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Abstract. In this paper, we study a coupled problem of Darcy’s law and Stokes equation
with nonlinear slip boundary conditions. We derive a variational inequality for the cou-
pled problem in detail. Then we introduce and analyze a weak Galerkin method to solve
the coupled problem numerically. Under proper regularity assumptions, we obtain the
optimal error estimate @(h) in newly defined h-norms. Finally, we give some numerical
results to support the theoretical conclusions.
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1. Introduction

The numerical simulation of the coupling of porous media flow and fluid flow has at-
tracted the interest of many researchers due to its widespread applications in environment
science, hydrology, biofluid dynamics and petroleum engineering [6, 33]. The simplest
mathematical model is the classical coupled Darcy-Stokes problem, with the Darcy’s law in
the porous media region, the Stokes equations in the fluid region, and the standard trans-
mission conditions on the boundaries [6,11,14]. While the classical coupled Darcy-Stokes
model ignores the influence of boundary friction on the coupled system, for the Stokes flow,
Fujita introduced slip boundary conditions of friction type to model blood flow in a vein of
an arterial sclerosis patients, flow in avalanche of water and rocks, and flow in a canal with
sherbet of mud and pebbles [10,13]. A lot of numerical methods have been developed for
the single Stokes flow with the slip conditions [10, 13, 22], but they ignore the interaction
between the Stokes flow and its adjacent porous media flow. To better simulate the above
phenomena, we introduce the following coupled Darcy-Stokes problem with the nonlinear
slip conditions on the Stokes boundary.
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Let Qp and Qg be two bounded domains in R? with Q,NQg = @ and dQ,NINg =T # 0.
Define I;, = 8 \T, 80 =Ty UTg, UT with Iy NI =@ and (T, UTs,)NT = @. Hereafter,
we suppose the measures of Ts and I}, are nonzero. To better understand these domains
and boundaries, we give a 2D geometric sketch in Fig. 1.
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Figure 1: 2D geometric domains.

In Qp,, we consider viscous fluid flows in a porous medium. According to the conserva-
tion of mass and the Darcy’s law [11,14], we have

V'uD :fD in QD, (11)
uKlup+Vp, =0 in Qp, (1.2)

where uj, is the Darcy velocity field, pj, the Darcy pressure field, u the Darcy viscosity, fp, is
the external force density, and K~! the inverse of the permeability tensor K with uniformly
positive definite and uniformly bounded K = K(x) € R?*2, x € Q. Moreover, we consider
the homogeneous Dirichlet boundary condition on I}, for the Darcy fluid

Pp = 0 on FD' (13)

In Qg, we consider a viscous incompressible Stokes fluid flow with boundary friction. In
view of the conservation of momentum and the conservation of mass, we have

—V - (2ve(ug))+ Vps = fs in Qg, (1.4)
V~u5=0 in Qs, (15)

where u is the Stokes velocity field, pg is the Stokes pressure field, v is the Stokes viscosity,

e(ug) = %(Vus + (VUS)T)



WG Method for the Coupled Darcy-Stokes Problem 31

is the strain tensor and f ¢ is the external force density. Here, (1.5) represents the incom-
pressibility condition. For simplicity, let

o (ug,ps) =2ve(ug) —psl, (1.6)

where I is the identity tensor in R?*2. Then, o, and o, are defined as

o, =0(us,ps)ng-t, o,=0(ug ps)ng-ns. (1.7)
For the boundary friction conditions, we consider

uS =0 on FSI’ (18)
us, =0, lo<g, owug,+glug,|=0 on Ty, (1.9)

where
Us, =Ug-Ng, Ug,=Ug"t

with ng and t being the external normal and tangential vectors along d g respectively,
and g > 0 denotes the barrier or slip function on I,. Moreover, (1.8) is the homogeneous
Dirichlet boundary condition on Iy , ug , = 0 in (1.9) is the impermeability condition, and
lo¢| < g,0.ug, + glug | = 0in (1.9) describes the friction — cf. [4, Egs. (1.3)-(1.7)] for
more details.

On the interface T, for the coupling of the Darcy flow and the Stokes flow, we consider
the following transmission conditions:

(ug—up)-ng=0 on T, (1.10)
o,+pp=0 on T, (1.11D)
or+Kug, =0 on T, (1.12)

where « is a positive constant obtained from the experimental data. Moreover, (1.10)
represents the conservation of mass, (1.11) represents the balance of normal forces, and
(1.12) represents the Beavers-Joseph-Saffman law — cf. [14, Eqgs. (1.4)-(1.6)] for more
details.

Thus, we find the model (1.1)-(1.12) actually describes the coupling of the incompress-
ible Stokes fluid with boundary friction and the Darcy fluid across an interface. Due to their
wide applications in environment and science, lots of attention has been attracted to the nu-
merical simulation for the coupled Darcy-Stokes problems. In [6], with the Raviart-Thomas
elements, the estimate @(h%), § € (0, 1] was obtained for a coupled Darcy-Stokes problem
with linear boundary conditions. In [33], with a staggered DG method, the optimal conver-
gence estimates were obtained for the coupled nonlinear Darcy-Stokes problem with linear
boundary conditions. As far as we know, for the problem (1.1)-(1.12), no convergence
estimates are obtained at present.

Weak Galerkin (WG) methods are one type of highly flexible and robust finite element
methods. Since first proposed by Wang and Ye [23], WG methods have been successfully
applied to solve Stokes equations [25, 26,29], Navier-Stokes equations [32], biharmonic
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equations [16,31], Maxwell equations [ 18], the quasistatic Maxwell viscoelastic model [27]
and reaction-diffusion equations [12]. Besides these standard models, WG methods are also
applied to some nonstandard models, such as elliptic equations on curved domains [15],
elliptic equations with Newton boundary condition [20] and the wave equation with in-
terface [3]. Moreover, some special techniques of WG methods, such as a posteriori error
estimator for Stokes problem based on the auxiliary subspace techniques [30] and simple
stabilizer free method with superconvergence [28] are also developed. These achievements
and the advantages in flexibility and stability attract us to solve (1.1)-(1.12) with WG meth-
ods.

The rest of the paper is organized as follows. In Section 2, we consider the variational
inequality of the coupled problem. In Section 3, we provide a WG method for the coupled
problem. In Section 4, we give an error inequality for the error estimates of the WG method.
In Section 5, we get the error estimates. Finally, we make some numerical experiments to
support the conclusions.

2. Variational Inequality

2.1. Preliminaries and notations

For any 2 € R? and ¢ € R}, let L2(2) and L?(¢) be the standard Lebesgue spaces —
cf. [1, Chapter 2] for more details. Denote by (-, ), the inner product in L%(2), [L*(2)]?
and [L?(2)]>*2. Denote by (-,-) the inner product in L2(%), [L2(€¢)]? and [L?(€¢)]**2.
Then we have

(u,v)g = J u(x)v(x)dx forall u,veL?(2),

9
w,z) = J w(x)z(x )dx forall w,z e L%(%),

%
(u,v)y = J u(x)-v(x)dx forall u,v €[L*(2)]?,

2 (2.1)
(w,2)y = J w(x)- z(x)dx forall w,ze[L%(6)]%,

%

(T1,Ty)g = J T (x) : To(x)dx forall T,,T,<[L%(2)]**,
17

(T3, Ty) e =f Ty(x): Ty(x)dx  forall T, T, € [L*(€)]**?
3

with “-” being the dot product of two vectors in R? and “: ” being the sum of the products
of the corresponding components of two matrices in R?*2. With the inner products (-, ),
and (-, ) above, we define the norms || - ||, and || - || as

I-llg=v(E)g e =4/ )e. (2.2)



WG Method for the Coupled Darcy-Stokes Problem 33

From (2.1), we have

(T, +T],T,+1}), (2.3)

N+

(T1,T5)y = (T],T3),, (T1+T],T,), =

for all T,, T, € [L%(2]?>*2, where T denotes the transposition of a matrix or vector.
Given an integer s > 0, we use the standard Sobolev spaces H*(2) and H°(¢) — cf. [1,
Notation 1.2 and Chapter 3] for more details,

H'(2)={vel*2):0% € L*(92) forall |a|<s},
H'(6)={vel*%):0% eLl*(¥) forall |a|<s},

where a = (a;, @), |a| = a; + a, with a; and a, being nonnegative integers, and

alely

a,,
0% = —8x°‘18y0‘2'

Denote by (-, )s ¢, | ‘15,4 and || ||, the inner-product, the seminorm and the norm in H*(2)
respectively, and (-, ); 4, | |5, l|-|ls, the inner-product, the seminorm, the norm in H*(¢)
respectively, with

(W, v)s,9 = Z (0%, 0)g, (W,2)54= Z (%W, 0%)«,

0<|al<s 0<|al<s
2 2
V2, = > (@0%,3%),, W2y = > (8w, 8%W),
|a|=s |a|=s
2 2
Wlg= D, Vg, Wl = D w2y
0<|al<s 0<|al<s

for any u,v € H*(2) and w,z € H°(€¢). In the subsequent content, we take
P € {Qs,Qp, T}, 6 €{0Q5,09p,T,Ts,, 3T, ¢}

with T being an element in the partition and e C d T being an edge of the element.

Next, we introduce a fundamental conclusion about elliptic variational inequalities.

Lemma 2.1 (cf. Glowinski [8, Theorem 4.1]). Let V be a real Hilbert space. If a(:,-) :
V x V — R is a bilinear, continuous and V-elliptic formon V x V, j(-) : V. — RU {oo} is
a convex lower semicontinuous and proper functional and L(-) : V — R is a continuous, linear
functional, then the variational inequality

a(w,v—uw)+jv)—jlw)<L(v—u) forall veVv

has a unique solutionu € V.
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2.2. Variational inequality

This subsection introduces the derivation of the variational inequality for (1.1)-(1.12),
and discusses the existence and uniqueness of the weak solution. According to the boundary
conditions (1.3), (1.8) and ug, =01in (1.9), we define

Ug = {Vs € [H' ()] : Vsl =0, Vsnlry, = 0},
PB = {QD €H'(Qp): aplr, = O}-
Multiplying (1.1) by qp € Pg, integrating it over )p, and applying the integration by parts
yield
(fp>qp)a, =(V -up,qpla, = —(up,Vapla, + (Up - np,qp)aq,, (2.4)
where nj, is the unit normal vector along 92, with n, = —ngonT.
Multiplying (1.4) by vg € Ug, integrating it over g, and applying the integration by
parts, (2.3) and (1.6) yields
(fs;Vsa, = —(V : (2”3(115)),1’5)95 +(Vbps, Vs)a,
= 2v(e(us), e(vs))ﬂs — 2v<e(us)n5, vS)aQS
—(V - vg,ps)a, +(Ps, Vs Ns)aq,

= 2v(e(us), e(vs))ﬂs — (V- Vs,ps)gs — <a(u5,p5)n5, vS>ag (2.5)

o
Adding (2.4) and (2.5) to each other and applying g, € Pg yields

Zv(e(us), e("s))ﬂs —(Ps, V- vs)g,
- <0'(us,Ps)ns,Vs>aQs
—(up,Vqplg, + <UD : nD’qD>F
= (fs’Vs)Qs +(fp>9p)a, - (2.6)

From (1.2) and the transmission condition (1.10), we have

1
up =——KVp on p,
T b 2.7)

uD'nD:—us'nS on I'.
From (1.7), the transmission conditions (1.11)-(1.12), (1.7) and vg € Ug, we get
(0'(us,Ps)ns,Vs>aQS
= (On,Vsn)an, T (06 Vs e)ang
= (O Vsnlr + {06V dr + (Ut,vs,t>r52

= —(Pp, Vs n)r — K{Us 1, Vs,e)r + (O, Vs,t)rSZ- (2.8)
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Combining (2.6)-(2.8) yields

1
Zv(e(us),e(vs)) —(V-vg,ps)g, + =(KVpp,Vap)g,
Qg S u

+(Pp> Vs n)r — (Us n,qp)r + K (Us ¢, Vs 0 )1

= (fs,Vs)QS +(fps4qp)a, + <Otsv5,t)F52'

Replacing v and qp, respectively by v¢—ug and q, —pp, and using the boundary condition
(1.9), we get

2v(e(us), e(vs— us))ﬂs —(V-(vs— us),Ps)Qs + i(KVPD, V(gp —PD))QD

+{Pp,Vs.n —Us )t — {Usn>dp — Pp)r + K(Us ¢, Vs, —Us )1

=(fs,vs—ug)a, + (fp,qp —Ppla, + (0 Vs — Us,r)rsz

g|uS,t|d5_J g|vS,t|ds- 2.9
Ty

2 2

> (fs,vs—ug)o, +(fp,9p —Ppla, +J
T

Since [Hy(Q25)]* C UY, the estimate [7, (5.14)] gives

(V-vs5,45)q, (V- vs,45)q,
sup —— = sup —_—

2 Cligsllog (2.10)
vseU? Vsl vsE[H ()12 vsliaq

for all g5 € L(Z)(QS). From (2.10) and [7, Lemma 4.1], we find that V - ug = 0 in (1.5) is
equivalent to
(V-us,qs)g, =0 forall gs e Lj(Q). (2.11)

Then, in view of (2.9) and (2.11), we get the variational inequality for the coupled problem
(1.1)-(1.12) reads as follows: Find (us, ps,pp) € U2 x L3(Q) x P such that

as(us,vs—ug)+ bs(vs —us,ps) + ap(pp,qp —pp)
+B(ug,vs —ug;pp,qp —Pp) +i(vs,) —j(us,)
>F(vg—ug,qp —Pp) for all (vS,qD)GngPg,
bs(ug,qs) =0 forall gqs € L3(Qy),

(2.12)

where

L3(Qs) = {q € L*(Q): f qdx = 0} >
Qg
aS(uS’ vS) = 2V(€(u5), e(vS))QS’
1
ap(pp,qp) = " (KVpp,Vapla,

bs(vs,qs) =—(V - vs,qs)g,
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B(us,Vvs;pp,qp) = (Pp, Vs ' Ng)r — {Us ng,qp)r + K(“S,t’ Vs,t)r,

j(Vs,t) = J gle,t| ds,
T

2

F(vs,qs) =(fs,vs)a, + (p,dp)a,-

Next, we will simplify the variational inequality (2.12). Define
X={VSeUg . bs(vS,qs)zo for all qSEL(Z)(QS)}
and let & =X x P§.

Lemma 2.2. Define ((+,*))y : & x & = R by
(@185 = (e(v).e(v§)),, +(vad.val),

forall{; = (vg),qD)) €, i=1,2. Then ((:,")) s is an inner product on &, and (<, ((+, ) &)
is a Hilbert space.

Proof. For simplicity, we only prove the positive definiteness of ((:,))s. From (2.2), we
have
2, = Cdags M2, = Cday »
where (-,)q, (i =S, D) are defined in (2.1). Suppose (({,{))» = 0 for some { = (vg,qp) €
&, then we arrive at
lewll3, +11Vapl?, =

which yields e(vg) = 0 and Vg, = 0. Due to [9, Lemma II.1], we have vy = 0 from
e(vg) = 0. With the Poincaré-Friedrichs inequality — cf. [2, Ineq. (1.1)], we derive qp =0
from Vqp = 0. Thus, { =(0,0) € & and ((+,-))» is an inner product.

Now, we prove that (<, ((+,))s) is a Hilbert space. Denote by || - || » the norm induced
by the inner product ((-,-)s. Suppose {¢,}°2; (£, = (vgn),qD ))) is a Cauchy sequence
in &. Then for any € > 0, there exists an integer N(e) > 0 such that for all m,n > N_,

1= Zal% = [le(vi) = e(v{) e, + IV (a5” —a$)|f5, <.

According to [5, Theorem 3.1] and the Poincaré-Friedrichs inequality, there exist two con-
stants C; > 0 and C, > 0 such that

C1||v(m)—v(n < ||e(v(m)) (n) ||Q €/2, (2.13)

4
Callay” = a5 |l q, < IIV(a5” —q (”) N, < Ver2 (2.14)

Thus {vg")} and {q(") -0, are Cauchy sequences in Banach spaces (X, || - ll1,0,) and (Pg

I llha,) respectlvely Then there exists (vg,qp) € & and two positive integers N;, N, such
that (2.13) holds for all n > N; with vgm) replaced with v¢ and (2.14) holds for all n > N,
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with qgn)replaced with gp. Let { = (vg,qp) € &, then we can obtain ||{ — Cnllzy < ¢ for all
n > max{N;,N,}. Therefore, (,||-||s) is a Banach space, and (#, ({1, {,)) ) is a Hilbert
space. O

Lemma 2.3. The problem (2.12) is equivalent to finding ¢ = (ug,pp) € & such that
B(c,l—¢)+j(vs, ) —jlus ) 2 F(l—¢) forall {=(vs,qp) €, (2.15)
where B(-,-): ¥ x ¥ > RandF € & are defined by
B(¢,¢) = as(us,vs)+ap(pp,qp) +B(us, vs;pp,qp),
F({) =F(vs,qp)-

Proof. Following the inf-sup condition for (V - vg,qs)g,, cf. [7, Corollary 2.4 and Lem-
ma 4.1], there exists a constant C > 0 such that

(V'V »q )
inf sup > 150

4s€LE(Qs) vgeH1(Qg) ”‘IS”QS ”VS”LQS

Thus (2.12) is equivalent to finding (ug,pp) € X x PB satisfying

as(ug,vs—ug)+ap(pp,qp —pp)
+B(ug,vs —ug;pp,qp —Pp) +j(vs, ) — j(us,)
>F(vg—ug,qp—pp) forall (vS,qD)GXng. (2.16)

With the definition of B(:,-) and F(-), (2.16) is equivalent to (2.15). Consequently, (2.12)
is equivalent to (2.15). O

Lemma 2.4. For B(-,-) defined in Lemma 2.3, there exist two constants a, 3 > 0 such that

B(¢,0) = allZll?,, (2.17)
1B(s, Ol < B Il lIS] & (2.18)

forall¢,l € &.

Proof From [1, Theorems 5.22, 5.36], there exist extension operators E; : H!(Q2;) —
H'(R?) (i = S, D) such that

||Eivi”aﬂi < Cllvi”l,ﬂi for all Vi S Hl(Ql) (219)

Let
Eg = (Es,Es)T : [H'(Q5)] — [H'(R*)]?.
For any (vg,qp) € & € [HY(Q)]? x H}(Q2p), we extend the definition by
vg(x)=Egvg(x) ae. on T, (2.20)
qp(x) =Epqp(x) a.e. on T. (2.21)
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Then from (2.19)-(2.21), we derive

lvslle = [[Esvslir < IEsvsllan, < Cllvslly g, (2.22)
llgpllr = lEpqpllr < llEpgpllan, < Cllapll,qa,- (2.23)

From [5, (2.29) and Theorem 3.3 of Chapter 3], and the Poincaré-Friedrichs inequality, we
have

Ivsllio, < Clle(vsllag, llapllie, < ClIVaplla, (2.24)
for any (vg,qp) € &. With (2.22)-(2.24), there exist constants Cg, Cp > 0 such that
lvslir < Cslle(s)lla,,  llapllr < CollVanlla, (2.25)

for any (vg,qp) € <.
Since K(x) € R?*? with x € Qp is uniformly positive definite and uniformly bounded,
there exist two constants My, myg with My > mg > 0 such that

v(x)TK(x)v(x) = mgv(x)Tv(x),

(2.26)
K ()] < M /v G)Tv ()
for any v(x) € R? with x € Qp.
Let ¢ = (ug,pp) € & and { = (vg,qp) € &. From (2.25) and (2.26), we have
1
B0 = 20 eI, + 3 (K0, Tap)a, +x(vs - vs- ) = allCI,,
2 1 2 2 2 12
806,01 = (2vllews)IR, + 5 McIVpo IR, + I + G+ 1) sl
2 1 2 2 2 1/2
x (2v||e(vs)||gs # M VG, + G+ D sl + ||qD||F)
< Bliclly 115
where . .
o = min {Zv, —mK}, B = max{2v+ (k +1)C3, =My + C;} .
u u
Thus (2.17) and (2.18) get proved. O

Theorem 2.1. If g € Lz(FSZ), the problem (2.12) has a unique solution (ug, ps,pp) € Ug X
Lg(ﬂs) X PB.

Proof. In view of Lemma 2.3, we only need to prove that (2.15) has a unique solution
¢ =(ug,pp) € &. It follows from (2.25) that

i (vs,e) = j(us )l < J 8lvs,e —us,c|ds < Csllgllr, lle(vs) —e(us)llg,

Is,

thus j(-) is continuous on &. And j(+) is convex and proper on & with the properties of
absolute value. From Lemma 2.1, (2.15) has a unique solution ¢ = (ug,pp) € <. O
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3. WG Method

Let 7, (i = S, D) be the regular polygonal partitions of ; that is aligned with T', and
e, be the set of all edges in Z, and 8{1_ = &y, \ 90Q;. For any T € 7, , denote by hy the
diameter of T. Then let h; = maxrcg hy and h = max;e(g py h;. Define

Wh, = {{vo,vb} ‘volp € LA(T) forall Te Th;s Vple € L%(e) andall ee shi},

[#, P = {{vo,ve} 1 volr €[LX(T)]* forall TeF;vyl, €[L?(e)]* andall ecey,},
My, = {ws: wgly €[Py(T)**? forall TeZ},

Mhs = {ws €M, : wg = w;},

Up, = {{vo,vp} : volr €[PI(T)P* forall T € ;vyl.€[P(e)]* andall ecey},
U?Is = {{Vo,vb} €Uy, : Vb|1"51 =0;vy 'ns|rs2 = 0},

Uy, = {vD :vplr €[Po(T)]? forall Te %D}’

P, = {{qo,qb} :qolr €P(T) forall TE€F ;5q,l.€Pyle) andall e€ shD},

Py ={{d0,qs} € Py, : qblr, =0},

Py, = {qs 1qs|lr € Py(T) forall Te 9;15} ,

P}?s = {qs EPy :qs € L(Z)(QS)}.

Definition 3.1. Given any qp ={qo,qp} € #,, define V,,qp € Uy, such that

(Vwdp, vp)r =—(q0, V- vp)r +(qp, VD D)o 3.1)
forall T € 5, and vy € [Py(T)]
Definition 3.2. Given any vg = {v,,v,} € [th]z, define V,, - vg € Py such that

(Vi vs,qs)r =—(vo,Vqs)r + (v -0, qs) 57 (3.2)
forany T € 4, and qg € Py(T).
Definition 3.3. Given any vg = {v, v} € [‘/Vhs]z, define V,,vg € My, such that

(Vuvs, w5)r ==, V- wg)r + (v, wsn)sr (3.3)
foral T € F,, and wg € [Py (T)]**2.

Remark 3.1. Let 1
ew(vs) = E(VWVS‘ + (vva)T)

for any v = {v(,v,} € [#4,,]*. From Definition 3.3, for all T € ;. and E € [Py(T)]**?,
we have

(ew(vs), E)T = _(VO’ v 'E)T + <vb’5n>aT )
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where E = (E + ET)/2. Thus e,,(v4) is uniquely determined by the following equation:
(es(vs),E)p =—(vo, V- By + (v4,En) 4y
forall T € 7, and E€ Mhs.

Next, we introduce local L2-projection operators. For any function y € L2(£2;)UL%(Q;)U
L*(,) (i =S,D), with L*(;) = [L*(2)]* and L*(£2;) = [L*(2,)]**?, we define Qq, Qp, Qo
Qp and Q, as

(Qox—x,9)r =0 forall ¢ e[P(T)]? and all T € J,,

(Qpx —2,%), =0 forall ape[P(e)]? and all e€ g,

(Qox —x,¢)r =0 forall ¢ €P(T) andall TeJZ,, (3.4)
(Qpx —x,¥)e=0 forall 1) € Py(e) and all e€ep),
(Qux—x,0)r =0 forall 6 e Py(T) andall T €, U,

and define Q, = {Qo, Qp}, Qn = {Q0, Qp}-
Lemma 3.1 (cf. Mu et al. [17, Lemma 3.5]). For Qy,,Qy and Qy, defined in (3.4), we have
V. (Qnd) =Qn(Vo) forall ¢ € HY(T) andall T €,
ew(Qr9) = Qre(9) fordll ¢ €[H(T) andall T e,
V., (Quo)=Qu(V-¢) forall ¢ e€Hy(T) andall T €,
where
Hy(T)={w €[LX(T)]*: V-w € L*(T)}.
For any ug = {ug,u} € [#, 1%, vs = {vo, vy} € [#1,, 1%, 45 € Py, Pp = {Po, Db} € #h,
and qp = {qo,qp} € #4,, define the following multilinear forms:

-1
ss(us,vs) = Z hy (uo—up, vo—vy)ar,

T€T
aZ(us,v3)=2v (ew(us),ew(vs)) +2vs5(us,vs),
T
T€T
bi(vs,qs) =— Z (Vi vs,4s)r,
T€T
sp(Pp,qp) = Z h;1<pr0_pbszq0_qb>5T,
TET, (3.5)

1 1
aﬁ(pp,qp) == Z (KVwpp, Vwdp)r + —mgsp(Pp,dp),
T€Ty, u

B"(us,vs;Pp,qp) = (Pp, Vi - M) + K (Up.s Vi )r — (Up s, Q)1

F'(vs,qp) = (fs>voda, + (fp,90)a,>

fh(vs,t)=J glvp | ds,
Ts

2
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where my > 0 is given in (2.26). Then, the WG scheme for the coupled problem (1.1)-
(1.12) reads as follows: Find (ul, pf, ph) e U}?S x P}?s X P,?D such that

ap(ul,vs—ul) +bi(vs —ul,pl) +ah(ph.qp —p})

+B"(u, vs —ug; ph,ap —pp) + 1" (vs, ) — " (u )
ZFh(vs—ug,qD—pg) for all (vs,qD)GUgs xP}?D, (3.6)
bg(uZ,qS) =0 forall qge P}?S. 3.7

Lemma 3.2. Define || - ||, and || - ||, by

2 2
vsllE, = D" llewll3 +s5(vs,vs)  forall vg €Uy,

T€T
lgpll, = > IVuall? +sp(@p.qp)  forall gqpePl,
T€Ty,
where sg(:,-) and sp(,-) are defined in (3.5). Then || - ||, is a norm in UOS, and || - [y, is

anormin P}?D.

Proof. From [25, Section 4], we know || - ||, is a norm in P}?D. Thus, we only need to
prove || ||y, is a norm in U,?S. For simplicity, we only prove the positive definiteness of || - ||,
in Ugs. Assume that ||[vgl|p, =0 with vg ={vy,v,} € U}?S. Then we have

ew(vs)lr =0, vole=vyle
forall T € 7,  and e C JT. In view of Remark 3.1, we derive
0= (ew(Vs), w)T =—(vp, V- ) + (v, 0ng) 57
=(Vvg, ) + (v — v, wng)sr = (E(Vo), w)T

forall T € 7, and w € Mhs- Taking w = e(v,), we get e(vy) =0 for all T € Z;,_. Since
Vole = vyl for any e € g, we can obtain v, € H'(Q5)* and Voly, = 0. Then due to
Lemma 2.2, we find v = 0 on Qg. Thus, v;|, =0 foralle € ¢,. O

Remark 3.2. Let
X, = {vs € Ugs : b};(vs,qs) =0 forall qge P}?s}

be a subspace of U}?S and &, =X, x P}?D. Define ((, ) by

(s, g, = (ew(us), ew("s))ﬂs +ss(us,vs)+(Vypp, Vidnlg, +sp(Pp.4p)

for all ¢ = (ug,pp),¢ = (vs,qp) € - Then ((-,-))g, is an inner product on %, from
Lemma 3.2. Let || - || be the norm induced by the inner product ((*,-))s. Since any
finite dimensional normed space is a Banach space, (|| - ||l;) is a Banach space, thus
(4, (-,-) s ) is a Hilbert space.
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Hereafter, we denote by C, C;, C, the positive constants independent of h, which may
differ in different cases.

Lemma 3.3 (cf. Wang & Ye [24, Lemma A.3]). Forany T € Z}, (i =S,D)and e C 0T, we
have
V12 < € (R IVIZ + e lIVVII3)

for all v € HY(T).
Lemma 3.4. For V- defined in (3.2), we have

(vw Vs, qS)QS

inf sup >
qsepfs vseﬁgs ”qS”QS ||Vs||h5

Proof. Following [25, Lemma 4.3], for any g5 € P}?s C L3(Q), there exists v € Hy(25)*

such that
(v ‘v, CIS )QS

> Cqllgsllq. - (3.8)
1v1l10, 1SN0

~0 . .
Let v =Quv € Up,- According to Lemma 3.1, we find

D le M= D lle @I = . QeI

Teﬂhs TeyhS TeyhS
< >0 le@IE < vl (3.9)
TeyhS

(vw ' V*, qS)QS = (Qh(v ' V), qS)QS = (v v, qS)QS . (310)

From [16, Lemma 4.1], we have
D lIQev — vz <Ryl , (3.11)

Teﬂhs
DIV — VI < ClvIg,- (3.12)

Teﬂhs

Since Ch < hy <h for any T € J}, due to the regularity of the partition, and with (3.11),
we get

D hIQoy —vI2 < Clvli3, . (3.13)

Teﬂhs
Due to (3.4), Lemma 3.3 and (3.12)-(3.13), we arrive at

ss v = > hrt Qv —QuvlZ, < D Rt IQov — I3,

Teghs Teﬂhs
—2 2 2
< > c(h21Qev —vli} +1Iv(Qov — v)II})
T€T

<C > hPIQv—vIE+C D) Vv —WIZ L Glvig, . (3.14)

T€Thg TE€Thg
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Combining (3.9) and (3.14), we get

[[v¥]ln, < max{1,C,} IIVIIiQS : (3.15)
With (3.8), (3.10) and (3.15), we can obtain

(Vi Vs,d5)q; - (V- v*,4qs)q, - (V-v,qs)q, S C:

g > > > 145l -
voell, Vsl v *ls, max{1,Cy} ||Vl o, ~ max{1,C,} s
The proof is complete. 0

Following Lemmas 3.2-3.4, Remark 3.2 and the analysis in Section 2, we can derive the
following theorem.

Theorem 3.1. If g € LZ(FSZ), the WG scheme (3.6) has a unique solution (ug,pg,pg) IS
U}?S X P}?s X P}?D.

4. Error Inequality

An error inequality for the WG scheme (3.6) will be given in this section. Let (ug, pg, pg)
S U}?S X P}?S X P}?D be the solution of (3.6), with ul = {ug,u}l;} and pil = {pg,pZ} and let

(us,ps,pp) € (U x L2(02g) x PS) N ([H2(025)1* x H'(R25) x H*(2p)) (4.1)

be the solution of (1.1)-(1.12). With the symbols above, we define the following error
functions:

€s = {eso,esb} = {Qous - uZ,Qbus - uZ} =Quus— UZ, 4.2)
ep ={ep,,ep,} = {Qopp —p’é,prD —pZ} = QnPp —pﬁ-

Lemma 4.1. Given w ={w,w;} € Uy, and q ={qo,qp} € Uy, we have

(ew(w ), w)T = (e(w 0)s w)T +(wp—wo,0n)yr forall Te€Z, andal e ﬁhs,

(Vuq, @)y =(Va, ¢)r +(dp—qo, ¢ 1)or fordll TeZ, anddl ¢eUy,
(Vi w,0)r=(V-wo,v)r+{w,—wg,vn)yr foral TeEF, andal vEP,.
Proof. From Definitions 3.1-3.2, Remark 3.1 and the integration by parts, we get the

conclusions. O

Lemma 4.2. Let eg and ep be defined in (4.2), then for any (vg,qp) € S, withvg = {v(, v}
and qp ={qo,qp}, we have

ag (es,vs —u) +a} (ep,qp —p))
<J(vg)—J (ug) + é”(vs —uZ,qD —pg)
+-5«”(VS—UZ,QD—PI};)"WS”(VS—UZ,QD—IJ%), (4.3)
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where

J(vs) = jh(VS,t) + J OVt ds,

Is,

&(vs,qp) =2v Z <V0 —vb,(e(us)—Qhe(us))n)aT

T€T

_ Z <v0 —Vb,(ps _thS)n>aT

T€Thg

— > L(K(pp ~ Qu(VPp)). Vo)
TeﬂhD

1
+ Z — (g0 — a5, (KVpp —Qu(KVpp)) 1),
TeﬂhD

L(vs,qp) =—B"(es,vsiep,ap),

1
F(vs,qp) = 2v55(Quus,vg) + EmKSD(thD,qD)-

4.4

Proof Given qp = {q9,qp} € P}?D and vg = {vo,v,} € UOS, it follows from (2.4) and

(2.5) that

—(v- (Zve(us)),vo)ﬂs +(Vps,volo, +(V-up,qo)g, = (fs,Volag + (fp.90)a,- (4.5

From Lemmas 3.1 and 4.1, we obtain

— (V- (@ve(us)), vo)q, = 27(e(us), e(vo))y —2v > (eus)n, vo),,

TE€Thg

= 2(e,(Qutts), €,(vs))g, —27{e(us)n, vy o,

+2y Z <v0 — Vv, (Qre(us) _e(uS))n>5T’

Teﬂhs

(Vps,vola, =—(ps,V - vola, + Z (vo,pst)ar
Teﬂhs

=—(Qups, V- vS)QS + <Vb,Psns)aQS

+ Z <V0 —Vp, (s —ths)n>aT,

TE€Thg

(V-up,qo)a, =—(up,Vgola, + Z (up-n,qo)ar
T€Ty,

1 1
= ;(K(Vpp — thp[)), quD)QD + E (KvWeD5 quD)QD

1
+ Z —(q0— b, (Qu(KVpp) —KVpp) 1),
T€Ty,

(4.6)

4.7)
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1
5 (KVwPp, Vulp)g +{Up -np,qs)an,- (4.8)
With the boundary conditions in (1.1)-(1.12), we derive

- 21’(6(“5)"5, Vb),ms + (v, Psis)an, + (Up " Np,qp)ag,

=Bh(u5,v5;pD,qD)—J OV ds. 4.9
s,

Replacing v and gy by vy — u’é and gy — pg respectively in (4.5), then subtracting the WG
scheme (3.6) from (4.5), and with (4.6)-(4.9), we get (4.3). O

5. Error Estimate in h-Norm

We will estimate ||eg||, and ||epl[5, in this section. Firstly, we estimate the terms in the
error inequality (4.3) separately.

Lemma 5.1. Suppose the permeability tensor K € [W1°°(Q)]**2, ¢f [1, Section 3.1] for
the definition of W1°°. Then for &(vg,qp) defined in (4.4), we have

&(vs,qp) < Ch (”us“z,ns + ||ps||1,ns) Ivsling + Chllppllyg, -
Proof. From [24, Lemma -4.1], we obtain
v —Quvli7 + hEIV(y —Quv)II7 < Ch®||v]Z, (5.1)
for any v € H°(Q;), i € {S,D}, T € J,, and s € {1,2}. Due to Lemma 3.3 and (5.1), we
have
hr v —Quvli3y < C(Iv —QuliZ + hEIV —Quv)II3) < CR®|vI2;. (5.2)
By using (4.1), (5.1), and (5.2), we get
hr lle(us) — Que(ug)l3; < Ch*lle(us)l} 7 < Ch*|lugll3 1,
hr llps —Qupslizy < Ch?lIpsll? 7,
IVpp —Qu(Vpp)lIF < Ch*IVpplI2 » < CR?lIppll3 7,

hr IKVpp —Qu(KVpp)li3; < Ch*|IKVppll? 1 < CR?[Ippll3 1,

(5.3)

where
IKVppllir < IKllwreo(ylIVPplli,r < Cllpplla,r

is used in the last line. Then, in view of the Cauchy-Schwarz inequality and (5.3), we arrive
at

2y Z <V0 — vy, (e(us) _Qhe(us))n>aT

T€Thg
1/2 1/2
szv( > h;lnvo—vbnéT) ( >, hT||e(us)—@he(us)||?,T)
Teﬂhs TeyhS

< Ch”us”z,gs ||Vs||hs, (5.4)
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— Z (vo—vp,(ps —QupsIn) ,;

T€T
1/2 1/2
s( > h;lnvo—vbn?,T) ( > hTups—@hpsn;T)
TG%S Teyhs
< Chlipslizaqllvsllyg » (5.5)

_ Z i(K(va_Qh(vPD))’quD)T

TeﬂhD
1/2 1/2
sc( > ||Vpp—@h(VpD)||§) ( >, ||quD||§)
Teyhn TeﬂhD
< Chlppllz,n, lgplln, (5.6)

> l(Clo—qb,(KVpp—@h(KVPD))'”>6T

T€Ty,
1 1/2 1/2
< —( Z h;l llgo —Qb”éT) ( Z hr IKVpp —Qh(KVPD)”,%T)
w TG%D TG%D
< Chlipplla,q, llaplls, - (5.7)
Combining (5.4)-(5.7), we derive the conclusion. O

Remark 5.1. When we discuss the well-posedness for the variational inequality (2.12) and
the WG scheme (3.6), we only need to assume the permeability tensor K = K(x) (x € Qp)is
uniformly positive definite and bounded, without additional assumptions to the regularity
of K. However, when we try to obtain the error estimates for the WG approximation, the
regularity of K affects the convergence orders. For any T € %, , if K| ¢ [P,(T)]**2,
Qun(KVpp) # KQu(Vpp). With the Cauchy-Schwarz inequality, we can obtain

> 1IKVpp — Qu(KVpp)lly < ChIKVpplly g, < ChIKlwiee g, IPpll20, -
TeﬂhD

This is the reason that we assume K € [W>*°(Qp)]?>*? in Lemma 5.1.
Lemma 5.2. For &(vg,qp) defined in (4.4), we have
& (vs,qp) < Ch ||us||2,ns ||Vs||hs + Chllppllzq, 14 lls, -
Proof. Due to (3.4), (4.2) and Lemma 3.3, similar to (5.2), we arrive at

1/2 1/2
2vss(Qhus,vs)szv( > ! ||Qous—us||§T) ( > h;lllvo—vblléT)

TeT T€Th

< Chlluslloq, 1Vslly, - (5.8)
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1/2 1/2
1 1 _ _
Emmm«apmqpysﬁnm( }]iwlm%pD—pm@T) (:E:}%”MO_QH%T)

T€h, Teh,
< Chllppllaq, llaplly, - (5.9)
Combining (5.8) and (5.9), we get the conclusion. O

Lemma 5.3. If g € Lz(l"sz) and ug € [HZ(FSZ)]Z, then for J(-) defined in (4.4), we have

J(Quug) —J (ug) < Ch? llusllyr,, -

Proof. From (1.9), we find

J (ug) = J (g|ubh,t| + Gtubh,t) ds >0,
I

2

J(ug) = f (glus,tl + otus’t) ds =0.
Is

2

With the above relations, |o,| < g in (1.9) and the properties of absolute value, we get

J(Quus)—J (uf) < J(Quus) —J (ug)

< J (g|QbuS —ug|+|o(Qpus _us)|)d5
Iy,

Szf glQpug —ug|ds
Is

2

<2|lgllg, lQpus —uslly,
Sy Sy

< Ch? lusllzry, -
The proof is complete. O

Theorem 5.1. Let eg and ey, be defined in (4.2) and K € [W1°°(Qp)]**2. Under the as-
sumptions of Lemma 5.3, we have

leslly, + lleplly, < Ch.
Proof. Taking vy = Quug and qp = Qppp in the error inequality (4.3), we get
as(es,es)+ap(ep,ep) < J(Quug)—J (ul) + &es,ep) + L(es, ep) + F(es,ep). (5.10)
It follows from (4.4) and Lemmas 5.1-5.3, that
J(Quug)—J (ul) < chr?,
&(es,ep) < Chlleslly, + Chlleplly, »

Z(eg,ep) = _K(ebs,t,ebs,t>r <0,
(es,ep) < Chlesllp, + Chlleplly, -

(5.11)
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The relations (2.26), (5.10), (5.11) and the Young’s inequality give

which yields

2 2 2
lesll? +llepl?, < Ch?, h<1,

2 2
lleslly, + lleplln, < \/2(||65|th +lleplly ) < Ch.

The proof is complete.

6. Numerical Examples

This section gives two numerical examples for the approximation of the problem (1.1)-
(1.12). Here, we use the WG scheme (3.6) with the uniform triangular partitions. In all
examples, we set k = 1 and consider sufficiently smooth parameters (v, u,K, fg, fp, g)-

Example 6.1. Let I'=(0,1) x {1}, Iy, ={0,1} x(0,1), [y, = (0,1) x {0} and T, = 39 \T
(shown in Fig. 2). We take the exact solution

_[ Xa-xya-yrey-n
ST P -y PP -1 2x - 1)

i(z"_ 1)y — 12y —2)

Up =

I'p

I

1

I'p
Qp
np
A < \
ne b
Qg
I,

), ps =(2x—1)(y 1),

i"(’“_ 1y —1)(3y —5)

, pp=x(1—x)(y —2)(y — 1)?
I'p
2
r 0O
D I‘D D FD

Figure 2: Domains for Example 6.1 (left) and Example 6.2 (right).
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with o, (ug) = 0 on Ty,. Here, u = v =1 and the permeability tensor K = I € R**? is the
identity tensor. And we choose the barrier function as

glx,y)=0 forall (x,y)€Ty,.
The corresponding f ¢ and f;, are calculated from the exact solution.

In Table 1, we list the errors and the convergence orders of the WG method. It can be
found that the estimates for [leg||;, and |lep |y, are €(h), which agrees with the conclusions
in Theorem 5.1.

Table 1: Errors and orders for Example 6.1.

h/v2 lles|lx, Order lleplln, Order lles, llo, Order | |lep llo, Order
8 4.236e-02 - 2.777e-02 - 2.920e-03 - 1.962e-03 -
16 2.116e-02 1.00 1.388e-02 1.00 | 7.281e-04 | 2.00 | 4.924e-04 1.99
32 1.057e-02 | 1.00 | 6.940e-03 1.00 | 1.813e-04 | 2.01 1.232e-04 | 2.00
64 5.281e-03 1.00 | 3.470e-03 1.00 | 4.524e-05 2.00 | 3.081e-05 2.00
128 2.640e-03 1.00 1.735e-03 1.00 1.130e-05 2.00 7.704e-06 | 2.00

Example 6.2. Let T = {(x,y) : y = 0.5+ 4/0.25—(x —0.5)2,0 < x < 1}, I, = {(x,¥):
x=00rx=10<y <05} T; ={(x,y): y=0,0<x <1}and I}, = {(x,y) : x =
Oorx =1,05<y <2}U{(x,y):y =2,0<x < 1} (shown in Fig. 2). Moreover, we
choose the right hand sides, the barrier function and the permeability tensor as

fsQo,y)=ep+ (LT forall (x,y) €0y,

fole,y)=e€g, forall (x,y)e€ Qp,
g(x5y):€g for all (X5y)€FSZ,
K(x,y)=mgl forall (x,y)eQp

with €, €, , €, € (0,00) being sufficiently small, which can be seen as the perturbations
to (fs, fp,g). From [21, Table 4.20], the viscosity values mostly range from 10™° Pa - s
to 102 Pa -s. And from [19, Tables A.1, A.2], the permeability values mostly range from
107 m? to 1077 m2. Then we choose

u,ve {107%,107%,107%,1,10%},

mg € {1071%,107,107,1077,1077}.

Here, the exact solution is unknown. Set €7 = €; = €, = 1078 and h = v/2/128.
Then, we consider the following cases:

(D) u=10"°%and my = 1077 with different v € {107%,107*,1072,1,10%};

(I1) v=10% and mg = 1077 with different u € {107%,107,1072,1,10%};
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(1) v=10% and u = 107° with different my € {107'°,107!3,1071%,107°,1077}.

With the parameters above, we can get the WG solution (uZ, pg, pg) from (3.6). Since the
exact solution is unknown, similar to [33, Example 4.4], we define the following errors:

Erro=||V, -ugllo, .

Err; =

3

r

h 1 h
ug-ng+ ;Kvap ‘Ng

Erry = ||2vew (ug)ns ‘Ng —Pg +P1}3| r’

Errg= ||2vew(ug)n5 -t +Kug . t||1,.

In fact, Errg,Erry,Erry, and Erry are the approximations to (1.5), (1.10), (1.11) and
(1.12) respectively. To study the robustness of the WG method with respect to v, u and my,
we list the errors for cases I-III in Tables 2-4 respectively.

Due to Lemma 2.4 and the definitions of aZ(', -) and ag(-, -) in (3.5), the singularity of
the WG method is governed by a = min{2v, my/u}, which determines the lower bound of

Table 2: Errors for case | of Example 6.2.

v Erry Err Erry Erry
107 | 3.223e-06 | 6.319e-09 | 8.329e-09 | 4.627e-09
107% | 2.123e-07 | 2.445e-09 | 2.175e-09 | 3.472e-09
1072 | 2.484e-09 | 3.739e-10 | 2.033e-09 | 2.204e-09

1 3.676e-11 | 3.150e-11 | 1.008e-09 | 7.648e-10
10% | 3.819e-13 | 2.850e-11 | 8.478e-10 | 9.352e-10

Table 3: Errors for case Il of Example 6.2.

w Erry Err; Erry Erry
102 | 3.409e-07 | 1.498e-09 | 9.405e-03 | 1.394e-05

1 2.217e-08 | 4.170e-10 | 5.989e-04 | 2.700e-06
1072 | 5.997e-10 | 9.322e-11 | 1.344e-05 | 4.169e-07
107* | 3.351e-11 | 2.923e-11 | 4.752e-07 | 2.402e-08
107 | 3.819e-13 | 2.850e-11 | 8.478e-10 | 9.352e-10

Table 4: Errors for case Il of Example 6.2.
mg Erry Err; Erry Errg
1071 | 3.409e-07 | 1.498e-09 | 9.405e-03 | 1.394e-05
10713 | 2.217e-08 | 4.170e-10 | 5.989e-04 | 2.700e-06
107! | 5.997e-10 | 9.322e-11 | 1.344e-05 | 4.169e-07
1077 | 3.351e-11 | 2.923e-11 | 4.752e-07 | 2.402e-08
1077 | 3.819e-13 | 2.850e-11 | 8.478e-10 | 9.352e-10




WG Method for the Coupled Darcy-Stokes Problem 51

the eigenvalues for the WG matrix. If a is too small, the WG method will be singular, then
the obtained WG solution is not accurate. In other words, the bigger a is, the more robust
the WG method is. So, we will analyze the numerical results in Tables 2-4 according to a.
For case I, we have a = 2y when v < 1072 and @ = 10~! when v > 1. From Table 2, it can
be found that the errors Err;,i € {0, 1,2, 3} become smaller as v becomes bigger for fixed
(u, mg, fs, fp,g). For case II, we have & = 10~/ /u. Thus, as u becomes smaller, the errors
Err;, 1 €{0,1,2,3} become smaller for fixed (v, mg, fs, fp, &), see Table 3. For case III, we
have a = my-10°. From Table 4, it is easy to see that the errors Err;, i € {0,1,2, 3} become
smaller as mg becomes bigger for fixed (v, u, f s, fp, g)- In summary, the WG method (3.6)
is robust when v is bigger, u is smaller and my is bigger.
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