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Abstract. A high-accuracy and unconditional energy stable numerical scheme for

a phase field model for diblock copolymers (PF-BCP model) is developed. The PF-BCP

model is reformulated into an equivalent model, which based on scaler auxiliary variable

(SAV) formulation. After that a stable Runge-Kutta (RK) method and a Fourier-spectral

method are applied to the SAV-reformulated PF-BCP model to discretize on the temporal

and spatial dimensions respectively. The fully discretized numerical scheme is computed

by fixed-point iterations. Meanwhile, the unconditional energy decay property is proved

rigorously. Finally, we present the results of numerical experiments to show the accuracy

and efficiency of the RK scheme used and discuss the influence of physical parameters

and initial conditions on the phase separation in the simulation of the PF-BCP model. In

addition, the energy decay property of the numerical solutions is verified.
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1. Introduction

The diblock copolymer model (DC model) is the system for a copolymer composed of

two different monomers blocks A and B. The copolymer is formed by a linear-chain molecule

of sub-chains of two different monomers blocks linked together at molecular scale charac-

terized by fluid-like disorder. Due to incompatibility between two monomer blocks, they

repulse each other, then tend to separate from mixture into pure blocks with free inter-

faces’ occurring and deforming between two blocks. Finally, periodic structure is formed

in diblock copolymer such as lamellar or cylindrical structures, which illustrates specific

nano-materials.

To describe a complex system with fluid-like disorder composed of multiple components

with free interfaces between them, we encounter challenges in matching boundary condi-

tions on the interfaces in the Lagrangian framework. As a solution, the system is described
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by a phase field in the Eulerian framework, where the interface can be identified by field

variable. The phase field model has been widely recognized as an effective approach to

accurately depict such systems [6].

Firstly, we give some mathematical notions. For any functions f , g defined on a domain

Ω, we write

( f , g) :=

∫

Ω

f (x)g(x)dx

for the L2 inner product of f , g. Besides, let ‖ f ‖ :=
p
( f , f ) be the L2−norm of f and

f̄ :=
1

|Ω|

∫

Ω

f (x)dx

the mean value of f .

The DC model is accurately described by the phase field for diblock copolymers (PF-BCP)

in mean field theory. In the PF-BCP model, the phase field variable denoted by φ(x, t) is

introduced in the domain Ω. This variable represents the difference in the fraction of mass

between the two monomer blocks — i.e. NA and NB respectively denote the masses of

monomer blocks A and B at the position x, and the phase field variable φ(x, t) is defined

by

φ(x, t) := (NA− NB)/(NA+ NB).

The phase field φ is a scalar variable representing the phase or state of the system. It takes

values in the interval [−1,1]. The evolution of the PF-BCP model is to minimize the total

free energy. The mixture state tends to separate and evolve into distinct pure A-monomer

and pure B-monomer states with a specified infinitesimal interface between them. Over

time, the PF-BCP system reaches a stable configuration where the separated phases coexist.

In the process of the DC model evolution, the total mass of the two monomers is con-

served, resulting in the mass conservation property of the phase field. This can be expressed

as

d

d t

∫

Ω

φdx = 0.

The evolution equation of the PF-BCP model is derived from the constrained gradient flow

of the total free energy functional E(φ) in the space H−1, as described in [4]. The total free

energy E(φ) is a functional of the Cahn-Hilliard type energy endowed with an additional

nonlocal term and is defined as

E(φ) =

∫

Ω

�
ǫ2

2
|∇φ|2 + F(φ) +

α

2
|∇ψ|2

�
dx,

where

F(φ) =
(φ2 − 1)2

4
, ψ= −∆−1(φ − φ̄).


