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Abstract. A high-accuracy and unconditional energy stable numerical scheme for

a phase field model for diblock copolymers (PF-BCP model) is developed. The PF-BCP

model is reformulated into an equivalent model, which based on scaler auxiliary variable

(SAV) formulation. After that a stable Runge-Kutta (RK) method and a Fourier-spectral

method are applied to the SAV-reformulated PF-BCP model to discretize on the temporal

and spatial dimensions respectively. The fully discretized numerical scheme is computed

by fixed-point iterations. Meanwhile, the unconditional energy decay property is proved

rigorously. Finally, we present the results of numerical experiments to show the accuracy

and efficiency of the RK scheme used and discuss the influence of physical parameters

and initial conditions on the phase separation in the simulation of the PF-BCP model. In

addition, the energy decay property of the numerical solutions is verified.

AMS subject classifications: 65M10, 78A48
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1. Introduction

The diblock copolymer model (DC model) is the system for a copolymer composed of

two different monomers blocks A and B. The copolymer is formed by a linear-chain molecule

of sub-chains of two different monomers blocks linked together at molecular scale charac-

terized by fluid-like disorder. Due to incompatibility between two monomer blocks, they

repulse each other, then tend to separate from mixture into pure blocks with free inter-

faces’ occurring and deforming between two blocks. Finally, periodic structure is formed

in diblock copolymer such as lamellar or cylindrical structures, which illustrates specific

nano-materials.

To describe a complex system with fluid-like disorder composed of multiple components

with free interfaces between them, we encounter challenges in matching boundary condi-

tions on the interfaces in the Lagrangian framework. As a solution, the system is described
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by a phase field in the Eulerian framework, where the interface can be identified by field

variable. The phase field model has been widely recognized as an effective approach to

accurately depict such systems [6].

Firstly, we give some mathematical notions. For any functions f , g defined on a domain

Ω, we write

( f , g) :=

∫

Ω

f (x)g(x)dx

for the L2 inner product of f , g. Besides, let ‖ f ‖ :=
p
( f , f ) be the L2−norm of f and

f̄ :=
1

|Ω|

∫

Ω

f (x)dx

the mean value of f .

The DC model is accurately described by the phase field for diblock copolymers (PF-BCP)

in mean field theory. In the PF-BCP model, the phase field variable denoted by φ(x, t) is

introduced in the domain Ω. This variable represents the difference in the fraction of mass

between the two monomer blocks — i.e. NA and NB respectively denote the masses of

monomer blocks A and B at the position x, and the phase field variable φ(x, t) is defined

by

φ(x, t) := (NA− NB)/(NA+ NB).

The phase field φ is a scalar variable representing the phase or state of the system. It takes

values in the interval [−1,1]. The evolution of the PF-BCP model is to minimize the total

free energy. The mixture state tends to separate and evolve into distinct pure A-monomer

and pure B-monomer states with a specified infinitesimal interface between them. Over

time, the PF-BCP system reaches a stable configuration where the separated phases coexist.

In the process of the DC model evolution, the total mass of the two monomers is con-

served, resulting in the mass conservation property of the phase field. This can be expressed

as

d

d t

∫

Ω

φdx = 0.

The evolution equation of the PF-BCP model is derived from the constrained gradient flow

of the total free energy functional E(φ) in the space H−1, as described in [4]. The total free

energy E(φ) is a functional of the Cahn-Hilliard type energy endowed with an additional

nonlocal term and is defined as

E(φ) =

∫

Ω

�
ǫ2

2
|∇φ|2 + F(φ) +

α

2
|∇ψ|2

�
dx,

where

F(φ) =
(φ2 − 1)2

4
, ψ= −∆−1(φ − φ̄).
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In this expression, the term ǫ2|∇φ|2/2 represents the interaction between the two monomer

blocks, F(φ) represents the potential energy density, and α|∇ψ|2/2 represents the first-

order effect of the connectivity between the two monomer blocks. Minimizing the func-

tional E(φ) by the constraint gradient flow method, we obtain the following evolution

equation for the PF-BCP model:

φt = M∆ϕ in Ω× [0, T ],

ϕ = −ǫ2
∆φ + f (φ) +αψ in Ω× [0, T ],

−∆ψ= φ − φ̄ in Ω× [0, T ],

∂nφ|∂ Ω = ∂nϕ|∂Ω = ∂nψ|∂Ω = 0 or periodic boundary condition,

(1.1)

where f (φ) = F ′(φ), M > 0 is a dimension of time or scaling on time, and ǫ > 0 and α > 0

are model parameters that determine the fraction of different energy parts in the total free

energy, and the mean mass is

φ̄ =
1

|Ω|

∫

Ω

φdx.

The boundary conditions above are compatible with the mass conservation

d(φ, 1)

d t
=

∫

Ω

M∆ϕdx =

∫

∂Ω

M∂nϕds = 0.

The evolution equation for the PF-BCP model is derived by minimizing the total free energy.

Therefore, the PF-BCP model is dissipative with respect to the total free energy. We define

the total free energy density as

Eρ =
ǫ2

2
|∇φ|2 + F(φ) +

α

2
|∇ψ|2.

The energy dissipation rate can be calculated as follows:

dE

d t
=

∫

Ω

δEρ

δφ

∂φ

∂ t
dx= −

∫

Ω

M |∇ϕ|2 dx≤ 0.

The PF-BCP model provides quantitative description of evolution of mixture of two mono-

mers in DC model, which can be used to study microscopic structures of nano-structured

materials and nano-devices. Numerical computation of the PF-BCP model plays an impor-

tant role in the study of the DC model. This is because the analytical solution of the equation

is difficult to derive due to the complexity of the domain’s geometry and the presence of

a nonlinear term in PF-BCP model. Therefore, constructing efficient numerical schemes

to the PF-BCP model become quite necessary, which may help study the evolution of the

phase field. The efficiency of a numerical scheme for a model depends on its accuracy in

approximating the exact solution. In the numerical computation of the phase field model,

it is important for the numerical solution to preserve the dissipation property, which is an
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intrinsic property of the phase field model. Note that any numerical solution preserving

the dissipation property will be called the energy stable.

Constructing numerical schemes for the phase field models is significantly challenging,

with the main difficulty being how to discretize the nonlinear term f (φ) in evolution equa-

tions. In many phase field models, the nonlinear terms are complex and will cause stiffness

at the interface between distinct phases, making it difficult to discretize them properly.

Improper discretization of the nonlinear term may be result in unstable computations.

Previous research, including the works of [11,12], has focused on developing numerical

schemes for the phase field model. However, these schemes have been limited to first-order

accuracy and do not guarantee stability. Furthermore, the studies [3,8,15] show that using

simple full-implicit or explicit discretization of the equations severely restricts the allowable

temporal stepsize, particularly dependent on the interfacial width. To preserve the dissi-

pation properties of the phase field model, several stable numerical schemes have been

proposed based on convex splitting approaches or the linearization approach, as demon-

strated in the works of [1,5,7,17]. However, these schemes are generally of low-accuracy

order.

In our approach, instead of directly constructing numerical schemes for the phase field

models, we utilize auxiliary variable methods to reformulate the models into equivalent

forms by introducing additional variables. This allows us to construct numerical schemes

for the reformulated models, which can provide stability and high accuracy. One popular

approach for this is the invariant energy quadratization (IEQ) method, as demonstrated

in works by [9, 18, 20]. The IEQ method aims to transform the total free energy density

into a quadratic form involving both the phase variable and the introduced variable. The

introduction of the new variable through the IEQ method provides more flexibility in con-

structing numerical schemes that satisfy efficiency requirements in numerical computation,

including high-accuracy in and stability. The introduced variable in the IEQ method is de-

fined as a function over the domain. However, the equivalent forms obtained through the

IEQ method may lead to increased stiffness compared to the original phase field model after

spatial discretization. To address this issue, the scalar auxiliary variable (SAV) method is

introduced. The SAV method shares the same idea as the IEQ method by transforming the

total free energy into a quadratic form, but it reformulates the phase field model into an

equivalent form with an introduced scalar variable. Compared to the IEQ method, the SAV

method retains almost all of its advantages and can be more efficient, as shown in works

by [10,13,14,19].

In this paper, we aim at constructing a high-accuracy and unconditional energy sta-

ble numerical scheme for the PF-BCP model. In Section 2, we introduce auxiliary variable

methods to the general phase field model, which includes IEQ method and SAV method,

then we reformulate SAV-reformulated PF-BCP model by SAV method. In Section 3, we

introduce RK method for time-marching numerical computation, then apply the method to

SAV-reformulated PF-BCP model to construct high-accuracy and energy stable numerical

scheme. We prove our numerical scheme preserves mass conservation and energy decay.

Furthermore, the fixed-point iteration is adopted to compute the nonlinear system. Fi-

nally, we apply Fourier-spectral method to discretize on the spatial dimension to obtain
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full-discrete scheme. In Section 4, we present numerical experiments to show that our nu-

merical scheme is highly-accurate and energy stable. We also study the effects of different

initial conditions and varying parameters α on phase separation’s simulations of the PF-BCP

model by our proposed algorithm.

2. Auxiliary Variable Methods for General Phase Field Model

In order to construct energy stable numerical scheme of high-accuracy for the phase

field model, we introduce a new variable to reformulate the phase field model, which makes

constructing numerical scheme such that all parts of total free energy synchronize more

easily in numerical computation.

2.1. Gradient flow model as general phase field model

Most phase field models are derived from gradient flow of total free energy. We can

regard the gradient flow model as general phase field model. The general phase field model

consists of two key ingredients: the free energy density Eρ, i.e.
∫
Ω

Eρdx = E and the

kinetic equation dictated by a mobility matrix (or operator) G in domain Ω. We use Φ =

(φ1, . . . ,φn)
T to denote the phase variable, we obtain the triple (Φ,G , Eρ) which defines

a phase field model. The evolution equation in domain Ω stemming from minimizing the

total free energy, is given by

∂tΦ(x, t) = −G
δEρ

δΦ
in Ω,

C
�
Φ(x, t)

�
= g(x, t) on ∂Ω,

(2.1)

where C is trace operator as boundary condition, G = Ga+Gs is mobility operator decom-

posed as anti-symmetry and semi-positive definite parts. We call the variational derivation

δEρ/δΦ of Eρ the chemical potential.

The general phase field model is derived through minimizing the total free energy by

gradient flow method, the dissipation is intrinsic property of phase field model

dE

d t
=

�
δEρ

δΦ
,
∂ Φ

∂ t

�
=

�
δEρ

δΦ
,−G

δEρ

δΦ

�
=

�
δEρ

δΦ
,−Gs

δEρ

δΦ

�
≤ 0.

As an example of the PF-BCP model (1.1), we take

Eρ =
ǫ2

2
|∇φ|2 + F(φ) +

α

2
|∇ψ|2,G = −M∆

and the boundary condition of (1.1) as the trace operator, then the PF-BCP model has the

form of (2.1).
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2.2. Auxiliary variable methods to general phase field model

Generally the energy density of phase field model (2.1) has the form

Eρ =
1

2
|L 1/2

Φ|2 +F (Φ),

where L is linear (differential) operator and F (Φ) is functional of Φ. The evolution equa-

tion of the phase field model is given by

∂tΦ(x, t) = −G [LΦ+ f (Φ)] in Ω,

C
�
Φ(x, t)

�
= g(x, t) on ∂Ω,

where f (Φ) = F ′(Φ). When f is nonlinear functional, it prevents the design of efficient

numerical methods to the phase field model. We apply auxiliary variable method to phase

field model to transform it into equivalent reformation with auxiliary variable. There are

two auxiliary variable methods used popularly in phase field model, IEQ method and SAV

method.

Introducing variable R=
q∫

Ω
2F (Φ)dx, we write the total free energy as

E(Φ,R) =
1

2
(LΦ,Φ) +

1

2
|R|2.

With the introduced variable, we can reformulate the phase field model into one equivalent

model called SAV-reformulated phase field model

∂tΦ = −G [LΦ+ RW (Φ)] in Ω,

∂tR=
�
W (Φ),∂tΦ

�
in Ω,

C(Φ) = g(x, t) on ∂Ω,

(2.2)

where

W (Φ) = f (Φ)/

√√√∫

Ω

2F (Φ)dx.

The initial condition is given by

Φ|t=0 = Φ
0, R|t=0 =

√√√∫

Ω

2F (Φ0)dx.

In order to construct efficient numerical schemes for general phase field model (2.1), we

can design a numerical scheme for (2.3) or (2.2) instead of (2.1), which can help with

constructing numerical schemes that synchronize all parts of total free energy to preserve

energy decay. Auxiliary variable can be viewed as a new freedom for constructing numerical

schemes, we can have more ways to construct numerical schemes to satisfy what we require.

What is more, the nonlinear term f (Φ) is converted into multiplication of two variables

instead of a complex functional of variable Φ by using auxiliary variable method, thus the

energy stable linearized numerical scheme’s construction can be easier.

There is another auxiliary variable method used popularly in phase field model, IEQ

method, is described as follows.
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Remark 2.1. We illustrate the ideal by transforming the free energy density Eρ into a qua-

dratic one, the introduced auxiliary variable Q is obtained as removing the quadratic gra-

dient term |L 1/2
Φ|2/2 from the energy density

Q =

√√
2

�
Eρ −

1

2
|L 1/2Φ|2

�
=
Æ

2F (Φ).

The total free energy is rewritten as

E(Φ,Q) =

�
1

2
Φ,LΦ

�
+

�
1

2
Q,Q

�
,

and the energy density is rewritten as

Eρ(Φ,Q) =
1

2
|L 1/2

Φ|2 +
1

2
|Q|2,

where Q is a function of variables Φ, i.e. Q = Q(Φ). Denoting

H(Φ) =
f (Φ)p
2F (Φ)

=
δQ

δΦ
,

we can reformulate the model (2.1) into an equivalent form — viz.

∂tΦ= −G [LΦ+QH(Φ)] in Ω,

∂tQ = H(Φ) : ∂tΦ in Ω,

C(Φ) = g(x, t) on ∂Ω.

(2.3)

The initial condition is given by

Φ|t=0 = Φ
0, Q|t=0 =

Æ
2F (Φ0).

Remark 2.2. We always assume thatF (Φ) > 0. Otherwise, we letF (Φ) :=F (Φ)+A0 ≥ 0,

so that it is a well-defined real variable.

2.3. Reformulated PF-BCP models by auxiliary variable methods

Applying SAV method to PF-BCP model (1.1), we can obtain equivalent reformulated

form of PF-BCP model.

For SAV-reformulated PF-BCP model, we introduce r =
q∫

Ω
2F(φ)dx, so that the total

free energy is transformed into

E(φ, r) =
ǫ2

2
‖∇φ‖2 +

1

2
|r|2+

α

2
‖∇ψ‖2
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and the evolution equations are rewritten as

φt = M∆ϕ in Ω,

ϕ = −ǫ2
∆φ + rw(φ) +αψ in Ω,

−∆ψ= φ − φ̄ in Ω,

rt =
�
w(φ),φt

�
in Ω,

∂nφ = ∂nϕ = ∂nψ= 0 or periodic on ∂Ω,

(2.4)

where

w(φ) = f (φ)/

√√√∫

Ω

2F(φ)dx.

The initial condition is given by

φ|t=0 = φ
0, r|t=0 =

√√√∫

Ω

2F(φ0)dx.

Remark 2.3. For IEQ-reformulated PF-BCP model, we introduce the variable

q =

√√
2

�
Eρ −

ǫ2

2
|∇φ|2 −

α

2
|∇ψ|2

�
=
Æ

2F(φ)

and write the total free energy density as

Eρ =
ǫ2

2
|∇φ|2 +

1

2
|q|2 +

α

2
|∇ψ|,

and the evolution equations as

φt = M∆ϕ in Ω,

ϕ = −ǫ2
∆φ + qh(φ) +αψ in Ω,

−∆ψ= φ − φ̄ in Ω,

qt = h(φ)φt in Ω,

∂nφ = ∂nϕ = ∂nψ= 0 or periodic on ∂Ω,

where

h(φ) =
f (φ)p
2F(φ)

=
δq

δφ
.

The initial condition is given by

φ|t=0 = φ
0, q|t=0 =

Æ
2F(φ0).
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3. Algebraically Stable Runge-Kutta Scheme

In this section, we adopt algebraically stable Runge-Kutta (RK) method to construct

energy stable and highly-accurate time-marching numerical scheme for SAV-reformulated

PF-BCP model (2.4). Then for spatial dimension, we apply Fourier spectral method to

obtain the full-discrete scheme.

3.1. Algebraically stable Runge-Kutta method

The RK method, as a high-accuracy numerical method, is widely used in numerical time-

marching computation for differential equations. In the process of the RK method, we first

separate temporal interval [0, T ] uniformly with stepsize τ > 0 to obtain the temporal

nodes 0= t0 < t1 < · · ·< tN−1 < tN = T where tn+1− tn = τ for 0≤ n≤ N −1, with given

coefficients of s-stage RK method in following so-called Butcher Tableau:

Table 1: Butcher Tableau.

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs a11 as2 . . . ass

b1 b2 . . . bs

We compute the following differential system, which is the form of (2.4):

ẏ = f (y), y|t=0 = y0.

For given yn at t = tn, one computes yn+1 by

yni = yn +τ

s∑
j=1

ai j ẏnj , i = 1, . . . , s,

yn+1 = yn +τ

s∑
i=1

bi ẏni .

Here for brevity we take notion tni = tn + ciτ, i = 1, . . . , s and yni is approximation to

y(tni) for i = 1, . . . , s.

The coefficients in Butcher Tableau determine the efficiency of RK method, which in-

cludes accuracy and stability. Generally these coefficients have consistency conditions

s∑
i=1

bi = 1,

s∑
i=1

aki = ck, k = 1, . . . , s.

Stability condition. We consider RK method whose coefficients satisfy the following con-

ditions:
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• The matrix A= (ai j)s×s is invertible.

• bi > 0, i = 1, . . . ,q.

• ci 6= c j for i 6= j.

• The matrix M = (mi j)s×s with entries mi j = biai j + b ja ji − bi b j is symmetric positive

semi-definite.

Any RK method satisfying these stability conditions is called algebraically stable.

Accuracy conditions. We also assume that the algebraically stable RK method is associ-

ated with a collocation method — i.e. the parameters in Butcher Tableau ci , i = 1, . . . , s

are chosen from some special polynomial’s (such as shifted Legendre polynomial) zeros in

interval [0,1],

ai j =

∫ ci

0

l j(t)d t, bi =

∫ 1

0

li(t)d t,

where

li(t) = Π j 6=i

t − c j

ci − c j

, 1≤ i ≤ s

are the Lagrangian polynomials based on the zeros ci, 1 ≤ i ≤ s. We assume that the

coefficients of RK method in Butcher Tableau satisfy the following accuracy assumptions:

s∑
i=1

bic
l−1
i =

1

l
, l = 1, . . . , p, (3.1)

s∑
j=1

ai jc
l−1
j
=

c l−1
i

l
, l = 1, . . . ,q1, i = 1, . . . , s, (3.2)

s∑
j=1

ai j bic
l−1
j
=

c l−1
i

l
, l = 1, . . . ,q2, i = 1, . . . , s. (3.3)

There are two popular families of Runge-Kutta methods of collocation type satisfying the

stability and accuracy conditions — viz. Gauss method and Radau IIA method [16]. For

accuracy, they have conditions p = 2s and p = 2s−1 in condition (3.1) respectively, q1 = s

in condition (3.2), then q2 = s, s − 1 in condition (3.3) respectively, the detail can refer

to [16, Chapter IV, Lemma 5.4]. Here we have the following theorem of accuracy for RK

methods under the above assumptions.

Theorem 3.1 (cf. Wanner & Hairer [16, Chapter IV, Theorem 5.1]). If the coefficients

bi, ci , ai j of the RK method satisfy conditions (3.1)-(3.3), where p ≤ q1+q2+1 and p ≤ 2q1+2,

then the RK method is time-marching numerical method of order p.

The convergence order for the Gauss method and Rudua IIA methods can refer to the

following theorem.
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Theorem 3.2. With the assumption of p,q1,q2, s-stage Gauss and Radua IIA method are

time-marching numerical method of convergence order 2s and order 2s− 1 respectively.

For Gauss method and Rudua IIA method, arbitrary high-order method can be con-

structed [16].

3.2. Time-marching numerical scheme

We apply algebraically stable RK methods to SAV-reformulated PF-BCP model (2.4) to

construct numerical scheme to compute φn+1 and rn+1 at t = tn+1 with given φn and rn

at t = tn. First we compute internal values (φni , rni), i = 1, . . . , s by solving

φ̇ni = M∆ϕni in Ω, i = 1, . . . , s,

φni = φn +τ

s∑
j=1

ai jφ̇
nj in Ω, i = 1, . . . , s,

ϕni = −ǫ2
∆φni + rniw(φni) +αψni in Ω, i = 1, . . . , s,

−∆ψni = φni − φ̄ni in Ω, i = 1, . . . , s,

∂nφ
ni = ∂nϕ

ni = ∂nψ
ni = 0 or periodic on ∂Ω, i = 1, . . . , s,

(3.4)

ṙni =
�
w(φni), φ̇ni

�
, i = 1, . . . , s,

rni = rn +τ

s∑
j=1

ai j ṙ
ni, i = 1, . . . , s,

(3.5)

which is a differential system of (φni , rni), i = 1, . . . , s, we can obtain (φni , rni), i = 1, . . . , s

by solving this differential system. Then we can obtain unique (φ̇ni , ṙni) by both second

relations of (3.4) and (3.5) due to the invertibility of matrix A= (ai j)s×s. Using (φ̇ni , ṙni)

we compute

φn+1 = φn +τ

s∑
i=1

biφ̇
ni ,

rn+1 = rn +τ

s∑
i=1

bi ṙ
ni.

(3.6)

3.3. Mass conservation and energy dissipation of time discretized scheme

In this section, we present some properties of the numerical scheme (3.4)-(3.6) that the

mass
∫
Ω
φndx is conservative and the discrete energy is decayed — i.e. our time-marching

scheme preserves the mass conservation and dissipation properties of the PF-BCP model.

3.3.1. Mass conservation

Firstly, we check that the numerical scheme (3.4)-(3.6) has the mass conservation property

as follows.
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Theorem 3.3 (Mass Conservation). For given initial condition φ(·, 0) = φ0, we compute the

numerical scheme (3.4)-(3.6) to obtainφni , i = 1, . . . , s andφn+1 which denote the numerical

approximations ofφ at t = tni and t = tn+1, respectively. Then the mass
∫
Ω
φn+1dx and mass∫

Ω
φni dx preserve constant — i.e.

∫

Ω

φnidx=

∫

Ω

φn+1dx=

∫

Ω

φ0dx, n= 0,1, . . . , N − 1.

Proof. We take L2 inner product of the first relation of (3.4) with the identity function 1.

Using the boundary condition of (3.4) gives
∫

Ω

φ̇ni dx= (φ̇ni , 1) = M

∫

Ω

∆ϕnidx= M

∫

∂Ω

∇ϕni · ndS = M

∫

∂Ω

∂nϕ
nidS = 0.

With the above result, we then take the L2 inner product with 1 of the first relation of (3.6),

we have ∫

Ω

φn+1dx= (φn+1, 1) = (φn, 1) +

∫

Ω

τ

s∑
i=1

biφ̇
ni dx

=

∫

Ω

φndx+τ

s∑
i=1

bi

∫

Ω

φ̇ni dx=

∫

Ω

φndx.

Setting n= 0, we can obtain the results for n= 1, . . . , N − 1, hence we have
∫

Ω

φn+1dx=

∫

Ω

φ0dx, 0≤ n≤ N − 1.

Similarly, take the inner product of the second relation of (3.4), we obtain the mass con-

servation at internal stages,
∫

Ω

φni dx=

∫

Ω

φ0dx, 0≤ n≤ N − 1, i = 1, . . . , s.

3.3.2. Discrete energy decay

The energy decay (dissipation) is an intrinsic property of phase field models. In this sub-

section, we verify the energy decay for the numerical scheme (3.4)-(3.6) in the sense of the

defined energy

E(φn, rn) =
ǫ2

2
‖∇φn‖2 +

1

2
|rn|2 +

α

2
‖∇ψn‖2.

Theorem 3.4 (Discrete Energy Decay). Assume that the RK method is algebraically sta-

ble with given initial values (φn, rn) ∈ H1(Ω) × R. Then the numerical scheme (3.4)-(3.5)

has numerical solution on the internal nodes (φni , rni) ∈ H1(Ω) × R, and the nodal values

(φn+1, rn+1) ∈ H1(Ω)×R defined by (3.6) satisfies the energy decay

E(φn+1, rn+1)≤ E(φn, rn).



Unconditional Energy Stable RK Schemes for the PF-BCP 65

Proof. For the first term ‖∇φn+1‖2, in terms of the first relation in (3.6), by taking ∇

on both sides we have

∇φn+1 =∇φn +τ

s∑
i=1

bi∇φ̇
ni ,

then square of L2-norms of both sides to get

‖∇φn+1‖2 =

�
∇φn +τ

s∑
i=1

bi∇φ̇
ni ,∇φn +τ

s∑
i=1

bi∇φ̇
ni

�

= ‖∇φn‖2 + 2τ

s∑
i=1

bi(∇φ̇
ni ,∇φn) +τ2

s∑
i, j=1

bi b j(∇φ̇
ni ,∇φ̇nj).

Substituting

φn = φni −τ

s∑
i=1

ai jφ̇
ni

from (3.4) into the second term yields

‖∇φn+1‖2 = ‖∇φn‖2 + 2τ

s∑
i=1

bi

 
∇φ̇ni ,∇φni −τ

s∑
j=1

ai j∇φ̇
nj

!

+τ2
s∑

i, j=1

bi b j(∇φ̇
ni ,∇φ̇nj).

Then we obtain

‖∇φn+1‖2 = ‖∇φn‖2 + 2τ

s∑
i=1

bi(∇φ̇
ni ,∇φni)−τ2

s∑
i, j=1

mi j(∇φ̇
ni ,∇φ̇nj)

with

mi j = b jai j + b ja ji − bi b j , i, j = 1, . . . , s.

Due to the positive semi-definiteness of (mi j)s×s, we can infer that

‖∇φn+1‖2 ≤ ‖∇φn‖2 + 2τ

s∑
i=1

bi(∇φ̇
ni ,∇φni). (3.7)

We test the first relation of (3.4) with ϕni, so that

(φ̇ni ,ϕni) = M(∆ϕni ,ϕni) = −M(∇ϕni ,∇ϕni).

Substituting the third relation

ϕni = −ǫ2
∆φni + rniw(φni) +αψni
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from (3.4) into the first inner product gives

−M‖∇ϕni‖2 =
�
φ̇ni ,−ǫ2

∆φni + rniw(φni) +αψni
�

= ǫ2(∇φ̇ni ,∇φni) +
�
φ̇ni , rniw(φni) +αψni

�
.

We can infer that

ǫ2(∇φ̇ni ,∇φni) = −
�
φ̇ni , rniw(φni) +αψni

�
−M‖∇ϕni‖2.

Substituting this relation into (3.7), we get

‖∇φn+1‖2 ≤ ‖∇φn‖2 +
2τ

ǫ2

s∑
i=1

bi

�
−(φ̇ni , rniw(φni) +αψni)−M‖∇ϕni‖2

�

≤ ‖∇φn‖2 +
2τ

ǫ2

s∑
i=1

bi

�
−(φ̇ni , rniw(φni) +αψni)

�
.

We now analyse the term |rn+1|2 similarly. Squaring of both sides of the second relation

of (3.6) yields

|rn+1|2 = |rn|2 + 2τ

s∑
i=1

bi r
n ṙni +τ2

s∑
i, j=1

bi b j|ṙ
ni|2.

Substituting rn = rni−τ
∑s

j=1
ai j r

nj into the second term of the right side in above quality

yields

|rn+1|2 = |rn|2 + 2τ

s∑
i=1

bi

 
rni −τ

s∑
j=1

ai j r
nj

!
ṙni +τ2

s∑
i, j=1

bi b j|ṙ
ni|2.

Therefore,

|rn+1|2 = |rn|2 + 2τ

s∑
i=1

bi r
ni ṙni −τ2

s∑
i, j=1

mi j |ṙ
ni|2

with

mi j = biai j + b ja ji − bi b j, i, j = 1, . . . , s.

Due to the positive semi-definiteness of (mi j)s×s, we have

|rn+1|2 ≤ |rn|2 + 2τ

s∑
i=1

bi r
ni ṙni. (3.8)

With the expressions (3.5), we have

rni ṙni =
�
rniw(φni), φ̇ni

�
.

Substituting this into (3.8) yields

|rn+1|2 ≤ |rn|2 + 2τ

s∑
i=1

bi

�
rniw(φni), φ̇ni

�
.
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Multiplying ‖∇φn+1‖2 and |rn+1| respectively by ǫ2/2 and 1/2 and summing these two

terms, we obtain

ǫ2

2
‖∇φn+1‖2 +

1

2
|rn+1|2

≤
ǫ2

2
‖∇φn‖2 +

1

2
|rn|2 +τ

s∑
i=1

bi

�
−(φ̇ni , rniw(φni) +αψni)

�

+τ

s∑
i=1

bi

�
rniw(φni), φ̇ni

�

=
ǫ2

2
‖∇φn‖2 +

1

2
|rn|2 −τ

s∑
i=1

bi(φ̇
ni ,αψni). (3.9)

The remaining part is to prove

τ

s∑
i=1

bi(φ̇
ni ,αψni) ≥

α

2

�
‖∇ψn+1‖2 − ‖∇ψn‖2

�
.

With the forth relation in (3.4) and the mass conservation — i.e. φ̄ni is constant, we have

(φ̇ni ,αψni) = α(φ̇ni − ˙̄φni ,ψni) +α( ˙̄φni ,ψni)

= −α(∆ψ̇ni,ψni) +α( ˙̄φni ,ψni)

= α(∇ψ̇ni ,∇ψni) +α( ˙̄φni ,ψni)

= α(∇ψ̇ni ,∇ψni) +
α

|Ω|
(φ̇ni , 1)(1,ψni)

= α(∇ψ̇ni ,∇ψni).

Here ˙̄φni = 0 is defined by the approximation of φ̄t(·, tni) = 0 and the expression ∆ψ̇ni =

φ̇ni − ˙̄φni is defined by the forth relation of (3.4).

Since

φn+1 = φn +τ

s∑
i=1

biφ̇
ni ,

φni = φn +τ

s∑
j=1

ai jφ̇
nj ,

φ̄n+1 = φ̄n = φ̄ni , ˙̄φni = 0,

we have

φn+1 − φ̄n+1 = φn − φ̄n +τ

s∑
i=1

bi(φ̇
ni − ˙̄φni),

φni − φ̄ni = φn − φ̄n +τ

s∑
j=1

ai j(φ̇
nj − ˙̄φnj).
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Taking ∆−1 acting on the above two equalities with the definitions

∆ψni = φni − φ̄ni , ∆ψn = φn − φ̄n, ∆ψn+1 = φn+1 − φ̄n+1

leads to

ψn+1 =ψn +τ

s∑
i=1

biψ̇
ni , ψni =ψn + τ

s∑
j=1

ai jψ̇
nj .

We can derive
α

2

�
‖∇ψn+1‖2 − ‖∇ψn‖2

�

=
α

2

�
τ

s∑
i=1

2bi(∇ψ̇
ni,∇ψn) +τ2

s∑
i=1

s∑
j=1

bi b j(∇ψ̇
ni,∇ψ̇nj)

�
.

Substituting ψn =ψni −τ
∑s

j=1
ai jψ̇

nj into the equation above implies

α

2

�
‖∇ψn+1‖2 − ‖∇ψn‖2

�

=
α

2

�
τ

s∑
i=1

2bi(∇ψ̇
ni,∇ψni)−τ2

s∑
i=1

s∑
j=1

mi j bi b j(∇ψ̇
ni,∇ψ̇nj)

�

≤ ατ

s∑
i=1

bi(∇ψ̇
ni,∇ψni) = τ

s∑
i=1

bi(φ̇
ni ,αψni). (3.10)

Finally, it follows from (3.9) and (3.10) that

E(φn+1, rn+1) =
ǫ2

2
‖∇φn+1‖2 +

1

2
|rn+1|2 +

α

2
‖∇ψn+1‖2

≤ E(φn, rn) =
ǫ2

2
‖∇φn‖2 +

1

2
|rn|2 +

α

2
‖∇ψn‖2.

Remark 3.1. In order construct the linearized scheme (3.4)-(3.6), we can replace w(φni)

by w(In−1
τ (φni)), where In−1

τ (φni) is the extrapolation of φni . The linearized scheme also

preserves energy decay in the sense of energy E(φn, rn), the proof can follow the process

of the proof of the above theorem.

3.4. Fixed-point iteration computation

The system (3.4)-(3.6) is nonlinear if the potential f (φ) is nonlinear, which is not easy

to compute. One way to deal with this issue is to linearize the system by extrapolation,

then solve the linearized equation to obtain the numerical solution. This technique applied

to Runge-Kutta scheme for the SAV-reformulated Allen-Cahn and Cahn-Hilliard models is

studied in [2]. Linearized system only achieves accuracy of order s instead of p, the reason

is that linearization violates the structure of RK method.

In order to solve the nonlinear system (3.4)-(3.6), we adopt fixed-point iteration to

compute the nonlinear system directly. It will preserves the structure of RK method and

lead to higher accuracy than the extrapolated RK-SAV methods [2].



Unconditional Energy Stable RK Schemes for the PF-BCP 69

Fixed-point iteration. We solve the nonlinear system directly by fixed-point iteration

method. The fixed-point iteration computation for the system (3.4)-(3.6) is constructed

as follows:

Step 1. Iterate

φ̇ni = M∆ϕni in Ω, i = 1, . . . , s,

φni = φn +τ

s∑
j=1

ai jφ̇
nj in Ω, i = 1, . . . , s,

ϕni = −ǫ2
∆φni + r⋆niw(φ⋆ni) +αψ⋆ni in Ω, i = 1, . . . , s,

−∆ψni = φni − φ̄ni in Ω, i = 1, . . . , s,

∂nφ
ni = ∂nϕ

ni = ∂nψ
ni = 0 or periodic on ∂Ω, i = 1, . . . , s,

(3.11)

ṙni =
�
w(φ⋆ni), φ̇ni

�
, i = 1, . . . , s,

rni = rn +τ

s∑
j=1

ai j ṙ
ni, i = 1, . . . , s,

(3.12)

to calculate the numerical solutions (φni , rni), i = 1, . . . , s on interval temporal nodes until

max

����
φni −φ⋆ni

φni

���� ≤ ε,
����
rni − r⋆ni

rni

���� ≤ ε.

Here �⋆ni denotes numerical solution at previous step in iterating, the initial value can be

chosen as (φn−1,i , rn−1,i), i = 1, . . . , s, which is close to (φni , rni), i = 1, . . . , s. For iteration,

we can set up a iteration threshold ε for the difference between �⋆ni,�ni, i = 1, . . . , s for the

accuracy of iteration that we desire. Then we can compute (φn+1, rn+1) with (φ̇ni , ṙni), i =

1, . . . , s obtained by Step 1.

Step 2. Computing numerical solutions on temporal nodes

φn+1 = φn +τ

s∑
i=1

biφ̇
ni ,

rn+1 = rn +τ

s∑
i=1

bi ṙ
ni.

(3.13)

3.5. Full discretization by Fourier-spectral method

We adopt Fourier-spectral method to discretize (3.11)-(3.13) in spatial direction. With-

out generality we consider this system in interval [x0, x1]. We separate interval into K(even)

parts with grids 1≤ k ≤ K , apply Fourier transform (FT), whose inverse transform is called

inverse Fourier transform (IFT), to project the solutions onto function space spanned by

the functions {exp(i2pπx/(x1 − x0)), −K/2 ≤ p ≤ K/2 − 1, p ∈ Z}. Denoting by λk the

coefficients of differential ∂x and by �̂k the transformed functions after FT on each grid k,

we have
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Step 1. Iterate

ˆ̇φni
k
= Mλ2

k
ϕ̂ni

k
in Ω, i = 1, . . . , s,

φ̂ni
k
= φ̂n

k
+τ

s∑
j=1

ai j
ˆ̇φ

nj

k
in Ω, i = 1, . . . , s,

ϕ̂ni
k
= −ǫ2λ2

kφ̂
ni
k
+ Ûr⋆niw(φ⋆ni)k +αψ̂

⋆ni
k

in Ω, i = 1, . . . , s,

−λ2
k
ψ̂ni

k
=

Û
φni − ¯ ni

φk in Ω, i = 1, . . . , s,

(3.14)

φni = IFT(φ̂ni), i = 1, . . . , s,

φ̇ni = IFT(
ˆ̇φni), i = 1, . . . , s,

ṙni =
�
w(φ⋆ni), φ̇ni

�
, i = 1, . . . , s,

rni = rn +τ

s∑
j=1

ai j ṙ
ni, i = 1, . . . , s,

(3.15)

to compute the numerical solutions on interval temporal nodes until

max
k

���φni
k
−φ⋆ni

k

��/ ��φni
k

��	 ≤ ε, |rni − r⋆ni|/|rni| ≤ ε.

Step 2. Compute numerical solutions on temporal nodes

φn+1 = φn +τ

s∑
i=1

biφ̇
ni ,

rn+1 = rn +τ

s∑
i=1

bi ṙ
ni.

(3.16)

It is obvious that we obtain the numerical solutions φni
k

, i = 1, . . . , s on interval temporal

nodes 1 ≤ k ≤ K by solving K linear equations of size s in each time-marching itera-

tion, that is to say we can calculate the numerical solutions pointwise on each grid. Our

technique substantially reduces the computational requirements. Rather than linearized

time-marching schemes, it computes the numerical solution by solving linear system of size

K × s while it need integrate all unknowns φni
k

, i = 1, . . . , s on grids k, 1 ≤ k ≤ K . In

higher spatial dimension, such as dim = 2,3, the number of grids increases very fast, the

computation cost for solving large linear equation will increase rapidly.

If we reformulate PF-BCP model based on IEQ method, then the corresponding con-

structed fully discretized scheme will have much more stiffness, it will hamper in their

performance by stability restrictions. Meanwhile, we need to solve many unknowns as

twice as that of the scheme based on SAV method because of the introduced variable is

a function over domain Ω.

4. Numerical Experiments

In this section, we present numerical examples to illustrate the convergence, energy
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decay property of the numerical scheme (3.14)-(3.16) for SAV-formulated PF-BCP model.

Choosing mean mass adding random perturbed values as the initial values which represents

the mixture of two monomer blocks in diblock copolymer, we simulate the evolutions of

PF-BCP model. The numerical simulations present the two monomer blocks separate from

each other in mixture, which is called phase separation, and we show the effects of various

parameter α on phase separations.

4.1. Convergence of RK numerical scheme

In this subsection, we will explore the convergence order by setting the iteration tol-

erance error to ε = 10−14. The discussion on the number of iteration steps required for

each time step will be given in the next subsection, taking into account the generality of

the random initial conditions.

Example 4.1 (One-Dimensional Case). We consider the following one-dimensional PF-BCP

model:

∂tφ = M
�
∆(−ǫ2

∆φ + f (φ))−α(φ − φ̄)
�

, (x , t) ∈ [−0.5,0.5]× [0, T ]

with f (φ) = φ3 − φ and initial value φ0 = sin3(2πx). The parameters are given by

ε= 0.01, M = 0.01, T = 1 and α = 0.01. We separate the domain [−0.5,0.5] into Nx = 27

sub-domains uniformly. We compute numerical solutions at T = 1 by scheme (3.14)-(3.16)

with different temporal stepsize. With τ = 1/216 we compute to obtain the numerical

solution as the reference solution since the exact solution for the PF-BCP model is unknown.

The convergence of numerical computation results are presented in Table 2.

Table 2: Example 4.1. L2-error and convergence order.

Stage/Stepsize 1/28 1/29 1/210 1/211 1/212

Gauss

1
2.03e-05 5.07e-06 1.27e-06 3.16e-07 7.89e-08

2.00 2.00 2.00 2.00

2
2.09e-09 1.27e-10 7.90e-12 4.93e-13 3.11e-14

4.05 4.01 4.00 3.99

Radau IIA

1
1.60e-03 6.33e-04 2.93e-04 1.42e-04 6.82e-05

1.34 1.11 1.05 1.06

2
2.46e-07 2.88e-08 3.54e-09 4.40e-10 5.49e-11

3.09 3.02 3.01 3.00

Example 4.2 (Two-Dimensional Case). We consider the two-dimensional PF-BCP model

∂tφ = M
�
∆(−ǫ2

∆φ + f (φ))−α(φ − φ̄)
�

, (x , y, t) ∈ [−0.5,0.5]2 × [0, T ]

with f (φ) = φ3−φ and initial valueφ0 = sin3(2πx) sin3(2πy). We choose the parameters

M = 0.001,ǫ = 0.1, T = 1 and α = 10 and separate the domain [−0.5,0.5]2 into 27 × 27



72 L. Chen and B. Ren

Table 3: Example 4.2. L2-error and convergence order.

Stage/Stepsize 1/25 1/26 1/27 1/28 1/29

Gauss

1
3.15e-07 7.88e-08 1.97e-08 4.92e-09 1.23e-09

2.00 2.00 2.00 2.00

2
1.07e-11 6.69e-13 4.18e-14 2.61e-15 1.63e-16

4.00 4.00 4.00 3.99

Radau IIA

1
8.28e-05 4.14e-05 2.07e-05 1.03e-05 5.05e-06

1.00 1.00 1.01 1.02

2
1.83e-09 2.31e-10 2.89e-11 3.62e-12 4.53e-13

2.99 2.99 3.00 3.00

sub-domains uniformly. The reference solution is chosen as the numerical solution com-

puted with temporal stepsize τ = 1/215. The numerical computation results with different

temporal stepsizes are presented in Table 3.

Tables 2 and 3 show that the L2-error of the RK scheme (3.14)-(3.16) achieves accuracy

of order p = 2s and p = 2s − 1 based on s-stage Gauss method and Radua IIA method

respectively. Under the stability condition of algebraically stable RK methods, the numerical

scheme (3.14)-(3.16) preserves the energy decay property of PF-BCP model. The energy

decay versus t for the PF-BCP model in one-dimensional and two-dimensional cases are

plotted in Fig. 1 (left) and (right) respectively.
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Figure 1: Evolution of the energy. Left: Example 4.1. Right: Example 4.2.

4.2. Phase separations in two-dimensional domain

In this section, we study the phase separation of PF-BCP model in two-dimensional do-

main. The phase separation describes the molecular self-assembly monomer blocks of DC

model to form lamellar or cylindrical nanostructures through two monomer blocks sepa-

rating from the mixture.
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In the PF-BCP model, the phase separation manifests in the spontaneous growth of the

concentration fluctuations that leads the system from homogeneous state to the separated

two-phase state. There are specified interface forming between them, 1 and −1 represents

pure monomer blocks A and B respectively. After the phase separation starts, the domains

of two phase states are formed in short time and the infinitesimal interface between two

states are specified and deforming.

We choose initial condition as random perturbed concentration field which is referred

to as mixture of two-state monomer blocks as follows:

φ(x , y, 0) = φ̂0 + 0.01× rand(x , y), (x , y) ∈ [−0.5,0.5]2,

where the function rand(x , y) denotes the uniformly distributed random function valued

in [0,1]. φ̂0 can be viewed as the mean value of the phase field due to the small perturba-

tion, which determines evolving the phase field into lamellar or cylindrical structure with

different values chosen.

Next, we will present some numerical simulations of PF-BCP model by numerical scheme

(3.14)-(3.16) with different initial conditions and parameters α to study the structure of

phase field and the effect of one-order linking two distinct monomer blocks on phase sep-

arations.

Example 4.3 (Lamellar-Structured PF-BCP). Firstly, we set up parameters as M = 0.01,

ǫ = 0.01 in the PF-BCP model. Next, we will investigate the effects of parameter α on the

coarsening dynamics. We consider the lamellar-structured phase field, choosing φ̂0 = 0. On

spatial dimension, we separate the domain [−0.5,0.5]2 into 27×27 sub-domains uniformly.

We simulate the PF-BCP model by our Gauss RK algorithm with stage s = 2. The numerical

profiles of φ at t = 0,0.002,0.005,0.01,0.1,0.5,1,2 are summarized in Figs. 2-4 with

temporal stepsize τ = 5×10−5. Time evolution of the energy decay versus t for the diblock-

copolymer model with φ̂0 = 0 and α= 0.001,10,100 is plotted in Fig. 5.
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Figure 2: Example 4.3. PF-BCP model, α = 0.001, φ̂0 = 0, t = 0, 0.002, 0.005, 0.01, 0.1, 0.5, 1, 2.
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Figs. 2-4 show that the phase field keeps evolving into the separated parts of monomer

blocks A, valued 1 (yellow) and monomer blocks B, valued −1 (blue) as t increasing until

the phase field becomes stable state. In the phase separation, the phase field evolves into

lamellar structure. The evolution of the PF-BCP model behaves like Cahn-Hilliard model

when the parameter α is small. Meanwhile, the phase field becomes stable as faster as

parameter α larger, which verifies that the nonlocal term represents the first-order effect of

the connectivity between the two monomer blocks.

It can be obviously seen from the Fig. 5 (left) that the energy of PF-BCP model decays to

the stable state earlier asα increasing and the energy in stable state is larger as α increasing.
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Figure 3: Example 4.3. PF-BCP model, α = 10, φ̂0 = 0, t = 0, 0.002, 0.005, 0.01, 0.1, 0.5, 1, 2.
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Figure 4: Example 4.3. PF-BCP model, α = 100, φ̂0 = 0 at t = 0, 0.002, 0.005, 0.01, 0.1, 0.5, 1, 2.



Unconditional Energy Stable RK Schemes for the PF-BCP 75

0.5 1 1.5 2 2.5 3 3.5 4

104

4

6

8

10

12

14

16

18

Figure 5: Example 4.3. Left: Time evolution of energy decay versus t for diblock-copolymer model,
φ̂0 = 0, α = 0.001, 10, 100. Right: Number of iteration steps required for each time step.

From this, it can be inferred that the nonlocal term α(φ− φ̄) in PF-BCP model strengthens

the connectivity of two monomer blocks which verifies the one-order linking effect of the

nonlocal term. We select a convergence criterion ε equal to 10−8. We trick the number of

iteration steps necessary for each time step, and the corresponding data is presented in the

right side of Fig. 5. It indicate that the iteration steps consistently require a similar number

of iterations to attain the desired precision ε.

Example 4.4 (Cylindrical-Structured PF-BCP). Furthermore, we simulate the phase separa-

tions of the PF-BCP model with initial condition φ̂0 = 0.3 to produce cylindrical-structured

phase field. The numerical profiles of φ at t = 0,0.002,0.005,0.01,0.1,0.5,1,2 are sum-

marized in Figs. 6-8 with temporal stepsize τ= 5×10−5. We plot the time evolution of the

energy decay versus t for the PF-BCP model with φ̂0 = 0.3 and α = 0.001,10,100 in Fig. 9.
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Figure 6: Example 4.4. PF-BCP model, α = 0.001, φ̂0 = 0.3 at t = 0, 0.002, 0.005, 0.01, 0.1, 0.5, 1, 2.
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Due to the mean value of the mass of phase field φ̂0 = 0.3 is positive, the phase of

the PF-BCP model in Figs. 6-8 evolves into cylindrical structures, which means monomer

A blocks (state 1) dominates in the domain Ω, state −1 part will evolve into cylindrical

structure via phase separation. If the mean value φ̂0 = 0, then two monomer blocks do not

dominate in the domain either, hence the phase field will evolve into lamellar structure,

which is confirmed in Figs. 2-4 with φ̂0 = 0. Also, the simulations of cylindrical-structured

phase field with different α verify that the nonlocal term represents the first-order effect of

the connectivity between the two monomer blocks.

From Fig. 9 (left), we can see that the time evolutions of the energy decay of PF-BCP

model with various α = 0.001,10,100 are almost similar to Fig. 5 which choose initial
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Figure 7: Example 4.4. PF-BCP model, α = 10, φ̂0 = 0.3 at t = 0, 0.002, 0.005, 0.01, 0.1, 0.5, 1, 2.
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Figure 8: Example 4.4. PF-BCP model, α = 100, φ̂0 = 0.3 at t = 0, 0.002, 0.005, 0.01, 0.1, 0.5, 1, 2.
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Figure 9: Example 4.4. Left: Time evolution of energy decay versus t for diblock-copolymer model,
φ̂0 = 0.3, α= 0.001, 10, 100. Right: Number of iteration steps required for each time step.

condition as φ̂0 = 0. By setting iteration tolerance error ε to 10−8, we observe that the

number of iteration steps is nearly identical to the previous simulation, see the Fig. 9 (right).

5. Conclusion

Diblock copolymers are copolymers composed of two monomer blocks of fluid-like dis-

order, which forms free interfaces in the evolution. In Lagrangian framework, it is difficult

to describe diblock copolymers due to free interfaces. In order to describe a system with free

interfaces efficiently, the PF-BCP model is introduced to deal with the difficulty in match-

ing boundary conditions on the interfaces between two blocks of copolymer in Eulerian

framework.

In this paper, we reformulate the PF-BCP model based on SAV method, then construct

energy stable time-marching scheme by adopting algebraically stable RK methods. The

nonlinear system is solved by fixed-point iteration method. The energy decay is proved

rigorously. The Fourier-spectral method is adopted to discretize on the spatial dimension.

We can compute numerical solutions pointwise on each grid, hence proposed algorithm

reduces computational requirements.

The high-accuracy and energy decay property are verified by the numerical examples.

The phase separation simulations confirm the efficiency of our algorithm for the PF-BCP

model. Finally, we discussed the influence on the evolutions about the initial conditions

and parameters α.
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