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Abstract. In this paper, we study a coupled problem of Darcy’s law and Stokes equation

with nonlinear slip boundary conditions. We derive a variational inequality for the cou-

pled problem in detail. Then we introduce and analyze a weak Galerkin method to solve

the coupled problem numerically. Under proper regularity assumptions, we obtain the

optimal error estimate O (h) in newly defined h-norms. Finally, we give some numerical

results to support the theoretical conclusions.
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1. Introduction

The numerical simulation of the coupling of porous media flow and fluid flow has at-

tracted the interest of many researchers due to its widespread applications in environment

science, hydrology, biofluid dynamics and petroleum engineering [6, 33]. The simplest

mathematical model is the classical coupled Darcy-Stokes problem, with the Darcy’s law in

the porous media region, the Stokes equations in the fluid region, and the standard trans-

mission conditions on the boundaries [6,11,14]. While the classical coupled Darcy-Stokes

model ignores the influence of boundary friction on the coupled system, for the Stokes flow,

Fujita introduced slip boundary conditions of friction type to model blood flow in a vein of

an arterial sclerosis patients, flow in avalanche of water and rocks, and flow in a canal with

sherbet of mud and pebbles [10,13]. A lot of numerical methods have been developed for

the single Stokes flow with the slip conditions [10,13,22], but they ignore the interaction

between the Stokes flow and its adjacent porous media flow. To better simulate the above

phenomena, we introduce the following coupled Darcy-Stokes problem with the nonlinear

slip conditions on the Stokes boundary.
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LetΩD andΩS be two bounded domains inR2 withΩD∩ΩS = ; and ∂ΩD∩∂ΩS = Γ 6= ;.
Define ΓD = ∂ΩD \Γ , ∂ΩS = ΓS1

∪ΓS2
∪Γ with ΓS1

∩ΓS2
= ; and (ΓS1

∪ΓS2
)∩Γ = ;. Hereafter,

we suppose the measures of ΓS1
and ΓD are nonzero. To better understand these domains

and boundaries, we give a 2D geometric sketch in Fig. 1.

Figure 1: 2D geometric domains.

In ΩD, we consider viscous fluid flows in a porous medium. According to the conserva-

tion of mass and the Darcy’s law [11,14], we have

∇ · uD = fD in ΩD, (1.1)

µK−1uD +∇pD = 0 in ΩD, (1.2)

where uD is the Darcy velocity field, pD the Darcy pressure field, µ the Darcy viscosity, fD is

the external force density, and K−1 the inverse of the permeability tensor K with uniformly

positive definite and uniformly bounded K = K(x ) ∈ R2×2, x ∈ ΩD. Moreover, we consider

the homogeneous Dirichlet boundary condition on ΓD for the Darcy fluid

pD = 0 on ΓD. (1.3)

In ΩS, we consider a viscous incompressible Stokes fluid flow with boundary friction. In

view of the conservation of momentum and the conservation of mass, we have

−∇ ·
�
2νe(uS)
�
+∇pS = fS in ΩS , (1.4)

∇ · uS = 0 in ΩS , (1.5)

where uS is the Stokes velocity field, pS is the Stokes pressure field, ν is the Stokes viscosity,

e(uS) =
1

2

�
∇uS + (∇uS)

⊺
�
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is the strain tensor and f S is the external force density. Here, (1.5) represents the incom-

pressibility condition. For simplicity, let

σ(uS, pS) = 2νe(uS)− pSI, (1.6)

where I is the identity tensor in R2×2. Then, σt and σn are defined as

σt = σ(uS, pS)nS · t , σn = σ(uS , pS)nS · nS. (1.7)

For the boundary friction conditions, we consider

uS = 0 on ΓS1
, (1.8)

uS,n = 0, |σt | ≤ g, σtuS,t + g|uS,t |= 0 on ΓS2
, (1.9)

where

uS,n = uS ·nS , uS,t = uS · t
with nS and t being the external normal and tangential vectors along ∂ΩS respectively,

and g ≥ 0 denotes the barrier or slip function on ΓS2
. Moreover, (1.8) is the homogeneous

Dirichlet boundary condition on ΓS1
, uS,n = 0 in (1.9) is the impermeability condition, and

|σt | ≤ g,σtuS,t + g|uS,t | = 0 in (1.9) describes the friction — cf. [4, Eqs. (1.3)-(1.7)] for

more details.

On the interface Γ , for the coupling of the Darcy flow and the Stokes flow, we consider

the following transmission conditions:

(uS − uD) ·nS = 0 on Γ , (1.10)

σn + pD = 0 on Γ , (1.11)

σt + κuS,t = 0 on Γ , (1.12)

where κ is a positive constant obtained from the experimental data. Moreover, (1.10)

represents the conservation of mass, (1.11) represents the balance of normal forces, and

(1.12) represents the Beavers-Joseph-Saffman law — cf. [14, Eqs. (1.4)-(1.6)] for more

details.

Thus, we find the model (1.1)-(1.12) actually describes the coupling of the incompress-

ible Stokes fluid with boundary friction and the Darcy fluid across an interface. Due to their

wide applications in environment and science, lots of attention has been attracted to the nu-

merical simulation for the coupled Darcy-Stokes problems. In [6], with the Raviart-Thomas

elements, the estimate O (hδ), δ ∈ (0,1] was obtained for a coupled Darcy-Stokes problem

with linear boundary conditions. In [33], with a staggered DG method, the optimal conver-

gence estimates were obtained for the coupled nonlinear Darcy-Stokes problem with linear

boundary conditions. As far as we know, for the problem (1.1)-(1.12), no convergence

estimates are obtained at present.

Weak Galerkin (WG) methods are one type of highly flexible and robust finite element

methods. Since first proposed by Wang and Ye [23], WG methods have been successfully

applied to solve Stokes equations [25, 26, 29], Navier-Stokes equations [32], biharmonic
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equations [16,31], Maxwell equations [18], the quasistatic Maxwell viscoelastic model [27]

and reaction-diffusion equations [12]. Besides these standard models, WG methods are also

applied to some nonstandard models, such as elliptic equations on curved domains [15],

elliptic equations with Newton boundary condition [20] and the wave equation with in-

terface [3]. Moreover, some special techniques of WG methods, such as a posteriori error

estimator for Stokes problem based on the auxiliary subspace techniques [30] and simple

stabilizer free method with superconvergence [28] are also developed. These achievements

and the advantages in flexibility and stability attract us to solve (1.1)-(1.12) with WG meth-

ods.

The rest of the paper is organized as follows. In Section 2, we consider the variational

inequality of the coupled problem. In Section 3, we provide a WG method for the coupled

problem. In Section 4, we give an error inequality for the error estimates of the WG method.

In Section 5, we get the error estimates. Finally, we make some numerical experiments to

support the conclusions.

2. Variational Inequality

2.1. Preliminaries and notations

For any D ∈ R2 and C ∈ R1, let L2(D) and L2(C ) be the standard Lebesgue spaces —

cf. [1, Chapter 2] for more details. Denote by (·, ·)D the inner product in L2(D), [L2(D)]2
and [L2(D)]2×2. Denote by 〈·, ·〉C the inner product in L2(C ), [L2(C )]2 and [L2(C )]2×2.

Then we have

(u, v)D =

∫

D
u(x )v(x )dx for all u, v ∈ L2(D),

〈w, z〉C =
∫

C
w(x )z(x )dx for all w, z ∈ L2(C ),

(u, v)D =

∫

D
u(x ) · v(x )dx for all u, v ∈ [L2(D)]2,

〈w , z〉C =
∫

C
w (x ) · z(x )dx for all w , z ∈ [L2(C )]2,

(T1,T2)D =

∫

D
T1(x ) : T2(x )dx for all T1,T2 ∈ [L2(D)]2×2,

〈T3,T4〉C =
∫

C
T3(x ) : T4(x )dx for all T3,T4 ∈ [L2(C )]2×2

(2.1)

with “ · ” being the dot product of two vectors in R2 and “ : ” being the sum of the products

of the corresponding components of two matrices in R2×2. With the inner products (·, ·)D
and 〈·, ·〉C above, we define the norms ‖ · ‖D and ‖ · ‖C as

‖ · ‖D =
Æ
(·, ·)D , ‖ · ‖C =

Æ
〈·, ·〉C . (2.2)
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From (2.1), we have

(T1,T2)D =
�
T
⊺

1
,T
⊺

2

�
D ,
�
T1 +T

⊺

1
,T2

�
D =

1

2

�
T1 +T

⊺

1
,T2 +T

⊺

2

�
D (2.3)

for all T1,T2 ∈ [L2(D]2×2, where ⊺ denotes the transposition of a matrix or vector.

Given an integer s ≥ 0, we use the standard Sobolev spaces Hs(D) and Hs(C )— cf. [1,

Notation 1.2 and Chapter 3] for more details,

Hs(D) =
�

v ∈ L2(D) : ∂ αv ∈ L2(D) for all |α| ≤ s
	

,

Hs(C ) =
�

v ∈ L2(C ) : ∂ αv ∈ L2(C ) for all |α| ≤ s
	

,

where α= (α1,α2), |α| = α1 +α2 with α1 and α2 being nonnegative integers, and

∂ αv =
∂ |α|v

∂ xα1∂ yα2
.

Denote by (·, ·)s,D , | · |s,D and ‖·‖s,D the inner-product, the seminorm and the norm in Hs(D)
respectively, and 〈·, ·〉s,C , |·|s,C , ‖·‖s,C the inner-product, the seminorm, the norm in Hs(C )
respectively, with

(u, v)s,D =
∑

0≤|α|≤s

(∂ αu,∂ αv)D , 〈w, z〉s,C =
∑

0≤|α|≤s

〈∂ αw,∂ αz〉C ,

|v|2s,D =
∑

|α|=s

(∂ αv,∂ αv)D , |w|2s,C =
∑

|α|=s

〈∂ αw,∂ αw〉C ,

‖v‖s,D =
∑

0≤|α|≤s

|v|2s,D , ‖w‖s,C =
∑

0≤|α|≤s

|w|2s,C

for any u, v ∈ Hs(D) and w, z ∈ Hs(C ). In the subsequent content, we take

D ∈ {ΩS,ΩD, T}, C ∈ {∂ΩS,∂ΩD, Γ , ΓS2
,∂ T, e}

with T being an element in the partition and e ⊂ ∂ T being an edge of the element.

Next, we introduce a fundamental conclusion about elliptic variational inequalities.

Lemma 2.1 (cf. Glowinski [8, Theorem 4.1]). Let V be a real Hilbert space. If a(·, ·) :

V × V → R is a bilinear, continuous and V-elliptic form on V × V , j(·) : V → R ∪ {∞} is

a convex lower semicontinuous and proper functional and L(·) : V → R is a continuous, linear

functional, then the variational inequality

a(u, v − u) + j(v)− j(u)≤ L(v − u) for all v ∈ V

has a unique solution u ∈ V .
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2.2. Variational inequality

This subsection introduces the derivation of the variational inequality for (1.1)-(1.12),

and discusses the existence and uniqueness of the weak solution. According to the boundary

conditions (1.3), (1.8) and uS,n = 0 in (1.9), we define

U0
S
=
¦

vS ∈ [H1(ΩS)]
2 : vS |ΓS1

= 0, vS,n|ΓS2
= 0
©

,

P0
D =
�
qD ∈ H1(ΩD) : qD|ΓD = 0

	
.

Multiplying (1.1) by qD ∈ P0
D

, integrating it over ΩD, and applying the integration by parts

yield

( fD,qD)ΩD
= (∇ · uD,qD)ΩD

= −(uD,∇qD)ΩD
+ 〈uD · nD,qD〉∂ ΩD

, (2.4)

where nD is the unit normal vector along ∂ΩD with nD = −nS on Γ .

Multiplying (1.4) by vS ∈ U0
S , integrating it over ΩS, and applying the integration by

parts, (2.3) and (1.6) yields

( fS, vS)ΩS
= −
�
∇ · (2νe(uS)), vS

�
ΩS
+ (∇pS , vS)ΩS

= 2ν
�
e(uS), e(v S)
�
ΩS
− 2ν


e(uS)nS , vS

�
∂ΩS

− (∇ · vS , pS)ΩS
+ 〈pS , vS · nS〉∂ΩS

= 2ν
�
e(uS), e(v S)
�
ΩS
− (∇ · vS, pS)ΩS

−


σ(uS, pS)nS, vS

�
∂ΩS

. (2.5)

Adding (2.4) and (2.5) to each other and applying qD ∈ P0
D yields

2ν
�
e(uS), e(v S)
�
ΩS
− (pS ,∇ · vS)ΩS

− 〈σ(uS , pS)nS , vS〉∂ΩS

− (uD,∇qD)ΩD
+


uD · nD,qD

�
Γ

=
�
f S , vS

�
ΩS
+ ( fD,qD)ΩD

. (2.6)

From (1.2) and the transmission condition (1.10), we have

uD = −
1

µ
K∇pD on ΩD,

uD · nD = −uS ·nS on Γ .

(2.7)

From (1.7), the transmission conditions (1.11)-(1.12), (1.7) and vS ∈ U0
S , we get



σ(uS , pS)nS , vS

�
∂ΩS

= 〈σn, vS,n〉∂ΩS
+ 〈σt , vS,t〉∂ΩS

= 〈σn, vS,n〉Γ + 〈σt , vS,t〉Γ + 〈σt , vS,t〉ΓS2

= −〈pD, vS,n〉Γ − κ〈uS,t , vS,t〉Γ + 〈σt , vS,t〉ΓS2
. (2.8)
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Combining (2.6)-(2.8) yields

2ν
�
e(uS), e(vS)
�
ΩS
− (∇ · vS , pS)ΩS

+
1

µ
(K∇pD,∇qD)ΩD

+ 〈pD, vS,n〉Γ − 〈uS,n,qD〉Γ + κ〈uS,t , vS,t〉Γ
=
�
f S , vS

�
ΩS
+ ( fD,qD)ΩD

+ 〈σt , vS,t〉ΓS2
.

Replacing vS and qD respectively by vS−uS and qD−pD, and using the boundary condition

(1.9), we get

2ν
�
e(uS), e(v S − uS)

�
ΩS
−
�
∇ · (vS − uS), pS

�
ΩS
+

1

µ

�
K∇pD,∇(qD − pD)

�
ΩD

+ 〈pD, vS,n − uS,n〉Γ − 〈uS,n,qD − pD〉Γ + κ〈uS,t , vS,t − uS,t〉Γ
= ( f S, vS − uS)ΩS

+ ( fD,qD − pD)ΩD
+ 〈σt , vS,t − uS,t〉ΓS2

≥ ( f S, vS − uS)ΩS
+ ( fD,qD − pD)ΩD

+

∫

ΓS2

g|uS,t |ds−
∫

ΓS2

g|vS,t |ds. (2.9)

Since [H1
0(ΩS)]

2 ⊂ U0
S , the estimate [7, (5.14)] gives

sup
vS∈U0

S

(∇ · vS,qS)ΩS

|vS |1,ΩS

≥ sup
vS∈[H1

0
(ΩS)]

2

(∇ · vS,qS)ΩS

|vS |1,ΩS

≥ C‖qS‖ΩS
(2.10)

for all qS ∈ L2
0(ΩS). From (2.10) and [7, Lemma 4.1], we find that ∇ · uS = 0 in (1.5) is

equivalent to

(∇ · uS ,qS)ΩS
= 0 for all qS ∈ L2

0(Ω). (2.11)

Then, in view of (2.9) and (2.11), we get the variational inequality for the coupled problem

(1.1)-(1.12) reads as follows: Find (uS , pS , pD) ∈ U0
S × L2

0(ΩS)× P0
D such that

aS(uS, vS − uS) + bS(vS − uS , pS) + aD(pD,qD − pD)

+ B(uS, vS − uS; pD,qD − pD) + j(vS,t)− j(uS,t)

≥ F(vS − uS,qD − pD) for all (vS ,qD) ∈ U0
S × P0

D,

bS(uS ,qS) = 0 for all qS ∈ L2
0(ΩS),

(2.12)

where

L2
0(ΩS) =

¨
q ∈ L2(ΩS) :

∫

ΩS

qdx = 0

«
,

aS(uS, vS) = 2ν
�
e(uS), e(v S)
�
ΩS

,

aD(pD,qD) =
1

µ
(K∇pD,∇qD)ΩD

,

bS(vS,qS) = − (∇ · vS ,qS)ΩS
,
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B(uS , vS; pD,qD) = 〈pD, vS · nS〉Γ − 〈uS ·nS ,qD〉Γ + κ〈uS,t , vS,t〉Γ ,

j(vS,t) =

∫

ΓS2

g|vS,t |ds,

F(vS ,qS) = ( f S , vS)ΩS
+ ( fD,qD)ΩD

.

Next, we will simplify the variational inequality (2.12). Define

X =
�
vS ∈ U0

S : bS(vS,qS) = 0 for all qS ∈ L2
0(ΩS)
	

and let S = X × P0
D.

Lemma 2.2. Define ((·, ·))S : S ×S → R by

((ζ1,ζ2))S =
�
e
�
v
(1)

S

�
, e
�
v
(2)

S

��
ΩS

+
�
∇q
(1)
D ,∇q

(2)
D

�
ΩD

for all ζi = (v
(i)

S
,q
(i)
D ) ∈ S , i = 1,2. Then ((·, ·))S is an inner product on S , and (S , ((·, ·))S )

is a Hilbert space.

Proof. For simplicity, we only prove the positive definiteness of ((·, ·))S . From (2.2), we

have

‖·‖2
ΩS
= (·, ·)ΩS

, ‖·‖2
ΩD
= (·, ·)ΩD

,

where (·, ·)Ωi
(i = S, D) are defined in (2.1). Suppose ((ζ,ζ))S = 0 for some ζ = (vS ,qD) ∈

S , then we arrive at

‖e(vS)‖2ΩS
+ ‖∇qD‖2ΩD

= 0,

which yields e(vS) = 0 and ∇qD = 0. Due to [9, Lemma II.1], we have vS = 0 from

e(vS) = 0. With the Poincaré-Friedrichs inequality — cf. [2, Ineq. (1.1)], we derive qD = 0

from ∇qD = 0. Thus, ζ = (0, 0) ∈ S and ((·, ·))S is an inner product.

Now, we prove that (S , ((·, ·))S ) is a Hilbert space. Denote by ‖ · ‖S the norm induced

by the inner product ((·, ·))S . Suppose {ζn}∞n=1
(ζn = (v

(n)
S

,q
(n)
D
)) is a Cauchy sequence

in S . Then for any ε > 0, there exists an integer N (ε) > 0 such that for all m, n > Nε,

‖ζm − ζn‖2S =


e
�
v
(m)
S

�
− e
�
v
(n)
S

�

2
ΩS
+


∇
�
q
(m)
D − q

(n)
D

�

2
ΩD
< ε.

According to [5, Theorem 3.1] and the Poincaré-Friedrichs inequality, there exist two con-

stants C1 > 0 and C2 > 0 such that

C1



v (m)
S
− v

(n)

S




1,ΩS
≤


e
�
v
(m)

S

�
− e
�
v
(n)

S

�


ΩS
<
Æ
ε/2, (2.13)

C2



q(m)D − q
(n)
D




1,ΩD
≤


∇
�
q
(m)
D − q

(n)
D

�


ΩD
<
Æ
ε/2. (2.14)

Thus {v (n)
S
}∞

n=1
and {q(n)

D
}∞

n=1
are Cauchy sequences in Banach spaces (X ,‖ · ‖1,ΩS

) and (P0
D

,

‖ · ‖1,ΩD
) respectively. Then there exists (vS ,qD) ∈ S and two positive integers N1, N2 such

that (2.13) holds for all n> N1 with v
(m)
S

replaced with vS and (2.14) holds for all n> N2
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with q
(m)
D

replaced with qD. Let ζ= (vS,qD) ∈ S , then we can obtain ‖ζ−ζn‖2S < ε for all

n>max{N1, N2}. Therefore, (S ,‖ ·‖S ) is a Banach space, and (S , ((ζ1,ζ2))S ) is a Hilbert

space.

Lemma 2.3. The problem (2.12) is equivalent to finding ς= (uS, pD) ∈ S such that

B(ς,ζ− ς) + j(vS,t)− j(uS,t) ≥ F(ζ− ς) for all ζ= (vS,qD) ∈ S , (2.15)

where B(·, ·) : S ×S → R and F ∈ S ′ are defined by

B (ς,ζ) = aS(uS , vS) + aD(pD,qD) + B(uS , vS; pD,qD),

F(ζ) = F(vS ,qD).

Proof. Following the inf-sup condition for (∇ · vS ,qS)ΩS
, cf. [7, Corollary 2.4 and Lem-

ma 4.1], there exists a constant C > 0 such that

inf
qS∈L2

0(ΩS)
sup

vS∈H1(ΩS)

(∇ · vS,qS)ΩS

‖qS‖ΩS
‖vS‖1,ΩS

≥ C .

Thus (2.12) is equivalent to finding (uS, pD) ∈ X × P0
D

satisfying

aS(uS , vS − uS) + aD(pD,qD − pD)

+ B(uS , vS − uS; pD,qD − pD) + j(vS,t)− j(uS,t)

≥ F(v S − uS ,qD − pD) for all (vS,qD) ∈ X × P0
D. (2.16)

With the definition of B(·, ·) and F(·), (2.16) is equivalent to (2.15). Consequently, (2.12)

is equivalent to (2.15).

Lemma 2.4. For B(·, ·) defined in Lemma 2.3, there exist two constants α,β > 0 such that

B(ζ,ζ) ≥ α‖ζ‖2S , (2.17)

|B(ς,ζ)| ≤ β ‖ς‖S ‖ζ‖S (2.18)

for all ς,ζ ∈ S .

Proof. From [1, Theorems 5.22, 5.36], there exist extension operators Ei : H1(Ωi) →
H1(R2) (i = S, D) such that

‖Ei vi‖∂Ωi
≤ C‖vi‖1,Ωi

for all vi ∈ H1(Ωi). (2.19)

Let

ES = (ES , ES)
⊺ : [H1(ΩS)]

2→ [H1(R2)]2.

For any (vS,qD) ∈ S ⊂ [H1(ΩS)]
2 ×H1(ΩD), we extend the definition by

vS(x ) = ES vS(x ) a.e. on Γ , (2.20)

qD(x ) = EDqD(x ) a.e. on Γ . (2.21)
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Then from (2.19)-(2.21), we derive

‖vS‖Γ = ‖ES vS‖Γ ≤ ‖ESvS‖∂ΩS
≤ C‖vS‖1,ΩS

, (2.22)

‖qD‖Γ = ‖EDqD‖Γ ≤ ‖EDqD‖∂ΩD
≤ C‖qD‖1,ΩD

. (2.23)

From [5, (2.29) and Theorem 3.3 of Chapter 3], and the Poincaré-Friedrichs inequality, we

have

‖vS‖1,ΩS
≤ C‖e(vS)‖ΩS

, ‖qD‖1,ΩD
≤ C‖∇qD‖ΩD

(2.24)

for any (vS ,qD) ∈ S . With (2.22)-(2.24), there exist constants CS, CD > 0 such that

‖vS‖Γ ≤ CS ‖e(vS)‖ΩS
, ‖qD‖Γ ≤ CD‖∇qD‖ΩD

(2.25)

for any (vS ,qD) ∈ S .

Since K(x ) ∈ R2×2 with x ∈ ΩD is uniformly positive definite and uniformly bounded,

there exist two constants MK , mK with MK ≥ mK > 0 such that

v(x )⊺K(x )v(x )≥ mK v(x )⊺v(x ),

|K(x )v(x )| ≤ MK

Æ
v(x )⊺v(x )

(2.26)

for any v(x ) ∈ R2 with x ∈ ΩD.

Let ς= (uS , pD) ∈ S and ζ = (vS,qD) ∈ S . From (2.25) and (2.26), we have

B(ζ,ζ) = 2ν‖e(vS)‖2ΩS
+

1

µ
(K∇qD,∇qD)ΩD

+ κ〈vS · t , vS · t 〉Γ ≥ α‖ζ‖2S ,

|B(ς,ζ)| ≤
�

2ν‖e(uS)‖2ΩS
+

1

µ
MK ‖∇pD‖2ΩD

+ ‖pD‖2Γ + (κ+ 1)‖uS‖2Γ
�1/2

×
�

2ν‖e(vS)‖2ΩS
+

1

µ
MK ‖∇qD‖2ΩD

+ (κ+ 1)‖vS‖2Γ + ‖qD‖2Γ
�1/2

≤ β ‖ς‖S ‖ζ‖S ,

where

α=min

§
2ν,

1

µ
mK

ª
, β =max

§
2ν+ (κ+ 1)C2

S
,

1

µ
MK + C2

D

ª
.

Thus (2.17) and (2.18) get proved.

Theorem 2.1. If g ∈ L2(ΓS2
), the problem (2.12) has a unique solution (uS, pS , pD) ∈ U0

S ×
L2

0(ΩS)× P0
D.

Proof. In view of Lemma 2.3, we only need to prove that (2.15) has a unique solution

ς= (uS , pD) ∈ S . It follows from (2.25) that

| j(vS,t)− j(uS,t)| ≤
∫

ΓS2

g|vS,t − uS,t |ds ≤ CS ‖g‖ΓS2
‖e(vS)− e(uS)‖ΩS

,

thus j(·) is continuous on S . And j(·) is convex and proper on S with the properties of

absolute value. From Lemma 2.1, (2.15) has a unique solution ς= (uS , pD) ∈ S .
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3. WG Method

Let Thi
(i = S, D) be the regular polygonal partitions of Ωi that is aligned with Γ , and

ǫhi
be the set of all edges in Thi

and ǫ I
hi
= ǫhi

\ ∂Ωi. For any T ∈ Thi
, denote by hT the

diameter of T . Then let hi =maxT∈Thi
hT and h=maxi∈{S,D} hi . Define

Whi
=
�
{v0, vb} : v0|T ∈ L2(T ) for all T ∈ Thi

; vb|e ∈ L2(e) and all e ∈ ǫhi

	
,

[Whi
]2 =
�
{v0, v b} : v0|T ∈ [L2(T )]2 for all T ∈ Thi

; v b|e ∈ [L2(e)]2 and all e ∈ ǫhi

	
,

MhS
=
�
ωS :ωS |T ∈ [P0(T )]

2×2 for all T ∈ ThS

	
,

MhS
=
�
ωS ∈ MhS

:ωS =ω
⊺

S

	
,

UhS
=
�
{v0, v b} : v0|T ∈ [P1(T )]

2 for all T ∈ ThS
; v b|e ∈ [P1(e)]

2 and all e ∈ ǫhS

	
,

U0
hS
=
¦
{v0, v b} ∈ UhS

: v b|ΓS1
= 0; v b · nS |ΓS2

= 0
©

,

UhD
=
�
v D : v D|T ∈ [P0(T )]

2 for all T ∈ ThD

	
,

PhD
=
�
{q0,q

b
} : q0|T ∈ P1(T ) for all T ∈ ThD

; qb|e ∈ P0(e) and all e ∈ ǫhD

	
,

P0
hD
=
�
{q0,qb} ∈ PhD

: qb|ΓD = 0
	

,

PhS
=
�
qS : qS |T ∈ P0(T ) for all T ∈ ThS

	
,

P0
hS
=
�
qS ∈ PhS

: qS ∈ L2
0(ΩS)
	

.

Definition 3.1. Given any qD = {q0,qb} ∈ WhD
, define ∇wqD ∈ UhD

such that

(∇wqD, v D)T = − (q0,∇ · v D)T + 〈qb, v D · n〉∂ T (3.1)

for all T ∈ ThD
and v D ∈ [P0(T )]

2.

Definition 3.2. Given any vS = {v0, v b} ∈ [WhS
]2, define ∇w · vS ∈ PhS

such that

(∇w · vS ,qS)T = − (v0,∇qS)T + 〈v b · n,qS〉∂ T (3.2)

for any T ∈ ThS
and qS ∈ P0(T ).

Definition 3.3. Given any vS = {v0, v b} ∈ [WhS
]2, define ∇wvS ∈ MhS

such that

(∇wvS ,ωS)T = − (v0,∇ ·ωS)T + 〈v b,ωSn〉∂ T (3.3)

for all T ∈ ThS
and ωS ∈ [P0(T )]

2×2.

Remark 3.1. Let

ew(vS) =
1

2

�
∇wvS + (∇wvS)

⊺
�

for any vS = {v0, v b} ∈ [WhS
]2. From Definition 3.3, for all T ∈ ThS

and Ξ ∈ [P0(T )]
2×2,

we have �
ew(vS),Ξ
�

T
= −
�
v0,∇ ·Ξ
�

T
+


v b,Ξn
�
∂ T

,
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where Ξ= (Ξ+Ξ⊺)/2. Thus ew(vS) is uniquely determined by the following equation:
�
ew(vS),Ξ
�

T
= − (v0,∇ ·Ξ)T + 〈v b,Ξn〉∂ T

for all T ∈ ThS
and Ξ ∈ MhS

.

Next, we introduce local L2-projection operators. For any function χ ∈ L2(Ωi)∪L2(Ωi)∪
L2(Ωi) (i = S, D), with L2(Ωi) = [L

2(Ωi)]
2 andL2(Ωi) = [L

2(Ωi)]
2×2, we define Q0,Qb,Q0,

Qb and Qh as

(Q0χ −χ,φ)T = 0 for all φ ∈ [P1(T )]
2 and all T ∈ ThS

,

〈Qbχ −χ,ψ〉e = 0 for all ψ ∈ [P1(e)]
2 and all e ∈ ǫhS

,

(Q0χ −χ,φ)T = 0 for all φ ∈ P1(T ) and all T ∈ ThD
,

〈Qbχ −χ,ψ〉e = 0 for all ψ ∈ P0(e) and all e ∈ ǫhD
,

(Qhχ −χ,θ)T = 0 for all θ ∈ P0(T ) and all T ∈ ThS
∪ThS

,

(3.4)

and define Qh = {Q0,Qb}, Qh = {Q0,Qb}.
Lemma 3.1 (cf. Mu et al. [17, Lemma 3.5]). For Qh,Qh and Qh defined in (3.4), we have

∇w(Qhφ) = Qh(∇φ) for all φ ∈ H1(T ) and all T ∈ ThD
,

ew(Qhφ) = Qhe(φ) for all φ ∈ [H1(T )]2 and all T ∈ ThS
,

∇w · (Qhφ) = Qh(∇ ·φ) for all φ ∈ Hd(T ) and all T ∈ ThS
,

where

Hd(T ) =
�
w ∈ [L2(T )]2 :∇ · w ∈ L2(T )

	
.

For any uS = {u0, u b} ∈ [WhS
]2, vS = {v0, v b} ∈ [WhS

]2, qS ∈ Ph, pD = {p0, pb} ∈ WhD

and qD = {q0,qb} ∈ WhD
, define the following multilinear forms:

sS(uS, vS) =
∑

T∈ThS

h−1
T 〈u0 − u b, v0 − v b〉∂ T ,

ah
S(uS , vS) = 2ν

∑

T∈ThS

�
ew(uS), ew(vS)
�

T
+ 2νsS(uS , vS),

bh
S(vS ,qS) = −
∑

T∈ThS

(∇w · vS ,qS)T ,

sD(pD,qD) =
∑

T∈ThD

h−1
T 〈Qbp0 − pb,Qbq0 − qb〉∂ T ,

ah
D(pD,qD) =

1

µ

∑

T∈ThD

(K∇wpD,∇wqD)T +
1

µ
mK sD(pD,qD),

Bh(uS , vS; pD,qD) = 〈pb, v b · nS〉Γ + κ〈ub,t , vb,t〉Γ − 〈u b · nS,qb〉Γ ,
Fh(vS ,qD) = ( f S , v0)ΩS

+ ( fD,q0)ΩD
,

jh(vS,t) =

∫

ΓS2

g|vb,t |ds,

(3.5)
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where mK > 0 is given in (2.26). Then, the WG scheme for the coupled problem (1.1)-

(1.12) reads as follows: Find (uh
S , ph

S , ph
D) ∈ U0

hS
× P0

hS
× P0

hD
such that

ah
S

�
uh

S , vS − uh
S

�
+ bh

S

�
vS − uh

S , ph
S

�
+ ah

D

�
ph

D,qD − ph
D

�

+ Bh
�
uh

S , vS − uh
S; ph

D,qD − ph
D

�
+ jh(vS,t)− jh
�
uh

S,t

�

≥ Fh
�
vS − uh

S,qD − ph
D

�
for all (vS,qD) ∈ U0

hS
× P0

hD
, (3.6)

bh
S

�
uh

S,qS

�
= 0 for all qS ∈ P0

hS
. (3.7)

Lemma 3.2. Define ‖ · ‖hS
and ‖ · ‖hD

by

‖vS‖2hS
=
∑

T∈ThS

‖ew(vS)‖2T + sS(vS , vS) for all vS ∈ UhS
,

‖qD‖2hD
=
∑

T∈ThD

‖∇wqD‖2T + sD(qD,qD) for all qD ∈ P0
hD

,

where sS(·, ·) and sD(·, ·) are defined in (3.5). Then ‖ · ‖hS
is a norm in U0

hS
, and ‖ · ‖hD

is

a norm in P0
hD

.

Proof. From [25, Section 4], we know ‖ · ‖hD
is a norm in P0

hD
. Thus, we only need to

prove ‖·‖hS
is a norm in U0

hS
. For simplicity, we only prove the positive definiteness of ‖·‖hS

in U0
hS

. Assume that ‖vS‖hS
= 0 with vS = {v0, v b} ∈ U0

hS
. Then we have

ew(vS)|T = 0, v0|e = v b|e
for all T ∈ ThS

and e ⊂ ∂ T . In view of Remark 3.1, we derive

0=
�
ew(vS),ω
�

T
= −(v0,∇ ·ω)T + 〈v b,ωnS〉∂ T

= (∇v0,ω)T + 〈v b − v0,ωnS〉∂ T =
�
e(v0),ω
�

T

for all T ∈ ThS
and ω ∈ MhS

. Taking ω = e(v0), we get e(v0) = 0 for all T ∈ ThS
. Since

v0|e = v b|e for any e ∈ ǫhS
, we can obtain v0 ∈ H1(ΩS)

2 and v0|ΓS1
= 0. Then due to

Lemma 2.2, we find v0 = 0 on ΩS. Thus, v b|e = 0 for all e ∈ ǫhS
.

Remark 3.2. Let

Xh =
¦

vS ∈ U0
hS

: bh
S(vS ,qS) = 0 for all qS ∈ P0

hS

©

be a subspace of U0
hS

and Sh = Xh × P0
hD

. Define ((·, ·))Sh
by

((ς,ζ))Sh
=
�
ew(uS), ew(vS)
�
ΩS
+ sS(uS, vS) + (∇wpD,∇wqD)ΩD

+ sD(pD,qD)

for all ς = (uS , pD),ζ = (vS ,qD) ∈ Sh. Then ((·, ·))Sh
is an inner product on Sh from

Lemma 3.2. Let ‖ · ‖Sh
be the norm induced by the inner product ((·, ·))Sh

. Since any

finite dimensional normed space is a Banach space, (Sh,‖ · ‖Sh
) is a Banach space, thus

(Sh, ((·, ·))Sh
) is a Hilbert space.
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Hereafter, we denote by C , C1, C2 the positive constants independent of h, which may

differ in different cases.

Lemma 3.3 (cf. Wang & Ye [24, Lemma A.3]). For any T ∈ Thi
(i = S, D) and e ⊂ ∂ T, we

have

‖v‖2e ≤ C
�
h−1

T ‖v‖2T + hT‖∇v‖2T
�

for all v ∈ H1(T ).

Lemma 3.4. For ∇w· defined in (3.2), we have

inf
qS∈P0

hS

sup

vS∈eU
0

hS

(∇w · vS,qS)ΩS

‖qS‖ΩS
‖vS‖hS

≥ C .

Proof. Following [25, Lemma 4.3], for any qS ∈ P0
hS
⊂ L2

0(ΩS), there exists v ∈ H1
0(ΩS)

2

such that
(∇ · v ,qS)ΩS

‖v‖1,ΩS

≥ C1 ‖qS‖ΩS
. (3.8)

Let v∗ = Qhv ∈ eU0

hS
. According to Lemma 3.1, we find

∑

T∈ThS

‖ew(v
∗)‖2T =
∑

T∈ThS

‖ew(Qhv)‖2T =
∑

T∈ThS

‖Qhe(v)‖2T

≤
∑

T∈ThS

‖e(v)‖2T ≤ ‖v‖
2
1,ΩS

, (3.9)

(∇w · v∗,qS)ΩS
=
�
Qh(∇ · v),qS

�
ΩS
= (∇ · v ,qS)ΩS

. (3.10)

From [16, Lemma 4.1], we have
∑

T∈ThS

‖Q0v − v‖2T ≤ Ch2‖v‖21,ΩS
, (3.11)

∑

T∈ThS

‖∇(Q0v − v)‖2T ≤ C‖v‖21,ΩS
. (3.12)

Since Ch ≤ hT ≤ h for any T ∈ ThS
due to the regularity of the partition, and with (3.11),

we get ∑

T∈ThS

h−2
T ‖Q0v − v‖2T ≤ C‖v‖21,ΩS

. (3.13)

Due to (3.4), Lemma 3.3 and (3.12)-(3.13), we arrive at

sS(v
∗, v ∗) =
∑

T∈ThS

h−1
T ‖Q0v −Qbv‖2∂ T ≤

∑

T∈ThS

h−1
T ‖Q0v − v‖2∂ T

≤
∑

T∈ThS

C
�
h−2

T ‖Q0v − v‖2T + ‖∇(Q0v − v)‖2T
�

≤ C
∑

T∈ThS

h−2
T ‖Q0v − v‖2T + C

∑

T∈ThS

‖∇(Q0v − v)‖2T ≤ C2 ‖v‖21,ΩS
. (3.14)
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Combining (3.9) and (3.14), we get

‖v∗‖hS
≤max{1, C2}‖v‖21,ΩS

. (3.15)

With (3.8), (3.10) and (3.15), we can obtain

sup

vS∈eU
0

hS

(∇w · vS ,qS)ΩS

‖vS‖hS

≥
(∇w · v∗,qS)ΩS

‖v∗‖hS

≥
(∇ · v ,qS)ΩS

max{1, C2}‖v‖1,ΩS

≥ C1

max{1, C2}
‖qS‖ΩS

.

The proof is complete.

Following Lemmas 3.2-3.4, Remark 3.2 and the analysis in Section 2, we can derive the

following theorem.

Theorem 3.1. If g ∈ L2(ΓS2
), the WG scheme (3.6) has a unique solution (uh

S , ph
S , ph

D) ∈
U0

hS
× P0

hS
× P0

hD
.

4. Error Inequality

An error inequality for the WG scheme (3.6) will be given in this section. Let (uh
S , ph

S , ph
D)

∈ U0
hS
× P0

hS
× P0

hD
be the solution of (3.6), with uh

S = {uh
0, uh

b
} and ph

D = {ph
0, ph

b
} and let

(uS, pS , pD) ∈
�
U0

S × L2
0(ΩS)× P0

D

�
∩
�
[H2(ΩS)]

2 × H1(ΩS)×H2(ΩD)
�

(4.1)

be the solution of (1.1)-(1.12). With the symbols above, we define the following error

functions:
eS = {eS0

,eSb
} =
�
Q0uS − uh

0,QbuS − uh
b

	
= QhuS − uh

S,

eD = {eD0
, eDb
} =
�
Q0pD − ph

0,Qb pD − ph
b

	
= QhpD − ph

D.
(4.2)

Lemma 4.1. Given w = {w 0, w b} ∈ UhS
and q = {q0,qb} ∈ UhD

, we have

�
ew(w ),ω
�

T
=
�
e(w 0),ω
�

T
+ 〈w b − w 0,ωn〉∂ T for all T ∈ ThS

and all ω ∈ MhS
,

(∇wq,φ)T = (∇q,φ)T + 〈q b − q0,φ · n〉∂ T for all T ∈ ThD
and all φ ∈ UhD

,

(∇w · w ,υ)T = (∇ · w 0,υ)T + 〈w b − w 0,υn〉∂ T for all T ∈ ThS
and all υ ∈ PhS

.

Proof. From Definitions 3.1-3.2, Remark 3.1 and the integration by parts, we get the

conclusions.

Lemma 4.2. Let eS and eD be defined in (4.2), then for any (vS ,qD) ∈ Sh with vS = {v0, v b}
and qD = {q0,qb}, we have

ah
S

�
eS, vS − uh

S

�
+ ah

D

�
eD,qD − ph

D

�

≤ J(vS)− J
�
uh

S

�
+ E
�
vS − uh

S
,qD − ph

D

�

+L
�
vS − uh

S
,qD − ph

D

�
+S
�
vS − uh

S
,qD − ph

D

�
, (4.3)
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where

J(vS) = jh(vS,t) +

∫

ΓS2

σt vb,t ds,

E (vS ,qD) = 2ν
∑

T∈ThS



v0 − v b, (e(uS)−Qhe(uS))n

�
∂ T

−
∑

T∈ThS



v0 − v b, (pS −QhpS)n

�
∂ T

−
∑

T∈ThD

1

µ

�
K(∇pD −Qh(∇pD)),∇wqD

�
T

(4.4)

+
∑

T∈ThD

1

µ



q0 − qb, (K∇pD −Qh(K∇pD)) · n

�
∂ T

,

L (vS ,qD) = −Bh(eS , vS; eD,qD),

S (vS ,qD) = 2νsS(QhuS , vS) +
1

µ
mKsD(QhpD,qD).

Proof. Given qD = {q0,qb} ∈ P0
hD

and vS = {v0, v b} ∈ U0
hS

, it follows from (2.4) and

(2.5) that

−
�
∇ · (2νe(uS)), v0

�
ΩS
+ (∇pS , v0)ΩS

+ (∇ · uD,q0)ΩD
= ( f S, v0)ΩS

+ ( fD,q0)ΩD
. (4.5)

From Lemmas 3.1 and 4.1, we obtain

−
�
∇ · (2νe(uS)), v0

�
ΩS
= 2ν
�
e(uS), e(v 0)
�
ΩS
− 2ν
∑

T∈ThS



e(uS)n, v0

�
∂ T

= 2ν
�
ew(QhuS), ew(vS)

�
ΩS
− 2ν


e(uS)n, v b

�
∂ΩS

+ 2ν
∑

T∈ThS



v0 − v b, (Qhe(uS)− e(uS))n

�
∂ T

, (4.6)

(∇pS , v0)ΩS
= −(pS ,∇ · v0)ΩS

+
∑

T∈ThS

〈v0, pSn〉∂ T

= − (QhpS ,∇w · vS)ΩS
+ 〈v b, pSnS〉∂ΩS

+
∑

T∈ThS



v0 − v b, (pS −QhpS)n

�
∂ T

, (4.7)

(∇ · uD,q0)ΩD
= −(uD,∇q0)ΩD

+
∑

T∈ThD

〈uD · n,q0〉∂ T

=
1

µ

�
K(∇pD −Qh∇pD),∇wqD

�
ΩD
+

1

µ
(K∇weD,∇wqD)ΩD

+
∑

T∈ThD

1

µ



q0 − qb, (Qh(K∇pD)− K∇pD) · n

�
∂ T
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+
1

µ

�
K∇wph

D,∇wqD

�
ΩD
+ 〈uD ·nD,qb〉∂ΩD

. (4.8)

With the boundary conditions in (1.1)-(1.12), we derive

− 2ν


e(uS)nS , v b

�
∂ΩS
+ 〈v b, pSnS〉∂ΩS

+ 〈uD · nD,qb〉∂ΩD

= Bh(uS , vS; pD,qD)−
∫

ΓS2

σt vb,t ds. (4.9)

Replacing v0 and q0 by v0 − uh
0

and q0 − ph
0

respectively in (4.5), then subtracting the WG

scheme (3.6) from (4.5), and with (4.6)-(4.9), we get (4.3).

5. Error Estimate in h-Norm

We will estimate ‖eS‖hS
and ‖eD‖hD

in this section. Firstly, we estimate the terms in the

error inequality (4.3) separately.

Lemma 5.1. Suppose the permeability tensor K ∈ [W 1,∞(ΩD)]
2×2, cf. [1, Section 3.1] for

the definition of W 1,∞. Then for E (vS,qD) defined in (4.4), we have

E (vS,qD) ≤ Ch
�
‖uS‖2,ΩS

+ ‖pS‖1,ΩS

�
‖vS‖hS

+ Ch‖pD‖2,ΩD
.

Proof. From [24, Lemma -4.1], we obtain

‖v −Qhv‖2T + h2
T‖∇(v −Qhv)‖2T ≤ Ch2s‖v‖2s,T (5.1)

for any v ∈ Hs(Ωi), i ∈ {S, D}, T ∈ Thi
and s ∈ {1,2}. Due to Lemma 3.3 and (5.1), we

have

hT ‖v −Qhv‖2∂ T ≤ C
�
‖v −Qhv‖2T + h2

T‖∇(v −Qhv)‖2T
�
≤ Ch2s‖v‖2s,T . (5.2)

By using (4.1), (5.1), and (5.2), we get

hT ‖e(uS)−Qhe(uS)‖2∂ T ≤ Ch2‖e(uS)‖21,T ≤ Ch2‖uS‖22,T ,

hT ‖pS −QhpS‖2∂ T ≤ Ch2‖pS‖21,T ,

‖∇pD −Qh(∇pD)‖2T ≤ Ch2‖∇pD‖21,T ≤ Ch2‖pD‖22,T ,

hT ‖K∇pD −Qh(K∇pD)‖2∂ T
≤ Ch2‖K∇pD‖21,T

≤ Ch2‖pD‖22,T
,

(5.3)

where

‖K∇pD‖1,T ≤ ‖K‖W 1,∞(T)‖∇pD‖1,T ≤ C‖pD‖2,T

is used in the last line. Then, in view of the Cauchy-Schwarz inequality and (5.3), we arrive

at

2ν
∑

T∈ThS



v0 − v b, (e(uS)−Qhe(uS))n

�
∂ T

≤ 2ν

� ∑

T∈ThS

h−1
T ‖v0 − v b‖2∂ T

�1/2� ∑

T∈ThS

hT ‖e(uS)−Qhe(uS)‖2∂ T

�1/2

≤ Ch‖uS‖2,ΩS
‖vS‖hS

, (5.4)
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−
∑

T∈ThS



v0 − v b, (pS −QhpS)n

�
∂ T

≤
� ∑

T∈ThS

h−1
T
‖v0 − v b‖2∂ T

�1/2� ∑

T∈ThS

hT ‖pS −QhpS‖2∂ T

�1/2

≤ Ch‖pS‖2,ΩS
‖vS‖hS

, (5.5)

−
∑

T∈ThD

1

µ

�
K(∇pD −Qh(∇pD)),∇wqD

�
T

≤ C

� ∑

T∈ThD

‖∇pD −Qh(∇pD)‖2T
�1/2� ∑

T∈ThD

‖∇wqD‖2T
�1/2

≤ Ch‖pD‖2,ΩD
‖qD‖hD

, (5.6)

∑

T∈ThD

1

µ



q0 − qb, (K∇pD −Qh(K∇pD)) ·n

�
∂ T

≤ 1

µ

� ∑

T∈ThD

h−1
T ‖q0 − qb‖2∂ T

�1/2� ∑

T∈ThD

hT ‖K∇pD −Qh(K∇pD)‖2∂ T

�1/2

≤ Ch‖pD‖2,ΩD
‖qD‖hD

. (5.7)

Combining (5.4)-(5.7), we derive the conclusion.

Remark 5.1. When we discuss the well-posedness for the variational inequality (2.12) and

the WG scheme (3.6), we only need to assume the permeability tensor K = K(x ) (x ∈ ΩD) is

uniformly positive definite and bounded, without additional assumptions to the regularity

of K . However, when we try to obtain the error estimates for the WG approximation, the

regularity of K affects the convergence orders. For any T ∈ ThD
, if K |T 6∈ [P0(T )]

2×2,

Qh(K∇pD) 6= KQh(∇pD). With the Cauchy-Schwarz inequality, we can obtain

∑

T∈ThD

‖K∇pD −Qh(K∇pD)‖T ≤ Ch‖K∇pD‖1,ΩD
≤ Ch‖K‖W1,∞,ΩD

‖pD‖2,ΩD
.

This is the reason that we assume K ∈ [W 1,∞(ΩD)]
2×2 in Lemma 5.1.

Lemma 5.2. For S (vS ,qD) defined in (4.4), we have

S (vS ,qD)≤ Ch‖uS‖2,ΩS
‖vS‖hS

+ Ch‖pD‖2,ΩD
‖qD‖hD

.

Proof. Due to (3.4), (4.2) and Lemma 3.3, similar to (5.2), we arrive at

2νsS(QhuS, vS) ≤ 2ν

� ∑

T∈ThS

h−1
T
‖Q0uS − uS‖2∂ T

�1/2� ∑

T∈ThS

h−1
T
‖v0 − v b‖2∂ T

�1/2

≤ Ch‖uS‖2,ΩS
‖vS‖hS

, (5.8)
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1

µ
mKsD(QhpD,qD) ≤

1

µ
mK

� ∑

T∈ThD

h−1
T ‖Q0pD − pD‖2∂ T

�1/2� ∑

T∈ThD

h−1
T ‖q0 − qb‖2∂ T

�1/2

≤ Ch‖pD‖2,ΩD
‖qD‖hD

. (5.9)

Combining (5.8) and (5.9), we get the conclusion.

Lemma 5.3. If g ∈ L2(ΓS2
) and uS ∈ [H2(ΓS2

)]2, then for J(·) defined in (4.4), we have

J(QhuS)− J
�
uh

S

�
≤ Ch2 ‖uS‖2,ΓS2

.

Proof. From (1.9), we find

J
�
uh

S

�
=

∫

ΓS2

�
g|ubh,t |+σtubh,t

�
ds ≥ 0,

J(uS) =

∫

ΓS2

�
g|uS,t |+σtuS,t

�
ds = 0.

With the above relations, |σt | ≤ g in (1.9) and the properties of absolute value, we get

J(QhuS)− J
�
uh

S

�
≤ J(QhuS)− J(uS)

≤
∫

ΓS2

�
g|QbuS − uS |+ |σt(QbuS − uS)|

�
ds

≤ 2

∫

ΓS2

g|QbuS − uS|ds

≤ 2‖g‖
ΓS2
‖QbuS − uS‖ΓS2

≤ Ch2 ‖uS‖2,ΓS2
.

The proof is complete.

Theorem 5.1. Let eS and eD be defined in (4.2) and K ∈ [W 1,∞(ΩD)]
2×2. Under the as-

sumptions of Lemma 5.3, we have

‖eS‖hS
+ ‖eD‖hD

≤ Ch.

Proof. Taking vS = QhuS and qD = QhpD in the error inequality (4.3), we get

aS(eS ,eS) + aD(eD, eD)≤ J(QhuS)− J
�
uh

S

�
+ E (eS, eD) +L (eS, eD) +S (eS , eD). (5.10)

It follows from (4.4) and Lemmas 5.1-5.3, that

J(QhuS)− J
�
uh

S

�
≤ Ch2,

E (eS , eD) ≤ Ch‖eS‖hS
+ Ch‖eD‖hD

,

L (eS , eD) = −κ〈ebS ,t , ebS ,t〉Γ ≤ 0,

S (eS , eD) ≤ Ch‖eS‖hS
+ Ch‖eD‖hD

.

(5.11)
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The relations (2.26), (5.10), (5.11) and the Young’s inequality give

‖eS‖2hS
+ ‖eD‖2hD

≤ Ch2, h≤ 1,

which yields

‖eS‖hS
+ ‖eD‖hD

≤
r

2
�
‖eS‖2hS

+ ‖eD‖2hD

�
≤ Ch.

The proof is complete.

6. Numerical Examples

This section gives two numerical examples for the approximation of the problem (1.1)-

(1.12). Here, we use the WG scheme (3.6) with the uniform triangular partitions. In all

examples, we set κ = 1 and consider sufficiently smooth parameters (ν,µ, K , f S , fD, g).

Example 6.1. Let Γ = (0,1)×{1}, ΓS1
= {0,1}× (0,1), ΓS2

= (0,1)×{0} and ΓD = ∂ΩD \ Γ
(shown in Fig. 2). We take the exact solution

uS =

�
x3(1− x)3 y2(1− y)2(2y − 1)

−y3(1− y)3 x2(1− x)3(2x − 1)

�
, pS = (2x − 1)(y − 1),

uD =





1

µ
(2x − 1)(y − 1)2(y − 2)

1

µ
x(x − 1)(y − 1)(3y − 5)



 , pD = x(1− x)(y − 2)(y − 1)2

0 1

1

2

0 1

1

2

Figure 2: Domains for Example 6.1 (left) and Example 6.2 (right).
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with σt(uS) = 0 on ΓS2
. Here, µ = ν = 1 and the permeability tensor K = I ∈ R2×2 is the

identity tensor. And we choose the barrier function as

g(x , y) = 0 for all (x , y) ∈ ΓS2
.

The corresponding f S and fD are calculated from the exact solution.

In Table 1, we list the errors and the convergence orders of the WG method. It can be

found that the estimates for ‖eS‖hS
and ‖eD‖hD

are O (h), which agrees with the conclusions

in Theorem 5.1.

Table 1: Errors and orders for Example 6.1.

h/
p

2 ‖eS‖hS
Order ‖eD‖hD

Order ‖eS0
‖ΩS

Order ‖eD0
‖ΩD

Order

8 4.236e-02 - 2.777e-02 - 2.920e-03 - 1.962e-03 -

16 2.116e-02 1.00 1.388e-02 1.00 7.281e-04 2.00 4.924e-04 1.99

32 1.057e-02 1.00 6.940e-03 1.00 1.813e-04 2.01 1.232e-04 2.00

64 5.281e-03 1.00 3.470e-03 1.00 4.524e-05 2.00 3.081e-05 2.00

128 2.640e-03 1.00 1.735e-03 1.00 1.130e-05 2.00 7.704e-06 2.00

Example 6.2. Let Γ = {(x , y) : y = 0.5+
p

0.25− (x − 0.5)2, 0 < x < 1}, ΓS1
= {(x , y) :

x = 0 or x = 1,0 < y < 0.5}, ΓS2
= {(x , y) : y = 0,0 < x < 1} and ΓD = {(x , y) : x =

0 or x = 1,0.5 < y < 2} ∪ {(x , y) : y = 2,0 < x < 1} (shown in Fig. 2). Moreover, we

choose the right hand sides, the barrier function and the permeability tensor as

f S(x , y) = ε fS
∗ (1,1)⊺ for all (x , y) ∈ ΩS,

fD(x , y) = ε fD
for all (x , y) ∈ ΩD,

g(x , y) = εg for all (x , y) ∈ ΓS2
,

K(x , y) = mKI for all (x , y) ∈ ΩD

with ε fS
,ε fD

,εg ∈ (0,∞) being sufficiently small, which can be seen as the perturbations

to ( f S , fD, g). From [21, Table 4.20], the viscosity values mostly range from 10−6 Pa · s
to 102 Pa · s. And from [19, Tables A.1, A.2], the permeability values mostly range from

10−15 m2 to 10−7 m2. Then we choose

µ,ν ∈
�
10−6, 10−4, 10−2, 1,102

	
,

mK ∈
�
10−15, 10−13, 10−11, 10−9, 10−7

	
.

Here, the exact solution is unknown. Set ε fS
= ε fD

= εg = 10−8 and h =
p

2/128.

Then, we consider the following cases:

(I) µ = 10−6 and mK = 10−7 with different ν ∈ {10−6, 10−4, 10−2, 1,102};

(II) ν= 102 and mK = 10−7 with different µ ∈ {10−6, 10−4, 10−2, 1,102};
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(III) ν= 102 and µ = 10−6 with different mK ∈ {10−15, 10−13, 10−11, 10−9, 10−7}.
With the parameters above, we can get the WG solution (uh

S
, ph

S
, ph

D
) from (3.6). Since the

exact solution is unknown, similar to [33, Example 4.4], we define the following errors:

Err0 =


∇w · uh

S




ΩS

,

Err1 =





u
h
S
· nS +

1

µ
K∇wph

D
· nS






Γ

,

Err2 =


2νew

�
uh

S

�
nS · nS − ph

S + ph
D




Γ

,

Err3 =


2νew

�
uh

S

�
nS · t + κuh

S
· t



Γ

.

In fact, Err0, Err1, Err2, and Err3 are the approximations to (1.5), (1.10), (1.11) and

(1.12) respectively. To study the robustness of the WG method with respect to ν,µ and mK ,

we list the errors for cases I–III in Tables 2-4 respectively.

Due to Lemma 2.4 and the definitions of ah
S(·, ·) and ah

D(·, ·) in (3.5), the singularity of

the WG method is governed by α =min{2ν, mK/µ}, which determines the lower bound of

Table 2: Errors for case I of Example 6.2.

ν Err0 Err1 Err2 Err3

10−6 3.223e-06 6.319e-09 8.329e-09 4.627e-09

10−4 2.123e-07 2.445e-09 2.175e-09 3.472e-09

10−2 2.484e-09 3.739e-10 2.033e-09 2.204e-09

1 3.676e-11 3.150e-11 1.008e-09 7.648e-10

102 3.819e-13 2.850e-11 8.478e-10 9.352e-10

Table 3: Errors for case II of Example 6.2.

µ Err0 Err1 Err2 Err3

102 3.409e-07 1.498e-09 9.405e-03 1.394e-05

1 2.217e-08 4.170e-10 5.989e-04 2.700e-06

10−2 5.997e-10 9.322e-11 1.344e-05 4.169e-07

10−4 3.351e-11 2.923e-11 4.752e-07 2.402e-08

10−6 3.819e-13 2.850e-11 8.478e-10 9.352e-10

Table 4: Errors for case III of Example 6.2.

mK Err0 Err1 Err2 Err3

10−15 3.409e-07 1.498e-09 9.405e-03 1.394e-05

10−13 2.217e-08 4.170e-10 5.989e-04 2.700e-06

10−11 5.997e-10 9.322e-11 1.344e-05 4.169e-07

10−9 3.351e-11 2.923e-11 4.752e-07 2.402e-08

10−7 3.819e-13 2.850e-11 8.478e-10 9.352e-10



WG Method for the Coupled Darcy-Stokes Problem 51

the eigenvalues for the WG matrix. If α is too small, the WG method will be singular, then

the obtained WG solution is not accurate. In other words, the bigger α is, the more robust

the WG method is. So, we will analyze the numerical results in Tables 2-4 according to α.

For case I, we have α= 2ν when ν≤ 10−2 and α = 10−1 when ν ≥ 1. From Table 2, it can

be found that the errors Erri, i ∈ {0,1,2,3} become smaller as ν becomes bigger for fixed

(µ, mK , f S, fD, g). For case II, we have α = 10−7/µ. Thus, as µ becomes smaller, the errors

Erri, i ∈ {0,1,2,3} become smaller for fixed (ν, mK , f S, fD, g), see Table 3. For case III, we

have α = mK ·106. From Table 4, it is easy to see that the errors Erri, i ∈ {0,1,2,3} become

smaller as mK becomes bigger for fixed (ν,µ, f S, fD, g). In summary, the WG method (3.6)

is robust when ν is bigger, µ is smaller and mK is bigger.
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