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Abstract. A high-accuracy and unconditional energy stable numerical scheme for
a phase field model for diblock copolymers (PF-BCP model) is developed. The PF-BCP
model is reformulated into an equivalent model, which based on scaler auxiliary variable
(SAV) formulation. After that a stable Runge-Kutta (RK) method and a Fourier-spectral
method are applied to the SAV-reformulated PF-BCP model to discretize on the temporal
and spatial dimensions respectively. The fully discretized numerical scheme is computed
by fixed-point iterations. Meanwhile, the unconditional energy decay property is proved
rigorously. Finally, we present the results of numerical experiments to show the accuracy
and efficiency of the RK scheme used and discuss the influence of physical parameters
and initial conditions on the phase separation in the simulation of the PF-BCP model. In
addition, the energy decay property of the numerical solutions is verified.
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1. Introduction

The diblock copolymer model (DC model) is the system for a copolymer composed of
two different monomers blocks A and B. The copolymer is formed by a linear-chain molecule
of sub-chains of two different monomers blocks linked together at molecular scale charac-
terized by fluid-like disorder. Due to incompatibility between two monomer blocks, they
repulse each other, then tend to separate from mixture into pure blocks with free inter-
faces’ occurring and deforming between two blocks. Finally, periodic structure is formed
in diblock copolymer such as lamellar or cylindrical structures, which illustrates specific
nano-materials.

To describe a complex system with fluid-like disorder composed of multiple components
with free interfaces between them, we encounter challenges in matching boundary condi-
tions on the interfaces in the Lagrangian framework. As a solution, the system is described

*Corresponding author. Email addresses: lzchen®@csrc.ac.cn (L. Chen), renbo_mech@csrc.ac.cn
(B. Ren)

http://www.global-sci.org/eajam 53 ©2025 Global-Science Press



54 L. Chen and B. Ren

by a phase field in the Eulerian framework, where the interface can be identified by field
variable. The phase field model has been widely recognized as an effective approach to
accurately depict such systems [6].

Firstly, we give some mathematical notions. For any functions f, g defined on a domain
Q, we write

(f,8):= J fx)g(x)dx
Q

for the L2 inner product of f, g. Besides, let ||f|| := +/(f, f) be the L2—norm of f and

= 1
f= ﬁ fﬂf(x)dx

the mean value of f.

The DC model is accurately described by the phase field for diblock copolymers (PF-BCP)
in mean field theory. In the PF-BCP model, the phase field variable denoted by ¢ (x,t) is
introduced in the domain . This variable represents the difference in the fraction of mass
between the two monomer blocks — i.e. N, and Ny respectively denote the masses of
monomer blocks A and B at the position x, and the phase field variable ¢ (x,t) is defined
by

¢(x,t) := (Ny—Ng)/(Ny + Ng).

The phase field ¢ is a scalar variable representing the phase or state of the system. It takes
values in the interval [—1,1]. The evolution of the PF-BCP model is to minimize the total
free energy. The mixture state tends to separate and evolve into distinct pure A-monomer
and pure B-monomer states with a specified infinitesimal interface between them. Over
time, the PF-BCP system reaches a stable configuration where the separated phases coexist.

In the process of the DC model evolution, the total mass of the two monomers is con-
served, resulting in the mass conservation property of the phase field. This can be expressed

as
d
— dx=0.
dtqu X

The evolution equation of the PF-BCP model is derived from the constrained gradient flow
of the total free energy functional E(¢) in the space H™!, as described in [4]. The total free
energy E(¢) is a functional of the Cahn-Hilliard type energy endowed with an additional
nonlocal term and is defined as

82 a
E(¢) = J (Elwblz +F(p) + Elvwlz) dx,
Q

where
(¢p>—1)

F(¢)= PR Y =—A"p— ).
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In this expression, the term 2|V ¢|?/2 represents the interaction between the two monomer
blocks, F(¢) represents the potential energy density, and a|V+|?/2 represents the first-
order effect of the connectivity between the two monomer blocks. Minimizing the func-
tional E(¢) by the constraint gradient flow method, we obtain the following evolution
equation for the PF-BCP model:

¢ =MAy in Qx[0,T],
p=—e’A¢ +f(P)+ar in 2x[0,T], (1.1)
—AYp=¢—¢ in Qx[0,T], '

2,150 = 2a¢lsq =W |30 =0 or periodic boundary condition,

where f(¢) =F’(¢), M > 0 is a dimension of time or scaling on time, and ¢ > 0 and a > 0
are model parameters that determine the fraction of different energy parts in the total free

energy, and the mean mass is
1
¢ = —J ¢dx.
1l Jq

The boundary conditions above are compatible with the mass conservation

d(o.1) =J MALde=J Md,pds = 0.
dt Q 29

The evolution equation for the PF-BCP model is derived by minimizing the total free energy.
Therefore, the PF-BCP model is dissipative with respect to the total free energy. We define
the total free energy density as

2
E, = IV +F(¢) + S [VI

The energy dissipation rate can be calculated as follows:

dE =J %%dx:—f M|Vy|?dx<o0.

dt |, 6¢ dt Q

The PF-BCP model provides quantitative description of evolution of mixture of two mono-
mers in DC model, which can be used to study microscopic structures of nano-structured
materials and nano-devices. Numerical computation of the PF-BCP model plays an impor-
tant role in the study of the DC model. This is because the analytical solution of the equation
is difficult to derive due to the complexity of the domain’s geometry and the presence of
a nonlinear term in PF-BCP model. Therefore, constructing efficient numerical schemes
to the PF-BCP model become quite necessary, which may help study the evolution of the
phase field. The efficiency of a numerical scheme for a model depends on its accuracy in
approximating the exact solution. In the numerical computation of the phase field model,
it is important for the numerical solution to preserve the dissipation property, which is an
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intrinsic property of the phase field model. Note that any numerical solution preserving
the dissipation property will be called the energy stable.

Constructing numerical schemes for the phase field models is significantly challenging,
with the main difficulty being how to discretize the nonlinear term f (¢ ) in evolution equa-
tions. In many phase field models, the nonlinear terms are complex and will cause stiffness
at the interface between distinct phases, making it difficult to discretize them properly.
Improper discretization of the nonlinear term may be result in unstable computations.

Previous research, including the works of [11,12], has focused on developing numerical
schemes for the phase field model. However, these schemes have been limited to first-order
accuracy and do not guarantee stability. Furthermore, the studies [3,8,15] show that using
simple full-implicit or explicit discretization of the equations severely restricts the allowable
temporal stepsize, particularly dependent on the interfacial width. To preserve the dissi-
pation properties of the phase field model, several stable numerical schemes have been
proposed based on convex splitting approaches or the linearization approach, as demon-
strated in the works of [1,5,7,17]. However, these schemes are generally of low-accuracy
order.

In our approach, instead of directly constructing numerical schemes for the phase field
models, we utilize auxiliary variable methods to reformulate the models into equivalent
forms by introducing additional variables. This allows us to construct numerical schemes
for the reformulated models, which can provide stability and high accuracy. One popular
approach for this is the invariant energy quadratization (IEQ) method, as demonstrated
in works by [9,18,20]. The IEQ method aims to transform the total free energy density
into a quadratic form involving both the phase variable and the introduced variable. The
introduction of the new variable through the IEQ method provides more flexibility in con-
structing numerical schemes that satisfy efficiency requirements in numerical computation,
including high-accuracy in and stability. The introduced variable in the IEQ method is de-
fined as a function over the domain. However, the equivalent forms obtained through the
IEQ method may lead to increased stiffness compared to the original phase field model after
spatial discretization. To address this issue, the scalar auxiliary variable (SAV) method is
introduced. The SAV method shares the same idea as the IEQ method by transforming the
total free energy into a quadratic form, but it reformulates the phase field model into an
equivalent form with an introduced scalar variable. Compared to the IEQ method, the SAV
method retains almost all of its advantages and can be more efficient, as shown in works
by [10,13,14,19].

In this paper, we aim at constructing a high-accuracy and unconditional energy sta-
ble numerical scheme for the PF-BCP model. In Section 2, we introduce auxiliary variable
methods to the general phase field model, which includes IEQ method and SAV method,
then we reformulate SAV-reformulated PF-BCP model by SAV method. In Section 3, we
introduce RK method for time-marching numerical computation, then apply the method to
SAV-reformulated PF-BCP model to construct high-accuracy and energy stable numerical
scheme. We prove our numerical scheme preserves mass conservation and energy decay.
Furthermore, the fixed-point iteration is adopted to compute the nonlinear system. Fi-
nally, we apply Fourier-spectral method to discretize on the spatial dimension to obtain
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full-discrete scheme. In Section 4, we present numerical experiments to show that our nu-
merical scheme is highly-accurate and energy stable. We also study the effects of different
initial conditions and varying parameters a on phase separation’s simulations of the PF-BCP
model by our proposed algorithm.

2. Auxiliary Variable Methods for General Phase Field Model

In order to construct energy stable numerical scheme of high-accuracy for the phase
field model, we introduce a new variable to reformulate the phase field model, which makes
constructing numerical scheme such that all parts of total free energy synchronize more
easily in numerical computation.

2.1. Gradient flow model as general phase field model

Most phase field models are derived from gradient flow of total free energy. We can
regard the gradient flow model as general phase field model. The general phase field model
consists of two key ingredients: the free energy density E,, i.e. f qEpdx = E and the
kinetic equation dictated by a mobility matrix (or operator) ¢ in domain Q. We use ® =
(¢1,...,¢,)T to denote the phase variable, we obtain the triple (®,%,E, ) which defines
a phase field model. The evolution equation in domain 2 stemming from minimizing the
total free energy, is given by

0,® ok Q
. (x,t)——%g in Q, @.1)

¢(®(x,t)) = g(x,t) on 3%,

where € is trace operator as boundary condition, ¥ = ¥, + %, is mobility operator decom-
posed as anti-symmetry and semi-positive definite parts. We call the variational derivation
0E,/5® of E,, the chemical potential.

The general phase field model is derived through minimizing the total free energy by
gradient flow method, the dissipation is intrinsic property of phase field model

dE O0E, 9% OE, OE, OE, OE,
— = —,— | = ,_(g = ,—(ﬁs <0.
dt 6d " Ot 6P 6P 6P od

As an example of the PF-BCP model (1.1), we take

2
E, = SV +F(¢)+ S IVp% ¢ = —MA

and the boundary condition of (1.1) as the trace operator, then the PF-BCP model has the
form of (2.1).
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2.2. Auxiliary variable methods to general phase field model

Generally the energy density of phase field model (2.1) has the form

E

1
p =512 22l + 7 (@),

where ¢ is linear (differential) operator and % (@) is functional of ®. The evolution equa-
tion of the phase field model is given by

0,9(x,t) =—Y%[¥£d+ f(®)] in Q,
<€(<I>(x, t)) =g(x,t) on 29,

where f(®) = Z/(®). When f is nonlinear functional, it prevents the design of efficient
numerical methods to the phase field model. We apply auxiliary variable method to phase
field model to transform it into equivalent reformation with auxiliary variable. There are
two auxiliary variable methods used popularly in phase field model, IEQ method and SAV
method.

Introducing variable R = 4/ fﬂ 2% (®)dx, we write the total free energy as
1 1
E(®,R) = 5(3@,4)) + 5|R|2.

With the introduced variable, we can reformulate the phase field model into one equivalent
model called SAV-reformulated phase field model

5,8 =—9Y[L®+RW(®)] in Q,
3.R=(W(®),0,9) in Q, (2.2)
C(®)=g(x,t) on 91,

W(®)=f(®)/1 J 27 (®)dx.
Q

The initial condition is given by

q>|t:0 = (1)0: R|t:0 = f 29(¢O)dx
J Q

In order to construct efficient numerical schemes for general phase field model (2.1), we
can design a numerical scheme for (2.3) or (2.2) instead of (2.1), which can help with
constructing numerical schemes that synchronize all parts of total free energy to preserve
energy decay. Auxiliary variable can be viewed as a new freedom for constructing numerical
schemes, we can have more ways to construct numerical schemes to satisfy what we require.
What is more, the nonlinear term f (&) is converted into multiplication of two variables
instead of a complex functional of variable ¢ by using auxiliary variable method, thus the
energy stable linearized numerical scheme’s construction can be easier.

There is another auxiliary variable method used popularly in phase field model, IEQ
method, is described as follows.

where
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Remark 2.1. We illustrate the ideal by transforming the free energy density E,, into a qua-
dratic one, the introduced auxiliary variable Q is obtained as removing the quadratic gra-
dient term |.2'/2®|%/2 from the energy density

1
Q= \J 2 (Ep — 5|.<£1/2<I>|2) =/27(®).
The total free energy is rewritten as
1 1
2 2
and the energy density is rewritten as
E,(2,Q) = 310 + QP
PR 2 277

where Q is a function of variables @, i.e. Q = Q(®). Denoting

_ @) _5Q
= 5@ 5

we can reformulate the model (2.1) into an equivalent form — viz.

0P =—Y%[¥P+QH(®)] in Q,
0,Q =H(®): 3,® in Q, (2.3)
C(®)=g(x,t) on 9Q.

The initial condition is given by

B0 =% Ql,_o=+/2Z(8°).

Remark 2.2. We always assume that #(®) > 0. Otherwise, we let Z(®) := Z(®)+A, = 0,
so that it is a well-defined real variable.

2.3. Reformulated PF-BCP models by auxiliary variable methods

Applying SAV method to PF-BCP model (1.1), we can obtain equivalent reformulated
form of PF-BCP model.

For SAV-reformulated PF-BCP model, we introduce r = 4/ fﬂ 2F(¢)dx, so that the total
free energy is transformed into

E(¢ r)—8—2||V¢||2+1|r|2+2||V1/)|I2
) 2 2
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and the evolution equations are rewritten as

¢, =MAyp in Q,
0 =—e2A¢ +rw(o) + ay in Q,
—AY=¢—¢ in Q, (2.4)
re=(w(¢), ¢.) in Q,
o, =30,p=0,4Y=0 or periodic on 91,

where

w(@) = f(¢)/ J 2F(¢)dx.
Q

The initial condition is given by

¢|t=0=¢0) =0 = \ J 2F(¢p%)dx.
Q

Remark 2.3. For IEQ-reformulated PF-BCP model, we introduce the variable

a=\2(5,~ S 199P - 21P) = V2F®)

and write the total free energy density as

2
€ s 1 5
E,=—|Vo|["+ =lq|” + =|VY],
o= IVOP + Jlal* + 21V

and the evolution equations as

¢, =MAyp in Q,
@ =—e?A¢ +qh(¢) + arp in Q,
—Ap=¢—¢ in Q,
q: =h($)p, in €,

o =3,p==0 or periodic on 92,

where

f¢)  8q

h = = .
h)= =5,

The initial condition is given by

Plio=°,  dli=o = V2F(¢°).
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3. Algebraically Stable Runge-Kutta Scheme

In this section, we adopt algebraically stable Runge-Kutta (RK) method to construct
energy stable and highly-accurate time-marching numerical scheme for SAV-reformulated
PF-BCP model (2.4). Then for spatial dimension, we apply Fourier spectral method to
obtain the full-discrete scheme.

3.1. Algebraically stable Runge-Kutta method

The RK method, as a high-accuracy numerical method, is widely used in numerical time-
marching computation for differential equations. In the process of the RK method, we first
separate temporal interval [0, T] uniformly with stepsize T > 0 to obtain the temporal
nodesO =ty <t; <:---<ty_ <ty=Twheret, ;—t,=71for0<n<N-—1, with given
coefficients of s-stage RK method in following so-called Butcher Tableau:

Table 1: Butcher Tableau.

€1 |11 Q2 ... Qg
Co [ Az Qo2 ... Ay
Cs agq dso s Qg

b, b, ... b

We compute the following differential system, which is the form of (2.4):

y:f(J’), ylt:O:yO‘

For given y" at t = t,,, one computes y"*! by

S
ni - nj .
yt=y"+1 E a;;y", i=1,....s,
j=1

s
yn+1 — yn + ,L_Z biyni.
i=1

Here for brevity we take notion t,; = t, +¢;7,i = 1,...,s and y™ is approximation to
y(ty) fori=1,...,s.

The coefficients in Butcher Tableau determine the efficiency of RK method, which in-
cludes accuracy and stability. Generally these coefficients have consistency conditions

Sh=t Yau—c k=loos
i=1

i=1

Stability condition. We consider RK method whose coefficients satisfy the following con-
ditions:
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* The matrix A = (a;;);x; is invertible.
* b;>0,i=1,...,q.
* ¢ Fcjfor i #j.

* The matrix M = (m;;);«, with entries m;; = b;a;; + b;a;; — b; b; is symmetric positive
semi-definite.

Any RK method satisfying these stability conditions is called algebraically stable.

Accuracy conditions. We also assume that the algebraically stable RK method is associ-
ated with a collocation method — i.e. the parameters in Butcher Tableau ¢;,i = 1,...,s
are chosen from some special polynomial’s (such as shifted Legendre polynomial) zeros in

interval [0, 1],
Ci 1
0 = J L(t)de, b= J L(t)dt,
o 0

t—Cj .
li(t)=H#iC‘_C', 1<i<s
i

where

are the Lagrangian polynomials based on the zeros ¢;,1 < i < s. We assume that the
coefficients of RK method in Butcher Tableau satisfy the following accuracy assumptions:

S

_ 1
> b IZT’ [=1,...,p, (3.1)
i=1
s Cl—l
Zaijcjl._lle, I=1,...,q;, i=1,...,s, (3.2)
=1
Y -1 ¢ .
Zaijbicj_ :T’ [=1,...,q5,, i=1,...,s. (3.3)
=1

There are two popular families of Runge-Kutta methods of collocation type satisfying the
stability and accuracy conditions — viz. Gauss method and Radau IIA method [16]. For
accuracy, they have conditions p = 2s and p = 2s — 1 in condition (3.1) respectively, g; =s
in condition (3.2), then g, = s,s — 1 in condition (3.3) respectively, the detail can refer
to [16, Chapter IV, Lemma 5.4]. Here we have the following theorem of accuracy for RK
methods under the above assumptions.

Theorem 3.1 (cf. Wanner & Hairer [16, Chapter IV, Theorem 5.1]). If the coefficients
b, c;,a;; of the RK method satisfy conditions (3.1)-(3.3), where p < q;+qp+1andp < 2q;+2,
then the RK method is time-marching numerical method of order p.

The convergence order for the Gauss method and Rudua IIA methods can refer to the
following theorem.
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Theorem 3.2. With the assumption of p,qy,q,, s-stage Gauss and Radua IIA method are
time-marching numerical method of convergence order 2s and order 2s — 1 respectively.

For Gauss method and Rudua ITA method, arbitrary high-order method can be con-
structed [16].

3.2. Time-marching numerical scheme

We apply algebraically stable RK methods to SAV-reformulated PF-BCP model (2.4) to
construct numerical scheme to compute ¢"*! and r"*! at t = t,,; with given ¢" and r"
at t = t,,. First we compute internal values (¢™,r™), i =1,...,s by solving

¢" = MAH inQ i=1,..s
S
Pri=¢" 47> ayd" in Q, i=1,..,s,
j=1
. . ‘ . ‘ 3.
Lpnl =_82A¢nl+rmw(¢m)+awm in Q, i= 1,...,s, (3.4)
—AYM = P — pM inQ, i=1,...,s,
Onp™ = Gp™ =3 yp™ =0 or periodicon 99, i=1,...,s,
f"iZ(w(¢"i),q5”i), i=1,...,s,
d (3.5)

=t TZaijf”i, i=1,...,s,
j=1
which is a differential system of (¢™,r™),i =1,...,s, we can obtain (¢p™,r™),i=1,...,s
by solving this differential system. Then we can obtain unique (¢™, ™) by both second
relations of (3.4) and (3.5) due to the invertibility of matrix A = (a;;);x;. Using (qS"i, )
we compute

¢n+1 — ¢n + ,L_Z biani’
= (3.6)
pitl =gy TZ b,
i=1

3.3. Mass conservation and energy dissipation of time discretized scheme

In this section, we present some properties of the numerical scheme (3.4)-(3.6) that the
mass f q @"dx is conservative and the discrete energy is decayed — i.e. our time-marching
scheme preserves the mass conservation and dissipation properties of the PE-BCP model.

3.3.1. Mass conservation

Firstly, we check that the numerical scheme (3.4)-(3.6) has the mass conservation property
as follows.
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Theorem 3.3 (Mass Conservation). For given initial condition ¢(-,0) = ¢°, we compute the
numerical scheme (3.4)-(3.6) to obtain ¢™, i =1,...,s and ¢! which denote the numerical
approximations of ¢ at t = t,; and t = t,,1, respectively. Then the mass fﬂ ¢ dx and mass

fQ ¢™dx preserve constant — i.e.

J qb”idx:f qb”“dx:J $%dx, n=0,1,...,.N—1.
Q Q Q

Proof We take L? inner product of the first relation of (3.4) with the identity function 1.
Using the boundary condition of (3.4) gives

J¢”idx=(q§"i,1)=MJ Ap"dx=M | V@"-ndS=M | ,9"dS=0.
Q Q o0 o0

With the above result, we then take the L? inner product with 1 of the first relation of (3.6),
we have

f q5”+1dx=(¢”+1,1)=(¢”,1)+J TZbidinidx
Q Q =1

:f qb”dx+TZbiJ di”idxzf ¢ dx.
0 i—1 0 Q

Setting n = 0, we can obtain the results forn=1,...,N — 1, hence we have

Jd)”“dszgbOdX, 0<n<N-1
Q Q

Similarly, take the inner product of the second relation of (3.4), we obtain the mass con-
servation at internal stages,

J(ﬁ”idx:fqﬁodx, 0<n<N-1, i=1,...,s. O
Q Q

3.3.2. Discrete energy decay

The energy decay (dissipation) is an intrinsic property of phase field models. In this sub-
section, we verify the energy decay for the numerical scheme (3.4)-(3.6) in the sense of the
defined energy
g2 1 a
E(@"r") = SIVe 2+ I + oy

Theorem 3.4 (Discrete Energy Decay). Assume that the RK method is algebraically sta-
ble with given initial values (¢",r™) € H'(2) x R. Then the numerical scheme (3.4)-(3.5)
has numerical solution on the internal nodes (¢™,r™) € H'(Q) x R, and the nodal values

(¢, 1) € HY(Q) x R defined by (3.6) satisfies the energy decay
E(¢n+1, rn+1) < E(gbn, rn).
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Proof For the first term ||[V¢™ !||?, in terms of the first relation in (3.6), by taking V

on both sides we have

S
VI =Vo"+1 > bV,
i=1

then square of L2-norms of both sides to get

Ve ? = (v¢” +7 Y bV, VT Y bdiS”i)

i=1 i=1

=IVe"|I* + ZTZ by(Vo™, V™) + 72 Z bib,(V™, V™).
i=1

i,j=1

Substituting

¢n — gbni—TZaingSni

i=1

from (3.4) into the second term yields

S S
IV™ 1|2 = || +27 > b, (Vqs'“',vfp'“' —rZavaﬁ"J’)

i=1 j=1
S . .
+72 > bib(Ve", V™).
i,j=1
Then we obtain
S . . . S . . . .
IV 12 = V"I +27 > b(VH™, V™) =22 D my;(Vé™, V™)
i=1 i,j=1

with

ml'j = b]al] + b'a'l' — blb

ia; i,j=1,...,s.

j>

Due to the positive semi-definiteness of (m;;);.s, we can infer that
S
IVg™ 1 < [V"|2 +27 > b(V™, Vo).
i=1

We test the first relation of (3.4) with Lp"i, so that
(qsni, (pni) — M(A(,Oni, Lpni) — —M(V(,Oni, thni).
Substituting the third relation

(pni :_82A¢ni+rniw(¢ni)+a¢ni

3.7)
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from (3.4) into the first inner product gives
M|V "2 = (ani,_82A¢ni + i) + awni)
= 2V V) + (ani,rniW((pni) n a’l/)ni)
We can infer that
e2(V™ V) = _(d;ni, Priw(p™) + awni) — M| V2.

Substituting this relation into (3.7), we get

V™2 < [[Ve" ||2+—Zb —(@™, r"w(™) + ayp™) — M|V ™| ]

<|IVen|? + ZTZb —(", riw(¢™) + ayp™)].

We now analyse the term |r"*1|? similarly. Squaring of both sides of the second relation
of (3.6) yields

s
|rn+1|2 — |r"|2+2’er i m+T Z b m|2.
i=1 i,j=1

Substituting r* = r" — 1 2321 a; jr”j into the second term of the right side in above quality

yields

S S S

r 2 = P2 4 21 Y b (rm‘ —Tzaijr”f) i T2 > by,

i=1 j=1 i,j=1

Therefore,
S
| n+1|2 |T‘n|2+2’L’Zb rnl ni __ 2 Z mij|r-_ni|2
i=1 ij=1

with

= b;a;; +b]a]l bibj, i,j=1,...,s.

Due to the positive sem1—deﬁn1teness of (m;;j)sxs, we have

| n+1|2 < |r"|2+2'er rm m‘ (3.8)
i=1

With the expressions (3.5), we have
rni’;ni — (rniw(¢ni) ani).
Substituting this into (3.8) yields

s
|rn+1|2 < |rn|2+2,L_Zbi(rniw(¢ni),q5ni)
i=1
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Multiplying ||V ¢™!||? and |r™*!| respectively by £2/2 and 1/2 and summing these two
terms, we obtain

g2 1
. g Ivom? + 2|rn+1|2
%2||v¢ P+ |r"|2+be —(", T w(¢"™) + ayp™)]
+ TZS: bi(rniw(¢ni), qgni)
E i=1
= IV + I - Z bi(™, ayp™). (3.9)
The remaining part is to prove

Zb(qﬁ’” ayp™) = - (IIV@b"HII2 IV"]?).

With the forth relation in (3.4) and the mass conservation — i.e. ¢;”i is constant, we have
(6™, ap™) = a($™ — q;ni,wni) + a(q;ni,wni)
= —a(Aym ) + a(q;ni,wni)
= a(Vy", w’“‘)+a(q§“f )
= a(Vy", V") + 0 |(¢’“ ,D(LY™)
= a(Vy", vy™).

Here qg_”i = 0 is defined by the approximation of ¢, (-, t,;) = 0 and the expression A" =
$™ — @™ is defined by the forth relation of (3.4).

Since
S
¢n+1 — ¢n + ,L_Z biani,
i=1
S
P ="+ Tzaij(i)nj,
j=1
¢n+1 ¢n ¢m q;ni :0,
we have

¢n+1 ¢n+1 ¢n ¢n + TZ b: (¢n1 nl)

¢ni _¢;ni — ¢n _qgn + Tzaij((i)nj _({)nj).

j=1
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Taking A~! acting on the above two equalities with the definitions
Al,bni — ¢ni _ qgni Awn — ¢n _qgn A¢n+1 — ¢n+1 _ qgn+1

leads to .

S
¢n+1 — wn + TZ bi¢ni, wni — wn + Tzaijd)nj-
i=1 j=1
We can derive

5 (V12 =" )
= %|:’L’ le 2b,(V"L, YT+ 72D > bib (VT w/;"f)].

i=1j=1

Substituting Y™ = ™ — 7 Zj‘:l a;jy™ into the equation above implies

5 (V"1 ="

= %[ngbi(v¢ni,vwni)_TZZEWijbibj(Vlf)”i,V@b"j)]

i=1 j=1
S S
<ar) bV, V) =7 bi($" ay™). (3.10)
i=1 i=1
Finally, it follows from (3.9) and (3.10) that

2
€ 1 a
E(¢n+1,rn+1) — Ellv¢n+1”2 + 5|r.n+1|2 + E||v11bn+1”2

n _.n 82 n|2 1 n|2 a ny2
SE@@".r") = IV + I + vyt O

Remark 3.1. In order construct the linearized scheme (3.4)-(3.6), we can replace w(¢™)
by w(I"!(¢™)), where I""!(¢™) is the extrapolation of ¢™. The linearized scheme also
preserves energy decay in the sense of energy E(¢",r™), the proof can follow the process
of the proof of the above theorem.

3.4. Fixed-point iteration computation

The system (3.4)-(3.6) is nonlinear if the potential f (¢) is nonlinear, which is not easy
to compute. One way to deal with this issue is to linearize the system by extrapolation,
then solve the linearized equation to obtain the numerical solution. This technique applied
to Runge-Kutta scheme for the SAV-reformulated Allen-Cahn and Cahn-Hilliard models is
studied in [2]. Linearized system only achieves accuracy of order s instead of p, the reason
is that linearization violates the structure of RK method.

In order to solve the nonlinear system (3.4)-(3.6), we adopt fixed-point iteration to
compute the nonlinear system directly. It will preserves the structure of RK method and
lead to higher accuracy than the extrapolated RK-SAV methods [2].
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Fixed-point iteration. We solve the nonlinear system directly by fixed-point iteration
method. The fixed-point iteration computation for the system (3.4)-(3.6) is constructed
as follows:

Step 1. Iterate

M =MAP™ inQ, i=1,...,s,
S
¢”i:¢”+TZaijq3”j inQ, i=1,...,s,
j=1
(pni — —82A¢ni + r*niw(¢*ni) + all)*ni inQ, i=1,...,s, (3.11)
—AYT = M — p™ inQ, i=1,...,s,
Oap™ = 3, p™ = 3™ =0 or periodicon 99, i=1,...,s,
f'ni = (W(¢*ni)’ (p.ni)) i= 1)""5’
S (3.12)

rm=r”+TE a;r™, i=1,....s,
j=1

to calculate the numerical solutions (¢™, r™), i = 1,...,s on interval temporal nodes until

¢ni _ ¢*ni

¢ni
Here O™ denotes numerical solution at previous step in iterating, the initial value can be
chosen as (¢ 1!, r"11) i =1,...,s, which is close to (¢™,r™), i = 1,...,s. For iteration,
we can set up a iteration threshold € for the difference between O™, 0™, i = 1,...,s for the
accuracy of iteration that we desire. Then we can compute (¢!, r™1) with (¢p™,7™), i =
1,...,s obtained by Step 1.

<e€e

—_ 5

max

Step 2. Computing numerical solutions on temporal nodes

S
¢n+1 — ¢n + ,L_Z biani’
= (3.13)
pitl =y TZ b,
i=1

3.5. Full discretization by Fourier-spectral method

We adopt Fourier-spectral method to discretize (3.11)-(3.13) in spatial direction. With-
out generality we consider this system in interval [ x, x; ]. We separate interval into K (even)
parts with grids 1 < k < K, apply Fourier transform (FT), whose inverse transform is called
inverse Fourier transform (IFT), to project the solutions onto function space spanned by
the functions {exp(i2p7x/(x; —xg)), —K/2 < p < K/2—1,p € Z}. Denoting by A; the
coefficients of differential 9, and by [J; the transformed functions after FT on each grid k,
we have
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Step 1. Iterate

Bt = mAzgy n 2 i=1...
S
(ﬁzi:quJrTZaij(ﬁzf in Q, i=1,...,s,
| = - (3.14)
G == A2 + rriw(@ ) + e in Q, i=1,..,
—li¢2i=¢"i— _$;< inQ, i=1,...,s,
$" =IFT(H™), i=1,...,s,
$"M =TFT(p™), i=1,...,s,
i.nl' — (W(Qb*ni),d;ni), i= 1,...,s, (315)
S
rni:rn+TZaiji.ni, i=1,...,S,
j=1

to compute the numerical solutions on interval temporal nodes until
max | — o[/ [of [} e, =/ < e

Step 2. Compute numerical solutions on temporal nodes

S
¢n+1 — ¢n + ,L_Z biani’
= (3.16)
pitl =gy TZ b,
i=1

It is obvious that we obtain the numerical solutions qb,’(li, i=1,...,s on interval temporal
nodes 1 < k < K by solving K linear equations of size s in each time-marching itera-
tion, that is to say we can calculate the numerical solutions pointwise on each grid. Our
technique substantially reduces the computational requirements. Rather than linearized
time-marching schemes, it computes the numerical solution by solving linear system of size
K x s while it need integrate all unknowns ¢,’ji, i=1,...,son grids k,1 < k < K. In
higher spatial dimension, such as dim = 2,3, the number of grids increases very fast, the
computation cost for solving large linear equation will increase rapidly.

If we reformulate PF-BCP model based on IEQ method, then the corresponding con-
structed fully discretized scheme will have much more stiffness, it will hamper in their
performance by stability restrictions. Meanwhile, we need to solve many unknowns as
twice as that of the scheme based on SAV method because of the introduced variable is
a function over domain .

4. Numerical Experiments

In this section, we present numerical examples to illustrate the convergence, energy



Unconditional Energy Stable RK Schemes for the PE-BCP 71

decay property of the numerical scheme (3.14)-(3.16) for SAV-formulated PF-BCP model.
Choosing mean mass adding random perturbed values as the initial values which represents
the mixture of two monomer blocks in diblock copolymer, we simulate the evolutions of
PF-BCP model. The numerical simulations present the two monomer blocks separate from
each other in mixture, which is called phase separation, and we show the effects of various
parameter a on phase separations.

4.1. Convergence of RK numerical scheme

In this subsection, we will explore the convergence order by setting the iteration tol-
erance error to € = 10714, The discussion on the number of iteration steps required for
each time step will be given in the next subsection, taking into account the generality of
the random initial conditions.

Example 4.1 (One-Dimensional Case). We consider the following one-dimensional PF-BCP
model:

0, =M[A(—e*Adp + f(P)—alp — )], (x,t) €[—0.5,0.5]x [0, T]

with f(¢) = ¢> — ¢ and initial value ¢° = sin®(2mx). The parameters are given by
€=0.01,M =0.01,T =1 and a = 0.01. We separate the domain [—0.5,0.5] into N,, = 27
sub-domains uniformly. We compute numerical solutions at T = 1 by scheme (3.14)-(3.16)
with different temporal stepsize. With T = 1/2'® we compute to obtain the numerical
solution as the reference solution since the exact solution for the PF-BCP model is unknown.
The convergence of numerical computation results are presented in Table 2.

Table 2: Example 4.1. L2-error and convergence order.

Stage/Stepsize 1/28 1/2° 1/210 1/21 1/212
1 2.03e-05 | 5.07e-06 | 1.27e-06 | 3.16e-07 | 7.89e-08
2.00 2.00 2.00 2.00
Gauss
9 2.09e-09 | 1.27e-10 | 7.90e-12 | 4.93e-13 | 3.11e-14
4.05 4.01 4.00 3.99
1 1.60e-03 | 6.33e-04 | 2.93e-04 | 1.42e-04 | 6.82e-05
Radau ITA 1.34 1.11 1.05 1.06
9 2.46e-07 | 2.88e-08 | 3.54e-09 | 4.40e-10 | 5.49e-11
3.09 3.02 3.01 3.00

Example 4.2 (Two-Dimensional Case). We consider the two-dimensional PF-BCP model

0.0 = M[A(—e*Ad +f(P))—alp — )], (x,y,1) €[-0.5,0.5]* x[0,T]

with f(¢) = ¢3—¢ and initial value ¢° = sin®(27x)sin®(27y). We choose the parameters
M =0.001,6 =0.1,T = 1 and a = 10 and separate the domain [—0.5,0.5]? into 27 x 27
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Table 3: Example 4.2. L2-error and convergence order.

L. Chen and B. Ren

Stage/Stepsize 1/2° 1/2° 1/27 1/28 1/2°
1 3.15e-07 | 7.88e-08 | 1.97e-08 | 4.92e-09 | 1.23e-09
2.00 2.00 2.00 2.00
Gauss
) 1.07e-11 | 6.69e-13 | 4.18e-14 | 2.61e-15 | 1.63e-16
4.00 4.00 4.00 3.99
1 8.28e-05 | 4.14e-05 | 2.07e-05 | 1.03e-05 | 5.05e-06
Rada TTA 1.00 1.00 1.01 1.02
) 1.83e-09 | 2.31e-10 | 2.89e-11 | 3.62e-12 | 4.53e-13
2.99 2.99 3.00 3.00

sub-domains uniformly. The reference solution is chosen as the numerical solution com-
puted with temporal stepsize T = 1/2'°. The numerical computation results with different
temporal stepsizes are presented in Table 3.

Tables 2 and 3 show that the L2-error of the RK scheme (3.14)-(3.16) achieves accuracy
of order p = 2s and p = 2s — 1 based on s-stage Gauss method and Radua IIA method
respectively. Under the stability condition of algebraically stable RK methods, the numerical
scheme (3.14)-(3.16) preserves the energy decay property of PE-BCP model. The energy
decay versus t for the PF-BCP model in one-dimensional and two-dimensional cases are
plotted in Fig. 1 (left) and (right) respectively.

0.34}
| 0.32¢
g 0.3}
\ 20.28 >
(0 0.26 |
X 0.24
0.22}

0.15%-,

Energy

0.05¢

Figure 1: Evolution of the energy. Left: Example 4.1. Right: Example 4.2.

4.2. Phase separations in two-dimensional domain

In this section, we study the phase separation of PF-BCP model in two-dimensional do-
main. The phase separation describes the molecular self-assembly monomer blocks of DC
model to form lamellar or cylindrical nanostructures through two monomer blocks sepa-
rating from the mixture.
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In the PE-BCP model, the phase separation manifests in the spontaneous growth of the
concentration fluctuations that leads the system from homogeneous state to the separated
two-phase state. There are specified interface forming between them, 1 and —1 represents
pure monomer blocks A and B respectively. After the phase separation starts, the domains
of two phase states are formed in short time and the infinitesimal interface between two
states are specified and deforming.

We choose initial condition as random perturbed concentration field which is referred
to as mixture of two-state monomer blocks as follows:

¢(x,y,0) = ¢o +0.01 x rand(x,y), (x,y)€[-0.5,0.5],

where the function rand(x, y) denotes the uniformly distributed random function valued
in[0,1]. q§O can be viewed as the mean value of the phase field due to the small perturba-
tion, which determines evolving the phase field into lamellar or cylindrical structure with
different values chosen.

Next, we will present some numerical simulations of PF-BCP model by numerical scheme
(3.14)-(3.16) with different initial conditions and parameters a to study the structure of
phase field and the effect of one-order linking two distinct monomer blocks on phase sep-
arations.

Example 4.3 (Lamellar-Structured PF-BCP). Firstly, we set up parameters as M = 0.01,
€ = 0.01 in the PF-BCP model. Next, we will investigate the effects of parameter a on the
coarsening dynamics. We consider the lamellar-structured phase field, choosing ¢;0 =0. On
spatial dimension, we separate the domain [—0.5,0.5]? into 27 x 27 sub-domains uniformly.
We simulate the PF-BCP model by our Gauss RK algorithm with stage s = 2. The numerical
profiles of ¢ at t = 0,0.002,0.005,0.01,0.1,0.5,1,2 are summarized in Figs. 2-4 with
temporal stepsize T = 5x 10™°. Time evolution of the energy decay versus t for the diblock-
copolymer model with ¢;0 =0and a =0.001,10, 100 is plotted in Fig. 5.

Figure 2: Example 4.3. PF-BCP model, a = 0.001, (ﬁo =0, t =0,0.002,0.005,0.01,0.1,0.5,1, 2.
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Figs. 2-4 show that the phase field keeps evolving into the separated parts of monomer
blocks A, valued 1 (yellow) and monomer blocks B, valued —1 (blue) as t increasing until
the phase field becomes stable state. In the phase separation, the phase field evolves into
lamellar structure. The evolution of the PF-BCP model behaves like Cahn-Hilliard model
when the parameter a is small. Meanwhile, the phase field becomes stable as faster as
parameter a larger, which verifies that the nonlocal term represents the first-order effect of
the connectivity between the two monomer blocks.

It can be obviously seen from the Fig. 5 (left) that the energy of PF-BCP model decays to
the stable state earlier as a increasing and the energy in stable state is larger as a increasing.

= 0.005

z z

Figure 4: Example 4.3. PF-BCP model, a =100, ¢;0 =0 at t =0,0.002,0.005,0.01,0.1,0.5,1, 2.
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Figure 5: Example 4.3. Left: Time evolution of energy decay versus t for diblock-copolymer model,
¢o =0, a=10.001,10,100. Right: Number of iteration steps required for each time step.

From this, it can be inferred that the nonlocal term a(¢ — ¢) in PE-BCP model strengthens
the connectivity of two monomer blocks which verifies the one-order linking effect of the
nonlocal term. We select a convergence criterion € equal to 1078, We trick the number of
iteration steps necessary for each time step, and the corresponding data is presented in the
right side of Fig. 5. It indicate that the iteration steps consistently require a similar number
of iterations to attain the desired precision €.

Example 4.4 (Cylindrical-Structured PF-BCP). Furthermore, we simulate the phase separa-
tions of the PF-BCP model with initial condition ¢;0 = 0.3 to produce cylindrical-structured
phase field. The numerical profiles of ¢ at t = 0,0.002,0.005,0.01,0.1,0.5,1,2 are sum-
marized in Figs. 6-8 with temporal stepsize T = 5 x 107>, We plot the time evolution of the
energy decay versus t for the PF-BCP model with qgo =0.3and a =0.001,10,100 in Fig. 9.

0309
0308
0307
0306
0305 =
0304
0303
0302

0301

Figure 6: Example 4.4. PF-BCP model, a = 0.001, ¢;0 =0.3 at t =0,0.002,0.005,0.01,0.1,0.5,1, 2.
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Due to the mean value of the mass of phase field ¢;0 = 0.3 is positive, the phase of
the PF-BCP model in Figs. 6-8 evolves into cylindrical structures, which means monomer
A blocks (state 1) dominates in the domain €, state —1 part will evolve into cylindrical
structure via phase separation. If the mean value qgo = 0, then two monomer blocks do not
dominate in the domain either, hence the phase field will evolve into lamellar structure,
which is confirmed in Figs. 2-4 with (;Z;O = 0. Also, the simulations of cylindrical-structured
phase field with different a verify that the nonlocal term represents the first-order effect of
the connectivity between the two monomer blocks.

From Fig. 9 (left), we can see that the time evolutions of the energy decay of PE-BCP
model with various a = 0.001,10,100 are almost similar to Fig. 5 which choose initial

£=0.01

0309
0308
0307
0306
0305 =
0304
0303
0302

0301

t=0.01

0309
0308
0307
0306
0305 =
0304
0303
0302

0301

04 02 0 02 04 04 02 0 02 04 04 02 0 02 04
z z

Figure 8: Example 4.4. PF-BCP model, a =100, ¢;0 =0.3 at t =0,0.002,0.005,0.01,0.1,0.5,1, 2.
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Figure 9: Example 4.4. Left: Time evolution of energy decay versus t for diblock-copolymer model,
¢o=0.3, a=0.001,10,100. Right: Number of iteration steps required for each time step.

condition as q§0 = 0. By setting iteration tolerance error € to 10~8, we observe that the
number of iteration steps is nearly identical to the previous simulation, see the Fig. 9 (right).

5. Conclusion

Diblock copolymers are copolymers composed of two monomer blocks of fluid-like dis-
order, which forms free interfaces in the evolution. In Lagrangian framework, it is difficult
to describe diblock copolymers due to free interfaces. In order to describe a system with free
interfaces efficiently, the PF-BCP model is introduced to deal with the difficulty in match-
ing boundary conditions on the interfaces between two blocks of copolymer in Eulerian
framework.

In this paper, we reformulate the PF-BCP model based on SAV method, then construct
energy stable time-marching scheme by adopting algebraically stable RK methods. The
nonlinear system is solved by fixed-point iteration method. The energy decay is proved
rigorously. The Fourier-spectral method is adopted to discretize on the spatial dimension.
We can compute numerical solutions pointwise on each grid, hence proposed algorithm
reduces computational requirements.

The high-accuracy and energy decay property are verified by the numerical examples.
The phase separation simulations confirm the efficiency of our algorithm for the PF-BCP
model. Finally, we discussed the influence on the evolutions about the initial conditions
and parameters a.
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