCPP (1.1) in X̄ .

Proof. Let y ′ ∈ X̄ satisfy (y ′)( j̄0) = ŷ( j̄0). It follows from the Eqs. (3.2), (3.3) that for

all i such that ŷ
( j0)

i
6= 0, we have

ŷ
( j0)

i
=

1

r
, Φ

( j0)

i
( ŷ

¯( j0)) = min
1¶k¶d j0

Φ
( j0)

k
( ŷ( j̄0)), (3.4)

where r equals the number of nonzero entries of ŷ( j0). Combining Eqs. (2.3) and (3.4)

yields

f (y ′)− f ( ŷ) = (y ′)( j0) ·Φ( j0)
�

(y ′)( j̄0)
�

− ŷ( j0) ·Φ( j0)( ŷ( j̄0))

= (y ′)( j0) ·Φ( j0)( ŷ( j̄0))− min
1¶k¶d j0

Φ
( j0)

k
( ŷ( j̄0))¾ 0,

where the fact (y ′)( j0) ∈ B̄d j0
is used in the last inequality.

It should be noted that Eq. (3.3) does not hold in general sinceσ(·;β) does not converge

to σ̂ uniformly. However, in numerical experiments, the equilibriums ȳ(T ), which may

not be close to a Boolean vector, are always very close to vectors in X̄ for sufficiently

small T . Therefore, we can reasonably assume that ȳ is an approximation of ŷ and that

σ(·; 1/T ) is an approximation of σ̂. Then Eq. (3.1) approximates Eq. (3.3). In fact, the

theoretical results exists and in Proposition 3.2 we give the analytical condition for the

closeness between ȳ and X̄ under which we can claim that Eq. (3.3) holds. Thus, by

Proposition 3.1, ŷ is a local optimum. Before that, we give some notations and definitions.

Let L be the maximal Lipschitz constant of all Φ
( j)

i
with j ∈ [m], i ∈ [d j]. Namely, we

have
�

�Φ
( j)

i
(x)−Φ

( j)

i
(x ′)
�

� ¶ L‖x − x ′‖∞
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for all x , x ′ ∈ [0,1]n and all j ∈ [m], i ∈ [d j]. Moreover, in order to measure the closeness

of different Φ
( j)

i
in X̄ , we let

d̂ :=max{d1, d2, . . . , dm},

and define the minimal gap of Φ as

g :=min
¦
�

�Φ
( j)

i′
(x)−Φ

( j)

i
(x)
�

�

�

� Φ
( j)

i′
(x) 6= Φ

( j)

i
(x), x ∈ X̄ , j ∈ [m], i′, i ∈ [d j]

©

. (3.5)

Proposition 3.2. Let ȳ = ȳ(T ) be an equilibrium of the ODE system (1.2), and assume that

there exists ŷ ∈ X̄ , whose distance to ȳ, denoted by ǫ := ‖ ŷ − ȳ‖∞ > 0, satisfies

d̂ǫ <
1

2
,

ǫ

ln(1/(d̂ǫ)− 1)
<

T

2L
, T ln

1+ d̂ǫ

1− d̂ǫ
+ 2Lǫ < g. (3.6)

Then the Eq. (3.3) holds and thus ŷ must be a local optimum of f in X̄ .

Proof. Notice that conditions (3.6) imply

d̂ǫ < 1, ln
�

1/(d̂ǫ)− 1
�

> 0, T ln
�

1/(d̂ǫ)− 1
�

> 2Lǫ.

In order to obtain Eq. (3.3), according to the definition of softmax function given in Eq. (1.3),

it suffices to show that for every j ∈ [m] we have

Φ
( j)

i
( ŷ) = min

1¶k¶d j

Φ
( j)

k
( ŷ), if i ∈ A j ,

Φ
( j)

i
( ŷ)> min

1¶k¶d j

Φ
( j)

k
( ŷ), if i /∈ A j ,

(3.7)

where A j collects the nonzero entries of ŷ( j) and r = |A j|.

First, we prove that Φ
( j)

i1
( ŷ) = Φ

( j)

i2
( ŷ) for all i1, i2 ∈ A j . Using the fact that ȳ is an

equilibrium, we arrive at

ln
�

ȳ
( j)

i1
/ ȳ
( j)

i2

�

=
1

T

�

−Φ
( j)

i1
( ȳ) +Φ

( j)

i2
( ȳ)
�

. (3.8)

On the other hand, the distance between ŷ and ȳ provides a limit for every entry of ȳ( j).

By | ŷ
( j)

i
− ȳ

( j)

i
|¶ ‖ ŷ − ȳ‖∞ = ǫ, we get

ȳ
( j)

i
∈ [1/r − ǫ, 1/r + ǫ] , if i ∈ A j,

ȳ
( j)

i
∈ [0,ǫ], if i /∈ A j.

(3.9)

Combining the Eqs. (3.6), (3.8), (3.9) and using r ¶ d̂ gives

�

�Φ
( j)

i1
( ȳ)−Φ

( j)

i2
( ȳ)
�

� = T

�

�

�ln
�

ȳ
( j)

i1
/ ȳ
( j)

i2

�
�

�

� ¶ T ln
1/r + ǫ

1/r − ǫ
¶ T ln

1+ d̂ǫ

1− d̂ǫ
for all i1, i2 ∈ A j,
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so that

�

�Φ
( j)

i1
( ŷ)−Φ

( j)

i2
( ŷ)
�

� ¶
�

�Φ
( j)

i1
( ŷ)−Φ

( j)

i1
( ȳ)
�

�+
�

�Φ
( j)

i1
( ȳ)−Φ

( j)

i2
( ȳ)
�

�+
�

�Φ
( j)

i2
( ŷ)−Φ

( j)

i2
( ȳ)
�

�

¶ Lǫ + T ln
1+ d̂ǫ

1− d̂ǫ
+ Lǫ < g,

which directly implies Φ
( j)

i1
( ŷ) = Φ

( j)

i2
( ŷ) for all i1, i2 ∈ A j, because g defined in Eq. (3.5)

gives the minimal distance between two different Φ
( j)

i
s in X̄ .

In order to verify Eq. (3.7), the rest is to prove that Φ
( j)

i′
( ŷ) > Φ

( j)

i1
( ŷ) for all i′ 6∈ A j.

According to Eqs. (3.6), (3.8) and (3.9) and the fact that r ¶ d̂, we have

Φ
( j)

i′
( ȳ)−Φ

( j)

i1
( ȳ) = T ln
�

ȳ
( j)

i1
/ ȳ
( j)

i′

�

¾ T ln
1/r − ǫ

ǫ
¾ T ln

�

1

d̂ǫ
− 1

�

> 2Lǫ,

and then

Φ
( j)

i′
( ŷ)−Φ

( j)

i1
( ŷ) =
�

Φ
( j)

i′
( ȳ)−Φ

( j)

i1
( ȳ)
�

+
�

Φ
( j)

i′
( ŷ)−Φ

( j)

i′
( ȳ)
�

−
�

Φ
( j)

i1
( ŷ)−Φ

( j)

i1
( ȳ)
�

> 2Lǫ −
�

�Φ
( j)

i′
( ŷ)−Φ

( j)

i′
( ȳ)
�

�−
�

�Φ
( j)

i1
( ŷ)−Φ

( j)

i1
( ȳ)
�

�

¾ 2Lǫ − Lǫ − Lǫ = 0.

The proof is complete.

Remark 3.1. There is a more concise condition for ǫ, viz.

ǫ <min

§

1

4d̂
,

T

2L
,

g

3d̂T + 2L

ª

,

from which the three conditions given in Eq. (3.6) can be readily derived by direct relax-

ations. That is, for a given T , a sufficiently small ǫ guarantees an equilibrium point of

the ODE system (1.2) gives a local optimum of MCPP (1.1) in X̄ . However, we cannot

theoretically assure that ǫ will be small enough as T approaches 0 at the current stage.

4. Implementation

The biggest benefit of transforming MCPP (1.1) into the ODE system (1.2) is that various

numerical ODE solvers and related techniques come into play for complex combinatorial

problems. According to Proposition 3.2, we need to find the equilibrium of Eq. (1.2) quickly

rather than to know how we approach it. That is, we do not have to know the dynamics

evolution quite precisely. To this end, we adopt variable time step forward Euler scheme for

accelerating the calculation. Besides, also inspired by SA, we use an infinite temperatures

sequence (mostly it is decreasing) T1, T2, . . . , and numerically solve Eq. (1.2) with T :=

Ts, s = 1,2, . . . , until we find an equilibrium ȳ(Ts). Except for the first numerical integration

with T = T1, the initial value for the ODE system (1.2) with T = Ts can be set to be the
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previous equilibrium ȳ(Ts−1). When the distance ǫ := miny∈X̄ ‖y − ȳ(T )‖∞ is less than

a prescribed accuracy tolerance ǫ0, we stop evolving the ODE system and turn to rounding

procedure.

It should be noted that there is a suitable range for T1 due to the following reasons:

(1) T1 should not be too large or the diversity of solutions may be insufficient. To see

this, consider the extreme case by formally letting T = +∞ and replacing 1/T by 0 in

Eq. (3.1). We get ȳ(+∞)( j) = 1d j
/d j , where 1d j

is a d j-dimensional vector with every

entry identical to 1. This uninformative equilibrium is independent of the initial point

y0. A similar phenomenon happens when T1 is large enough, in which the numerical

experiments show that we can only find one equilibrium ȳ(T1) for different y0s (and

it is close to ȳ(+∞)). Then the subsequent evolutions of y will be similar. Sometimes

the method even produces the same solutions.

(2) T1 should not be too small either. Otherwise the ODE will act like a greedy local

search. This phenomenon is accessible noticing that the SA method is more like greedy

algorithm when the temperature becomes smaller and so does the ODE approach.

In practice, it is not necessary to determine the range precisely. To find a reasonable assign

for T1, we first choose a small value then double it repeatedly until 2T1 leads to uninfor-

mative equilibriums while T1 does not. Thus the above two requirements are satisfied.

4.1. Choice of the initial data

As mentioned in Section 1, the initial data of ODE y0 should satisfy the so-called con-

tinuous multiple choice constraint

d j
∑

i=1

(y0)
( j)

i
= 1 for all j ∈ [m],

i.e. (y0)
( j) belongs to the standard (d j − 1)-simplex

∆
d j−1 :=

(

z ∈ Rd j

�

�

�

�

z ¾ 0,

d j
∑

i=1

zi = 1

)

.

Therefore, we generate (y0)
( j)s by sampling from a distribution on this simplex and then

combine (y0)
( j), j = 1,2, . . . , m into one y0. In practice, we choose a symmetric Dirichlet

distribution with the concentration parameter 0.01. It is more likely to produce values,

most entries of which are close to 0. This may lead to a larger expected distance between

each pair of y0s and thus a more thorough exploration of the solution space of the ODE

system.

4.2. Variable time step

The forward Euler (FE) scheme for an autonomous system dy/dt = F(y) reads

yk = yk−1 + hk−1F k−1, (4.1)
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where F : Rn → Rn is a vector function, yk denotes the numerical approximation of y(t)

at time tk, hk−1 := tk − tk−1 is the time step, and F k := F(yk). To estimate the local

truncation error of Eq. (4.1), which is dominated by (hk−1)2 when hk−1 is small enough,

we adopt a method similar to the Richardson extrapolation [24]. Let (hk−1)2c denote the

error. Assuming that the vector c keeps almost unchanged for some successive time steps

and hk−1 = hk−2 for even k, we have another approximation to y(tk), viz.

ỹk := yk−2 + (hk−1 + hk−2)F k−2 = yk−2 + 2hk−1F k−2,

the error of which is 4(hk−1)2c, while the method (4.1) has the error

(hk−1)2c + (hk−2)2c = 2(hk−1)2c,

if staring from the same yk−2. Therefore, in order to estimate the truncation error in prac-

tice, we can use ( ỹk − yk)/2 ≈ (hk−1)2c. Specifically, we adopt a tolerance Θ > 0 for

θ k := ‖ ỹk − yk‖2 and a step adjust ratio ρ > 1. Since the error for the k-th step is pro-

portion to the square of step size hk−1 and can be well approximated by θ k/2, we are able

to maintain it within a specific range according to Θ and ρ by a two-way adjustment of hk

as follows. Reduce the time step hk+1 = hk = hk−1/ρ when θ k > Θρ2, which may avoid

the error increase by decreasing the time step; increase the time step hk+1 = hk = ρhk−1

when θ k < Θ/ρ2, which may exploit the maximum large time step allowed by a small er-

ror. If the errors make a small change in successive two steps, then θ k will not be far from

[Θ/ρ2,ρ2
Θ]. Thus, in doing so, the errors can be controlled around a desired accuracy of

Θ/2, and few of them will be outside the interval [Θ/2ρ2,ρ2
Θ/2].

4.3. Rounding procedure

Proposition 3.2 requires ǫ = ‖ ŷ − ȳ(T )‖∞ to be small enough. It is natural to think of

letting ŷ reach the minimum among X̄ . However, a naive implementation of this procedure

is impractical since each Bd j
contains 2d j − 1 elements and thus |X̄ | =

∏m

j=1(2
d j − 1). In-

stead, we only generate an appropriate ŷ as follows. For each ȳ( j), let η j =maxi∈[d j]
{ ȳ
( j)

i
}

and r j = ⌊1/η j + 1/2⌋. Then consider the largest r j entries of ȳ( j) and record the indices

in set A j ⊆ [d j]. This always can be done after noting η j ¾ 1/d j. Let ŷ( j) = χA j/r j for each

j ∈ [m] then ŷ( j) ∈ B̄d j
as |A j| = r j ¶ d j, and we achieve ŷ ∈ X̄ . It should be pointed out

that if there exists a r ′
j
-element set A′

j
⊆ [d j] such that ‖ ȳ( j) − χ

A′
j/r ′

j
‖∞ is small enough,

1/η j will be close to r ′
j
, thus we choose the right r j = r ′

j
. Moreover, the largest r j entries

of ȳ( j) will be close to 1/r ′j, which form A′j and are also chosen by A j. This explains why

ŷ( j) may serve as a good approximation for ȳ( j).

At the final step, we have to get a Boolean vector x from ŷ . First, we let x ← ŷ . Then

sequentially change x ( j) into a standard unit vector. This process should be done greedily.

More precisely, we choose and i ∈ [d j] such that minimize Φ
( j)

i
(x ( j̄)) and let x ( j) ← e

d j

i
.

This will not increase f (x). When x is locally optimal, the procedure ends. Thus f (x) is

no larger than f ( ŷ).
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4.4. Cost analysis

The main cost of each FE step in the method (4.1) is calculating F(y), and according to

Eq. (1.2), the cost of F(y) consists of calculating Φ(y), m softmax functions with Φ(y)( j) as

input and O (n) basic operations. The softmax functions requires another O (n) operations.

Therefore, the computational complexity of the gradient function may dominate the cost

and it is necessary to analyze it respectively for different problems in practice.

5. Application to MAX-k-CUT

As a classical graph optimization problem, the MAX-k-CUT problem wants a k-division

of the vertex set V for a given edge-weighted graph G = (V, E,W ) such that the sum of

weights across any two subsets is maximized. Let V = {vi}
|V |
i=1

, W = (wi j)|V |×|V | and V1,

V2, . . . , Vk denote the subsets after division. Precisely, MAX-k-CUT maximizes the following

cut function:

cut(V1, V2, . . . , Vk) :=
∑

vi∈Vr ,v j∈Vs,r 6=s,i< j

wi j .

It reduces to the famous MAX-CUT problem for k = 2, one of the 21 Karp’s NP-complete

problems [16]. MAX-k-CUT is widely studied and there are a number of algorithms for find-

ing its approximating solutions, including the heuristic methods, see e.g. [20] and reference

therein, and continuous algorithms [4,9,26].

We will use the proposed ODE approach to solve the MAX-k-CUT problem and need

to transform it into MCPP at the first step. This can be readily implemented by setting

n← k|V |, m← |V |, d j ← k for any j ∈ [m] in Eqs. (1.1) and (2.1), and the feasible region

for MAX-k-CUT turns out to be B
|V |
k

. Accordingly, the belonging of each vertex vi is mapped

to an element in Bk as follows: vi ∈ Vr if and only if x (i) = ek
r ; vi and v j belong to the same

subset if and only if (x (i))⊤x ( j) = 1. That is, the corresponding MCPP objective function

becomes

f (x) = −cut(V1, V2, . . . , Vk) = −
∑

i< j

wi j

�

1− (x (i))⊤x ( j)
�

. (5.1)

The minus sign before the cut function converts it into a minimization problem to fit the

form of (1.1). For the sake of comparison, we still regard − f as the result cut value in the

rest of the paper. Then our ODE approach can be used directly to solve the MAX-k-CUT

problem. We implement it with MATLAB R2021a and run it on AMD Ryzen 1950X with

64GB RAM.

Due to the differences in programming languages, implementation and platforms, mak-

ing a fair comparison of runtime is quite difficult. Therefore, we focus on the comparison

of solution quality where the cut values produced by MOH [20] are adopted as the refer-

ence. Tables 1-5 present the numerical results for k = 2,3,4,5 on G-Set which includes

71 randomly generated graph with 800 to 20000 vertices. So there are 4×71 instances in

all. We run 100 independent trials for each instance and record the best cut value among

all the results in Tables 1-4, see the columns headed by “ODE”. The initial value of each
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trial is generated randomly as described in Section 4.1. The trials are simply parallelized

with MATLAB’s parfor. Other parameters are T1 = 3, Ts = γ
s−1T1, s = 2,3, . . . , γ = 0.95,

ǫ0 = 1 × 10−3, Θ = 1 × 10−6n and ρ = 1.1. T1 is determined according to the routine

described in Section 4, and {Ts} is a geometric progression since it is a simple sequence

converging to zero. For comparison, Tables 1-4 also calculate the ratio between the best

cut value achieved by our ODE approach in those 100 runs and that by MOH for each in-

stance, and one can find that, for all four problems, such ratios are larger than 0.99 for at

least 38 instances. For the remaining graphs of G-Set, the ODE method performs diversely.

For k = 2, the ratios are at least 0.96 and in only one instance is less than 0.97 (see G64

in Table 1). For k = 3, the ratios are all above 0.97. However, there are 5 instances for k = 4

the ratios of which are in (0.95,0.97] (see G18, G19, G20, G56, G61 in Table 3), and there

are 6 ratios in this interval for k = 5 (see G19, G20, G21, G40, G56, G61 in Table 4). The

worst solution quality happens in solving the MAX-5-CUT problem and the ratio decreases

to 0.9472 for G18 and it is the only one less than 0.95 in Table 4. For k = 2,4,5, the ratios

reach 0.98 in at least 56 instances, but only 46 ratios reach 0.98 for k = 3.

In order to further show the overall performance in the solution quality achieved by the

ODE approach, for all (4× 71)× 100 trials, we calculate the ratios between the cut values

of the ODE approach and the reference values obtained from MOH, and plot the histogram

of all these ratios in Fig. 1. It can be observed that in more than 97% trials, the ratios

are greater than 0.95, thereby implying that the approximate cuts produced by the ODE

approach are of comparable quality to MOH. Moreover, we compare our ODE approach’s

solutions with those obtained by using Gurobi 10.0.1 to directly solve MCPP in the same

time duration (see the column Gurobi in Tables 1-4). We find that, for k = 2, in more than

70% instances, ODE’s solutions are better than or as good as Gurobi’s, and the proportion

gets larger and reaches 80% for k = 3,4,5.
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2,000

4,000
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Figure 1: Quality check: Histogram of the ratio between the cut values of the ODE approach and the
reference values produced by MOH for all 4× 71× 100 trials of MAX-k-CUT.
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Table 1: Numerical cut values for MAX-CUT.

Graph ODE MOH Ratio Gurobi Graph ODE MOH Ratio Gurobi

G1 11623 11624 0.9999 11624 G37 7629 7691 0.9919 7535

G2 11612 11620 0.9993 11620 G38 7624 7688 0.9917 7543

G3 11621 11622 0.9999 11622 G39 2355 2408 0.9780 2250

G4 11646 11646 1.0000 11646 G40 2342 2400 0.9758 2198

G5 11626 11631 0.9996 11631 G41 2333 2405 0.9701 2166

G6 2173 2178 0.9977 2178 G42 2429 2481 0.9790 2307

G7 1999 2006 0.9965 2006 G43 6645 6660 0.9977 6225

G8 2005 2005 1.0000 2005 G44 6640 6650 0.9985 6173

G9 2045 2054 0.9956 2038 G45 6638 6654 0.9976 6147

G10 1993 2000 0.9965 1992 G46 6640 6649 0.9986 6282

G11 554 564 0.9823 564 G47 6644 6657 0.9980 6200

G12 548 556 0.9856 556 G48 6000 6000 1.0000 6000

G13 576 582 0.9897 582 G49 6000 6000 1.0000 6000

G14 3049 3064 0.9951 3015 G50 5880 5880 1.0000 5880

G15 3032 3050 0.9941 2993 G51 3823 3848 0.9935 3773

G16 3027 3052 0.9918 2989 G52 3825 3851 0.9932 3769

G17 3030 3047 0.9944 2994 G53 3829 3850 0.9945 3781

G18 979 992 0.9869 918 G54 3820 3852 0.9917 3782

G19 891 906 0.9834 853 G55 10211 10299 0.9915 9906

G20 931 941 0.9894 869 G56 3954 4016 0.9846 3851

G21 914 931 0.9817 880 G57 3414 3494 0.9771 3494

G22 13325 13359 0.9975 11180 G58 19096 19288 0.9900 18928

G23 13337 13344 0.9995 12368 G59 5911 6087 0.9711 5716

G24 13325 13337 0.9991 11008 G60 14089 14190 0.9929 13989

G25 13321 13340 0.9986 12572 G61 5678 5798 0.9793 5590

G26 13308 13328 0.9985 11132 G62 4766 4868 0.9790 4872

G27 3325 3341 0.9952 2515 G63 26799 27033 0.9913 26545

G28 3286 3298 0.9964 2174 G64 8460 8747 0.9672 8239

G29 3379 3405 0.9924 2497 G65 5444 5560 0.9791 5562

G30 3389 3413 0.9930 2442 G66 6208 6360 0.9761 6364

G31 3299 3310 0.9967 2546 G67 6802 6942 0.9798 6950

G32 1384 1410 0.9816 1410 G70 9482 9544 0.9935 9546

G33 1362 1382 0.9855 1382 G72 6840 6998 0.9774 7008

G34 1362 1384 0.9841 1384 G77 9712 9928 0.9782 9940

G35 7628 7686 0.9925 7544 G81 13724 14036 0.9778 14058

G36 7612 7680 0.9911 7538
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Table 2: Numerical cut values for MAX-3-CUT.

Graph ODE MOH Ratio Gurobi Graph ODE MOH Ratio Gurobi

G1 15158 15165 0.9995 14863 G37 9968 10052 0.9916 9893

G2 15160 15172 0.9992 14912 G38 9959 10040 0.9919 9892

G3 15167 15173 0.9996 14899 G39 2837 2903 0.9773 2369

G4 15176 15184 0.9995 14889 G40 2808 2870 0.9784 2357

G5 15187 15193 0.9996 14827 G41 2803 2887 0.9709 2343

G6 2631 2632 0.9996 2323 G42 2897 2980 0.9721 2445

G7 2401 2409 0.9967 2078 G43 8571 8573 0.9998 8303

G8 2420 2428 0.9967 2104 G44 8543 8571 0.9967 8286

G9 2464 2478 0.9944 2138 G45 8543 8566 0.9973 8273

G10 2401 2407 0.9975 2047 G46 8545 8568 0.9973 8279

G11 653 669 0.9761 669 G47 8548 8572 0.9972 8260

G12 645 660 0.9773 661 G48 6000 6000 1.0000 6000

G13 670 686 0.9767 684 G49 6000 6000 1.0000 6000

G14 3979 4012 0.9918 3939 G50 6000 6000 1.0000 6000

G15 3943 3984 0.9897 3930 G51 4992 5037 0.9911 4958

G16 3951 3991 0.9900 3924 G52 4996 5040 0.9913 4952

G17 3936 3983 0.9882 3924 G53 5004 5039 0.9931 4958

G18 1176 1207 0.9743 1027 G54 4993 5036 0.9915 4952

G19 1050 1081 0.9713 872 G55 12329 12429 0.9920 12047

G20 1097 1122 0.9777 931 G56 4610 4752 0.9701 3850

G21 1089 1109 0.9820 929 G57 3985 4083 0.9760 4101

G22 17080 17167 0.9949 16577 G58 24977 25195 0.9913 24016

G23 17130 17168 0.9978 16587 G59 7097 7262 0.9773 5921

G24 17117 17162 0.9974 16604 G60 16946 17076 0.9924 16726

G25 17125 17163 0.9978 16631 G61 6668 6853 0.9730 5641

G26 17103 17154 0.9970 16600 G62 5566 5685 0.9791 5717

G27 3963 4020 0.9858 3338 G63 35001 35322 0.9909 33661

G28 3921 3973 0.9869 3325 G64 10217 10443 0.9784 8587

G29 4036 4106 0.9830 3453 G65 6341 6490 0.9770 6539

G30 4063 4119 0.9864 3489 G66 7241 7416 0.9764 7474

G31 3963 4003 0.9900 3270 G67 7904 8086 0.9775 8148

G32 1618 1653 0.9788 1653 G70 9999 9999 1.0000 9999

G33 1583 1625 0.9742 1627 G72 8010 8192 0.9778 8256

G34 1573 1607 0.9788 1609 G77 11332 11578 0.9788 11666

G35 9961 10046 0.9915 9876 G81 15985 16321 0.9794 16290

G36 9954 10039 0.9915 9911
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Table 3: Numerical cut values for MAX-4-CUT.

Graph ODE MOH Ratio Gurobi Graph ODE MOH Ratio Gurobi

G1 16789 16803 0.9992 16443 G37 11018 11117 0.9911 10967

G2 16798 16809 0.9993 16395 G38 11015 11108 0.9916 10970

G3 16799 16806 0.9996 16375 G39 2935 3006 0.9764 2449

G4 16800 16814 0.9992 16436 G40 2898 2976 0.9738 2487

G5 16798 16816 0.9989 16413 G41 2906 2983 0.9742 2423

G6 2739 2751 0.9956 2439 G42 3014 3092 0.9748 2563

G7 2497 2515 0.9928 2114 G43 9353 9376 0.9975 9089

G8 2513 2525 0.9952 2159 G44 9358 9379 0.9978 9086

G9 2574 2585 0.9957 2120 G45 9360 9376 0.9983 9112

G10 2497 2510 0.9948 2114 G46 9355 9378 0.9975 9100

G11 661 677 0.9764 677 G47 9372 9381 0.9990 9073

G12 652 664 0.9819 665 G48 6000 6000 1.0000 6000

G13 680 690 0.9855 690 G49 6000 6000 1.0000 6000

G14 4396 4440 0.9901 4363 G50 6000 6000 1.0000 6000

G15 4354 4406 0.9882 4346 G51 5518 5571 0.9905 5500

G16 4375 4415 0.9909 4353 G52 5536 5584 0.9914 5494

G17 4360 4411 0.9884 4325 G53 5528 5574 0.9917 5520

G18 1207 1261 0.9572 1031 G54 5527 5579 0.9907 5503

G19 1080 1121 0.9634 894 G55 12498 12498 1.0000 12498

G20 1119 1168 0.9580 934 G56 4722 4931 0.9576 4000

G21 1133 1155 0.9810 923 G57 4036 4112 0.9815 4148

G22 18739 18776 0.9980 18170 G58 27650 27885 0.9916 26567

G23 18736 18777 0.9978 18155 G59 7362 7539 0.9765 6090

G24 18740 18769 0.9985 18211 G60 17148 17148 1.0000 17148

G25 18742 18775 0.9982 18135 G61 6842 7110 0.9623 5850

G26 18734 18767 0.9982 18101 G62 5642 5743 0.9824 5793

G27 4159 4201 0.9900 3433 G63 38758 39083 0.9917 37386

G28 4098 4150 0.9875 3439 G64 10605 10814 0.9807 8884

G29 4245 4293 0.9888 3474 G65 6430 6534 0.9841 6608

G30 4261 4305 0.9898 3548 G66 7352 7474 0.9837 7553

G31 4131 4171 0.9904 3376 G67 8026 8155 0.9842 8256

G32 1641 1669 0.9832 1679 G70 9999 9999 1.0000 9999

G33 1602 1638 0.9780 1644 G72 8123 8264 0.9829 8358

G34 1595 1616 0.9870 1623 G77 11493 11674 0.9845 11827

G35 11017 11111 0.9915 10957 G81 16208 16470 0.9841 16670

G36 11023 11108 0.9923 10955
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Table 4: Numerical cut values for MAX-5-CUT.

Graph ODE MOH Ratio Gurobi Graph ODE MOH Ratio Gurobi

G1 17695 17703 0.9995 17326 G37 11562 11603 0.9965 11354

G2 17693 17706 0.9993 17364 G38 11552 11601 0.9958 11493

G3 17691 17701 0.9994 17390 G39 2944 3022 0.9742 2479

G4 17687 17709 0.9988 17341 G40 2884 2986 0.9658 2384

G5 17697 17710 0.9993 17326 G41 2925 2986 0.9796 2475

G6 2763 2781 0.9935 2317 G42 3037 3109 0.9768 2574

G7 2495 2533 0.9850 2183 G43 9747 9770 0.9976 9487

G8 2516 2535 0.9925 2121 G44 9742 9772 0.9969 9509

G9 2574 2601 0.9896 2226 G45 9747 9771 0.9975 9471

G10 2503 2526 0.9909 2147 G46 9742 9774 0.9967 9481

G11 667 677 0.9852 677 G47 9745 9775 0.9969 9471

G12 654 662 0.9879 665 G48 6000 6000 1.0000 6000

G13 680 689 0.9869 690 G49 6000 6000 1.0000 6000

G14 4611 4639 0.9940 4568 G50 6000 6000 1.0000 6000

G15 4580 4606 0.9944 4548 G51 5802 5826 0.9959 5753

G16 4588 4613 0.9946 4546 G52 5802 5837 0.9940 5761

G17 4575 4603 0.9939 4514 G53 5807 5829 0.9962 5707

G18 1201 1268 0.9472 1013 G54 5806 5830 0.9959 5723

G19 1083 1132 0.9567 918 G55 12498 12498 1.0000 12498

G20 1132 1172 0.9659 937 G56 4733 4971 0.9521 3866

G21 1115 1162 0.9596 963 G57 4049 4111 0.9849 4148

G22 19513 19553 0.9980 18989 G58 29019 29105 0.9970 28017

G23 19513 19558 0.9977 18883 G59 7443 7566 0.9837 6191

G24 19507 19555 0.9975 19063 G60 17148 17148 1.0000 17148

G25 19506 19554 0.9975 18989 G61 6866 7188 0.9552 5946

G26 19504 19552 0.9975 18949 G62 5650 5744 0.9836 5793

G27 4178 4236 0.9863 3449 G63 40692 40786 0.9977 39540

G28 4117 4182 0.9845 3429 G64 10732 10896 0.9849 8809

G29 4255 4327 0.9834 3548 G65 6428 6540 0.9829 6608

G30 4268 4340 0.9834 3563 G66 7364 7476 0.9850 7553

G31 4157 4211 0.9872 3461 G67 8035 8165 0.9841 8256

G32 1644 1670 0.9844 1679 G70 9999 9999 1.0000 9999

G33 1612 1638 0.9841 1644 G72 8145 8266 0.9854 8358

G34 1589 1615 0.9839 1623 G77 11516 11687 0.9854 11827

G35 11547 11605 0.9950 11477 G81 16227 16501 0.9834 16670

G36 11543 11601 0.9950 11416
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Table 5: Approximate total steps and time in seconds on G-Set used by running the ODE approach once
for MAX-k-CUT from a given initial data.

k |V | |E|
Number

of steps
Time

Time

per step

2

8× 102 2× 104 3.0× 104 1.3 4.3× 10−5

2× 103 2× 104 1.0× 105 4.0 4.0× 10−5

1× 104 2× 104 9.0× 104 15 1.7× 10−4

2× 104 4× 104 1.5× 105 30 2.0× 10−4

3

8× 102 2× 104 9.1× 104 7.8 8.6× 10−5

2× 103 2× 104 1.7× 105 28 1.6× 10−4

1× 104 2× 104 1.1× 105 55 5.0× 10−4

2× 104 4× 104 1.2× 105 84 7.0× 10−4

4

8× 102 2× 104 1.2× 105 20 1.5× 10−4

2× 103 2× 104 1.4× 105 28 2.0× 10−4

1× 104 2× 104 1.0× 106 60 6.0× 10−4

2× 104 4× 104 1.2× 105 90 7.5× 10−4

5

8× 102 2× 104 1.1× 105 13 1.2× 10−4

2× 103 2× 104 1.5× 105 30 2.0× 10−4

1× 104 2× 104 1.2× 105 70 5.5× 10−4

2× 104 4× 104 1.3× 105 86 6.6× 10−4

It should be noted that, given an initial data, the ODE approach is deterministic, and

there is no heuristic operations dedicated to MAX-k-CUT since the implementation and the

running parameters strictly follow the general guidelines detailed in Section 4. Hence, we

may conclude that, the proposed ODE approach can produce relatively good results without

any ad hoc designs.

Next, we are going to show the efficiency of our ODE approach. Let wtot =
∑

i< j wi j

represent the total weight of all edges and P = (pi j) ∈ {0,1}k×|V | a matrix satisfying pi j =

x
( j)

i
. It is easy to check that

f (x) = −wtot +
1

2
Trace(PW P⊤),

yielding ∂ f /∂ P = PW . Here we use the denominator layout, thereby implying that the

complexity of calculating ∇ f is O (k|E|). To obtain this order we have used that W is

a sparse matrix with 2|E| nonzero elements and calculating each row of PW requires O (|E|)

operations. By the observation in Section 4.4, we deduce that the time complexity of each

FE step is O (k(|E|+ |V |)).

Table 5 reports the approximate total steps and time needed by running the ODE ap-

proach once and shows clearly that the computing cost is not expensive compared to MOH.

In MOH, each iteration step has a time complexity of O (|E|+ k|V |) and the total iteration

steps may be up to 106 ∼ 108 [20].
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6. Application to the Star Discrepancy

For a positive integer d , vectors a, b ∈ Rd and relation△ ∈ {<,>,¶,¾}, let a△ b mean

that the relation holds for every entry — i.e. ai △ bi for all i ∈ [d]. For a < b, we define

the closed interval [a, b] by

[a, b] :=
�

u ∈ Rd | u ¾ a and u¶ b
	

.

The half-open and open cases can be similarly expressed. The volume for an interval de-

notes as vol([a, b]) :=
∏

(bi − ai). If a = 0, we write it simply as vol(b). To represent

a series of vector with indices, we let those indices appear as superscripts of a single sym-

bol. The subscripts are left for denoting the entries of these vectors. Given an N -point

set

U =
�

u1, . . . ,uN
	

⊂ [0,1)d , u= (u1, . . . ,ud) ∈ [0,1]d ,

we let

A(u; U) = |[0,u)∩ U | , D(u; U) = vol(u)−
1

N
A(u; U). (6.1)

The star discrepancy of the N -point set U is defined by

d∗∞(U) = sup
u∈[0,1]d

|D(u; U)|, (6.2)

which measures the uniformity of U , and has been widely used in high dimensional numer-

ical integration [12,18] as well as in high dimensional statistics such as number-theoretical

methods [6] and density estimation [19, 25]. However, calculating d∗∞(U) admits NP-

hardness [7] and only a few algorithms are developed, including the exact algorithm [3],

a threshold-accepting algorithm [29] and its variation, dubbed the TA_improved algo-

rithm [8]. In this section, we will apply the proposed ODE approach for MCPP to approx-

imate d∗∞(U). To the best of our knowledge, this is the first attempt to use a continuous

algorithm for approximating the star discrepancy.

For j ∈ [d], we define

Γ j(U) = {u
i
j
| i = 1,2, . . . , N}, Γ̄ j(U) = Γ j(U)∪ {1}, Γ j(U) = Γ j(U)∪ {0},

and set

Γ (U) := Γ1(U)× · · · × Γd(U).

The terms Γ̄ (U) and Γ (U) are defined analogously. It can be readily observed that on each

open sub-domain of [0,1]d divided by the grids in Γ (U), A(u; U) keeps unchanged and thus

|D(u; U)| reaches its maximum at one of the extreme points of vol(u), i.e. either the lower

left or upper right corner. Since Γ (U) and Γ̄ (U) respectively collect all the lower left and

upper right corners in [0,1]d , an equivalent form for the star discrepancy in Eq. (6.2) was

obtained in [21]

d∗∞(U) =max
¦

max
u∈Γ̄ (U)

D(u; U), max
u∈Γ (U)

D̄(u; U)
©

, (6.3)
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where

Ā(u; U) = |[0,u] ∩ U | , D̄(u; U) =
1

N
Ā(u; U)− vol(u).

We should mention that, Γ (U), the feasible region for maximizing D̄(u; U), can be slightly

narrowed to Γ (U) due to the following reasons. For each j ∈ [d], if 0 ∈ Γ j(U), then Γ j(U)

equals Γ j(U). Otherwise, Ā(u; U) = 0 if u j = 0, thus D̄(u; U) = 0 < d∗∞(U), indicating that

we can drop out that kind of u when maximizing D̄(u; U). In either case, we can modify

the Cartesian product expression of Γ (U) by using Γ j(U) instead of Γ j(U). Therefore, from

Eq. (6.3), we achieve a more concise form for calculating the star discrepancy,

d∗∞(U) =max
¦

max
u∈Γ̄ (U)

D(u; U), max
u∈Γ (U)

D̄(u; U)
©

. (6.4)

The equivalent form (6.4) transforms the star discrepancy into two optimization problems

on discrete sets with which we are able to obtain MCPP forms.

Let us start from the first optimization problem maxu∈Γ̄ (U) D(u; U) in Eq. (6.4). Inspired

by the Cartesian-product structure of Γ̄ (U), the feasible region of corresponding MCPP

instance should be Bd
N+1 since the cardinality of Γ̄ j is no larger than N + 1. That is, the

key parameters which shape the MCPP problem in Eqs. (1.1) and (2.1) are: n← (N +1)d ,

m ← d , d j ← N + 1 for any j ∈ [m]. However, mapping Γ̄ (U) into Bd
N+1 and defining an

objective function over Bd
N+1 that represents D(u; U) need meticulous designs we are about

to state below.

For j ∈ [d], sort Γ̄ j(U) into ū1 j ¶ ū2 j ¶ · · · ¶ ūN j < ū(N+1) j = 1, which also sorts Γ j(U)

in the same order for Γ j(U) = {ū1 j , . . . , ūN j}. For i ∈ [N + 1], let ūσi j j := ui
j

record the

order of ui
j

and {σi j | i ∈ [N + 1]} be the corresponding permutation of [N + 1]. When

some elements of Γ j(U) are identical, such permutation may not be unique, and it is viable

to choose one of them arbitrarily. Let x ∈ Bd
N+1. For each j ∈ [d], there is a unique entry

of x ( j), denoted by x
( j)
s j

with s j ∈ [N + 1], that equals 1. Then we have a surjection from

x ∈ Bd
N+1 to u ∈ Γ̄ (U)

x ( j)→ s j → u j = ūs j j (6.5)

for all j ∈ [d]. Let

ν(x) :=

d
∏

j=1

N+1
∑

i=1

x
( j)

i
ūi j , α(x) :=

N
∑

i=1

d
∏

j=1

N+1
∑

k=σi j+1

x
( j)

k
, δ(x) := ν(x)−

1

N
α(x), (6.6)

all of which are affine with respect to each x ( j). In fact, ν(x),α(x) and δ(x) act as vol(u),

A(u; U) and D(u; U), respectively. For x ∈ Bd
N+1, it should be noticed that the inner sum can

be replaced by the logical disjunction “∨” and the product can be replaced by the logical

conjunction “∧” (regarding 0-1 variables as boolean variables) , namely,

α(x) =

N
∑

i=1

d
∧

j=1

N+1
∨

k=σi j+1

x
( j)

k
,

since
∑N+1

k=σi j+1 x
( j)

k
∈ {0,1}.
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Proposition 6.1. Let u ∈ Γ̄ (U) be the image of x ∈ Bd
N+1 under the surjection (6.5). Then we

have

vol(u) = ν(x), (6.7)

A(u; U) ¶ α(x), (6.8)

D(u; U)¾ δ(x). (6.9)

Moreover, D(u; U) and δ(x) admit a deeper connection — viz.

max
u∈Γ̄ (U)

D(u; U) = max
x∈Bd

N+1

δ(x). (6.10)

Proof. The Eq. (6.7) immediately follows from the relation
∑N+1

i=1 x
( j)

i
ūi j = u j . Now we

express |[0,u)∩ {ui}| by x . For each i ∈ [N], we have

ui ∈ [0,u) ⇔ ui
j
= ūσi j j < u j = ūs j j for all j ∈ [d],

⇒ σi j < s j for all j ∈ [d], (6.11)

⇔
N+1
∨

k=σi j+1

x
( j)

k
= 1 for all j ∈ [d].

Thus

|[0,u)∩ {ui}| ¶
d
∧

j=1

N+1
∨

k=σi j+1

x
( j)

k
,

and summing the above inequalities for i ∈ [N] leads to Eq. (6.8). Combining Eqs. (6.1)

and (6.6)-(6.8), we arrive at the inequality (6.9). It follows that maxu∈Γ̄ (U) D(u; U) ¾

maxx∈Bd
N+1
δ(x) since the mapping (6.5) from Bd

N+1 to Γ̄ (U) is surjective.

To prove Eq. (6.10), we only have to show that

max
u∈Γ̄ (U)

D(u; U) ¶ max
x∈Bd

N+1

δ(x).

This follows from the fact that for each u ∈ Γ̄ (U), there exists a preimage of u, x̂ = x̂(u) ∈

Bd
N+1, such that A(u; U) = α( x̂(u)). The x̂ is defined by letting s j equal the minimal index

that u j = ūs j j holds and x̂
( j)
s j
= 1, j ∈ [d]. Thus ū(s j−1) j < ūs j j whenever s j > 1, otherwise

contradicting to the minimality of s j . When σi j < s j , we then have

σi j ¶ s j − 1 ⇒ ūσi j j ¶ ū(s j−1) j < ūs j j .

Therefore, the “⇒” in Eq. (6.11) becomes “⇔”, which results in the equivalence between

|[0,u) ∩ {ui}| and
∧d

j=1

∨N+1
k=σi j+1 x̂

( j)

k
, rather than an inequality. Hence, we get A(u; U) =

α( x̂(u)). Let u∗ reaches the maximum of D(u; U). Then

max
u∈Γ̄ (U)

D(u; U) = D(u∗; U) = δ( x̂(u∗)) ¶ max
x∈Bd

N+1

δ(x).

The proof is complete.



An ODE Approach to MCPP 23

Eq. (6.10) gives an MCPP form for the first optimization problem in Eq. (6.4) and the

same treatment can be also applied to the second one. The key parameters which shape the

MCPP problem in Eqs. (1.1) and (2.1) become n← N d , m← d , d j ← N for any j ∈ [m],

and we need the following functions defined on Bd
N :

ν̄(x ′) :=

d
∏

j=1

N
∑

i=1

(x ′)
( j)

i
ūi j , ᾱ(x ′) :=

N
∑

i=1

d
∏

j=1

N
∑

k=σi j

(x ′)
( j)

k
, δ̄(x ′) :=

1

N
ᾱ(x ′)− ν̄(x ′),

to present the MCPP form

max
u∈Γ (U)

D̄(u; U) = max
x ′∈Bd

N

δ̄(x ′). (6.12)

The proof of this is similar to that of Eq. (6.10) and is omitted. In a word, according to

Eqs. (6.10) and (6.12), the star discrepancy is now determined by two MCPP problems

d∗∞(U) =max
¦

max
x∈Bd

N+1

δ(x), max
x ′∈Bd

N

δ̄(x ′)
©

, (6.13)

which can be solved approximately by the proposed ODE approach in a straightforward

manner.

Compared to the quadratic objective function of MAX-k-CUT problem in Eq. (5.1), both

δ(x) and δ̄(x ′) in Eq. (6.13) are of degree of d and it may be more complicated to store

and calculate these function values as well as their gradients when d > 2. For example,

calculating the gradients of δ and δ̄ may involve high computational cost if handling it

inappropriately. It forms the main cost in using FE scheme (4.1) to solve Eq. (6.13), thereby

requiring careful optimization. More precisely, it is easy to check that for i ∈ [N+1], j ∈ [d],

∂ ν(x)

∂ x
( j)

i

= ūi j

∏

j′∈[d]\{ j}

N+1
∑

i′=1

x
( j′)

i′
ūi′ j′ ,

∂ α(x)

∂ x
( j)

i

=
∑

i′∈[N]
σi′ j<i

∏

j′∈[d]\{ j}

N+1
∑

k=σi′ j′+1

x
( j′)

k
.

(6.14)

The directly computation of the sums and products in ∂ α(x)/∂ x
( j)

i
requires at least O (N2d)

operations. Since there are (N + 1)d entries, the complexity of ∇δ(x) will be at least

O (N3d2), which is barely acceptable. However, we would like to point out that the com-

plexity can be limited to O (N d) according to the following procedure. First, it should be

observed that given U , Eq. (6.14) can be rewritten as

∂ ν(x)

∂ x
( j)

i

= ūi j

∏

j′∈[d]\{ j}

b j′(x),

∂ α(x)

∂ x
( j)

i

=
∑

i′∈[N]
σi′ j<i

∏

j′∈[d]\{ j}

zi′ j′(x),
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where the vector function b : [0,1]n → Rd and the matrix function z : [0,1]n → RN×d

do not depend on i and j. Thus b and z can be calculated in advance. Noting that

zi′ j′(x) =
∑

k>σi′ j′
x
( j′)

k
is a partial sum of the entries x ( j

′) in the reverse order, we can com-

pute each column of z in a group within a cost of only O (N ). Therefore, z can be computed

at the cost O (N d). To get gi′ j(x) :=
∏

j′∈[d]\{ j} zi′ j′(x) fast, we replace the multiplication

by
∏

j′∈[d] zi′ j′(x)/zi′ j(x), whose numerator can be reused for fixed i′. Therefore, the com-

plexity of computing g from z is also O (N d). To get ∇α from g, the partial sum trick can

also be applied in the summation
∑

i′:σi′ j<i gi′ j(x), albeit σ· j determining the order of en-

tries in g· j. Hence, the total time cost is O (N d). In the same spirit, we are able to get ∇ν

with cost of O (N d). By these means, the complexity of ∇δ is limited to O (N d). This is

also true for ∇δ̄. Since n = O (N d) for these two MCPP instances, the cost of a FE step is

also O (N d) by the observation in Section 4.4.

The GLP sets used in [29] are adopted for test in this work, and include 30 small sets

with N ranging from 28 to 487 and d from 4 to 6 as well as 6 large sets with N from around

2000 to 5000 and d from 6 to 11. The parameters for our ODE approach are T1 = 1×10−4,

Ts = γ
s−1T1, s = 2,3, . . . , γ = 0.95, ǫ0 = 1 × 10−3, Θ = 1 × 10−6N d and ρ = 1.1. The

parameters are similar to those in MAX-k-CUT (see Section 5). Numerical values of the

star discrepancy obtained by re-running the ODE approach 100 times are listed in Table 6,

where those obtained by TA_improved are directly copied from [8].

We list the ratios between the best discrepancy values achieved by our ODE method and

by TA_improved in Table 6. Note that the ODE method gives the same value as TA_improved

did, except for 4 out of 30 small instances — cf. (N , d) = (312,4), (376,4), (487,4), (73,6)

in Table 6. For these four instances, the ratios are at least 0.98, and for the last 6 large

instances, the ratios are at least 0.91.

The histogram of the ratios between the discrepancy values of the ODE approach and

the reference values obtained from TA_improved for 36× 100 trials is plotted in Fig. 2. In

more than 85% trials, the ratios are greater than 0.9. Compared to TA_improved’s 100000

iterations per trial used in [8] and the same O (N d) complexity per iteration, our method

requires much less computational resource overall while producing solutions with similar

quality. We also record the approximate typical runtime and steps for different sizes of sets

in Table 7. It can be seen there that the time consumed per iteration is roughly proportional

to N d .

Since Gurobi 10.0.1 can only deal with quadratic objective functions and constraints, we

need to reformulate Eq. (6.13). For the ν(x) part of δ(x), the procedure is straightforward.

We create d variables µ j , j = 1,2, . . . , d and constrain them by µ j =
∑N+1

i=1 x
( j)

i
ūi j . Then

the product of µ j is modeled in a standard way as follows. We create τ j, j = 2,3, . . . , d ,

satisfying τ j = µ1µ2 · · ·µ j , which can be done by quadratic constraints τ2 = µ1µ2, τ j =

τ j−1µ j, j = 3,4, . . . , d . For the α(x) part, we need O (N d) variables representing the sub-

sum terms. The products in α(x) are modelled by Gurobi’s standard general constraints

“AND”. δ̄(x) is handled in a similar way.

The values obtained by Gurobi limited to the same runtime of ODE approach are also

listed in Table 6. Since in some instances, Gurobi fails to produce any feasible solutions,
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Table 6: Numerical values of the star discrepancy on GLP sets. Values in the columns headed by “TA”
are directly copied from [8] as reference and obtained there by the TA_improved algorithm. Values
in the columns headed by “Gurobi” are either the objective values or the quotients of runtimes (in
parentheses). A dash “-” means Gurobi fails to provide a competitive solution compared to the ODE
method after running for more than 20 hours.

N d ODE TA Ratio Gurobi N d ODE TA Ratio Gurobi

145 4 0.0731 0.0731 1.0000 0.0731 28 6 0.5360 0.5360 1.0000 0.5360

255 4 0.1093 0.1093 1.0000 0.1016 29 6 0.2532 0.2532 1.0000 0.2532

312 4 0.0617 0.0618 0.9974 0.0595 35 6 0.3431 0.3431 1.0000 0.3431

376 4 0.0752 0.0753 0.9979 0.0682 50 6 0.3148 0.3148 1.0000 0.3148

388 4 0.1297 0.1297 1.0000 0.0989 61 6 0.1937 0.1937 1.0000 0.1937

442 4 0.0620 0.0620 1.0000 0.0424 73 6 0.1467 0.1485 0.9876 0.1406

448 4 0.0548 0.0548 1.0000 0.0178 81 6 0.2500 0.2500 1.0000 0.2498

451 4 0.0271 0.0271 1.0000 0.0146 88 6 0.2658 0.2658 1.0000 0.2658

471 4 0.0286 0.0286 1.0000 0.0225 90 6 0.1992 0.1992 1.0000 0.1605

487 4 0.0413 0.0413 0.9995 0.0138 92 6 0.1635 0.1635 1.0000 0.1631

102 5 0.1216 0.1216 1.0000 0.1160 2129 6 0.0246 0.0254 0.9685 (1.1)

122 5 0.0860 0.0860 1.0000 0.0791 3997 7 0.0251 0.0254 0.9882 (8.3)

147 5 0.1456 0.1456 1.0000 0.1107 3997 8 0.0242 0.0254 0.9528 (29)

153 5 0.1075 0.1075 1.0000 0.0871 3997 9 0.0387 0.0387 1.0000 -

169 5 0.0755 0.0755 1.0000 0.0710 4661 10 0.0256 0.0272 0.9412 -

170 5 0.0860 0.0860 1.0000 0.0771 4661 11 0.0259 0.0283 0.9152 -

195 5 0.1574 0.1574 1.0000 0.1193

203 5 0.1675 0.1675 1.0000 0.1260

235 5 0.0786 0.0786 1.0000 0.0606

236 5 0.0582 0.0582 1.0000 0.0466

Table 7: Approximate total steps and time in milliseconds used by the ODE approach for approximating
the star discrepancy in Eq. (6.13).

N d Time
Number

of steps

Time

per step

1.0× 102 4 4.0× 101 8.0× 102 5.0× 10−2

2.5× 102 4 6.0× 101 8.0× 102 6.0× 10−2

5.0× 102 4 1.0× 102 1.5× 103 7.0× 10−2

5.0× 102 6 6.0× 102 5.0× 103 1.2× 10−1

2.0× 103 6 3.2× 103 8.0× 103 4.0× 10−1

4.0× 103 10 1.3× 104 1.3× 104 1.0× 100

we let it run until it finds a solution no worse than our approach’s, then we record the

runtime (as there are two maximum problems in one instance, we choose the one with

larger objective value found by ODE approach). The columns headed by “Gurobi” in Ta-

ble 6 show the results by two means. That is, the numbers without parentheses repre-
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Figure 2: Quality check: Histogram of the ratios between the discrepancy values of the ODE approach
and the reference values produced by TA_improved for all 36× 100 trials.

sent the objective function values found by Gurobi under the limitation of runtime, while

the ones in parentheses represent the quotients of runtimes of Gurobi and our method

(total time for two problems). In the first 30 instances, Gurobi manages to find feasi-

ble solutions, but the objective values are all less than or equal to our method’s. For

(N , d) = (3997,9), (4661,10), (4661,11), Gurobi fails to provide a competitive solution

compared to ODE method after running for more than 20 hours (therefore, we leave a dash

there).

7. Conclusion and Discussion

We proposed an ODE approach for multiple choice polynomial programming (MCPP)

and demonstrated its validity via both theoretical analysis and numerical experiments. It

fully exploits a connection between the discrete MCPP problem and the continuous ODE

system through revealing the relation between local optima of the MCPP and equilibriums

of the ODE. The resulting solutions of MCPP instances representing two specific problems

are relatively good compared to dedicated algorithms’, and are mostly competitive com-

pared to Gurobi’s. We are conducting analysis on the existence of equilibrium points and

the realizability of conditions that ensures the local optimality, and trying more advanced

numerical techniques for evolving an ODE to its equilibrium points. We are going to extend

the proposed ODE approach to some kinds of mixed integer programming problems with

more constraints rather than multiple choice. On the other hand, although the polytope

of unconstrained pseudo-boolean optimization has been thoroughly studied [5], there is

very limited research on the polytope of MCPP, and thus accelerating the ODE approach

with the aid of polyhedral property and/or cutting-plane method is also a subject of future

research. Moreover, we hope that our preliminary attempt in this work may inspire more

new connections between discrete data world and continuous math field.
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