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Abstract. Resorting to the discrete zero-curvature equation and the Lenard recursion
equations, a hierarchy of integrable semi-discrete nonlinear evolution equations is de-
rived from a 3× 3 matrix spectral problem with three potentials. Based on the charac-
teristic polynomial of the Lax matrix for the hierarchy, a trigonal curve is introduced,
and the properties of the corresponding three-sheeted Riemann surface are studied, in-
cluding the genus, three kinds of Abelian differentials, Riemann theta functions. The
asymptotic properties of the Baker-Akhiezer function and fundamental meromorphic
functions defined on the trigonal curve are analyzed with the established theory of trig-
onal curves. As a result, finite genus solutions of the whole integrable semi-discrete
nonlinear evolution hierarchy are obtained.
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1. Introduction

Finite genus solutions of soliton equations have been a concerning topic over the past
few decades, which reveal the inherent structure mechanism of solitons and describe the
quasi-periodic behavior of nonlinear phenomena. Since the early 1970s, various methods
have been developed to solve soliton equations, such as the inverse scattering method,
Darboux transformation, Riemann-Hilbert approach and algebro-geometric methods —
cf. [1,6,16–19,27,29,30,40] and references therein. Among these methods, the algebro-
geometric method is a powerful tool to construct finite genus solutions of soliton equations
associated with 2× 2 matrix spectral problems based on the theory of hyperelliptic curves.
It has been successfully applied to the KdV, nonlinear Schrödinger, mKdV, sine-Gordon, Toda
lattice, and Ablowitz-Ladik equations and others [2,3,5,8,9,12,14,15,24,28,31,34,36].
The main tools used in this method include the theory of hyperelliptic curves, Riemann
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theta functions, Abel differentials, Abel map, and Abel-Jacobi inversion. When consid-
ering higher-order matrix spectral problems, the corresponding algebraic curve becomes
non-hyperelliptic, which brings great complexity. Consequently, the investigations of fi-
nite genus solutions of soliton equations associated with 3 × 3 matrix spectral problem
are relatively rare compared with 2× 2 case. Nonetheless, some progress has been made
in [4,7,13,32,33,35,37–39], certain finite genus solutions of the Boussinesq equation re-
lated to a third-order differential operator were found as special solutions of the Kadomtsev-
Petviashvili equation or by the reduction theory of Riemann theta functions. Dickson et

al. [10, 11] proposed a framework to yield finite genus solutions of the entire Boussinesq
hierarchy based on the classical Burchnall-Chaundy polynomial, the Baker-Akhiezer func-
tion and the theory of trigonal curves. Based on this, Geng et al. [20] further developed
an effective way to introduce algebraic curves associated with higher order matrix spectral
problems and applied it to construct finite genus solutions of soliton equation hierarchies re-
lated to 3×3 matrix spectral problems, such as the modified Boussinesq, Kaup-Kupershmidt,
coupled mKdV hierarchies [20,21,23,26,41].

In this paper, our main purpose is to derive an integrable hierarchy of semi-discrete
nonlinear evolution equations associated with 3×3 matrix spectral problem and construct
its finite genus solutions based on the theory of trigonal curves. The first member in the
hierarchy is the discrete 3-field system

un,t = −(1− unvn)[un+2(1− un+1vn+1)− un+1wn],

vn,t = (1− unvn)[vn−2(1− un−1vn−1)− vn−1wn−1],

wn,t = wn[un+2vn (1− un+1vn+1)− un+1vn−1 (1− unvn)],

(1.1)

where un = u(n, t), un,t = ∂tun, n ∈ Z, t ∈ R. The same notation is used for v(n, t) and
w(n, t). System (1.1) is reduced to

un,t = un+2(unvn − 1)(1− un+1vn+1),

vn,t = vn−2(1− unvn)(1− un−1vn−1)
(1.2)

for wn = 0. In Ref. [22], finite genus solutions of the entire discrete integrable hierarchy
of (1.2) are constructed. Due to the addition of one potential function, the properties of
the trigonal curve corresponding to system (1.1) at origin become more complicated than
the ones for (1.2). Therefore, constructing finite genus solutions to the hierarchy of (1.1)
requires more effort. In particular, we need to introduce three Abelian differentials of
the third kind to characterize the Baker-Akhiezer function and the meromorphic functions
involved.

This paper is organized as follows. In Section 2, we construct the discrete integrable
hierarchy from a 3 × 3 matrix spectral problem with three potentials by resorting to the
Lenard recursion equations and zero-curvature equations. Section 3 introduces the sta-
tionary Baker-Akhiezer function ψ3, two meromorphic functions φ13 and φ23 carrying the
data of the divisor and a trigonal curve of genus m−1 with two infinite points and three zero
points. The analytic properties of φ13, φ23 and ψ3 are studied by using the theory of trigo-
nal curves. In Section 4, we present the explicit Riemann theta function representations of
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the stationary Baker-Akhiezer function, the meromorphic functions, and in particular, that
of the solutions u(n), v(n) and w(n) for the entire stationary discrete hierarchy. Section 5
extends the algebro-geometric analysis of Sections 3 and 4 to the time-dependent case.
Finally, finite genus solutions for the entire discrete hierarchy are obtained.

2. Discrete Integrable Hierarchy

In this section, we construct a discrete integrable hierarchy by using the zero-curvature
and Lenard equations. Assume that u= u(n, t), v = v(n, t), w = w(n, t) are potentials with
(n, t) ∈ Z×R satisfying uvw 6= 0. The shift operator E, its inverse, difference operators ∆
and ∆m are defined as follows:

E f (n) = f (n+ 1), E−1 f (n) = f (n− 1),

∆ f (n) = f (n+ 1)− f (n), ∆m =

m∑

j=0

E j f (n),

where f (n) is a lattice function, n ∈ Z is a lattice variable, and m is an arbitrary positive
integer. We usually write f = f (n), f ± = E±1 f for notational convenience.

Consider the 3× 3 matrix spectral problem with three potentials

Eψ = Uψ, ψ =




ψ1

ψ2

ψ3



 , U =




0 λ 0
1 w u

v 0 1



 , (2.1)

where λ is a constant spectral parameter. We first introduce the sequences ĝ j, ǧ j and ǵ j by

K ĝ j = J ĝ j+1, ĝ j = (â j , b̂ j , ĉ j , d̂ j , ê j)
T , j ≥ 0,

K ǧ j = J ǧ j+1, ǧ j = (ǎ j , b̌ j , č j , ď j , ě j)
T , j ≥ 0,

K ǵ j = J ǵ j+1, ǵ j = (á j , b́ j , ć j , d́ j , é j)
T , j ≥ 0

(2.2)

with the conditions

ĝ j |(u,v,w)=0 = ǧ j |(u,v,w)=0 = ǵ j |(u,v,w)=0, j ≥ 1.

The starting points of the sequences are

ĝ0 =





uv−

−u

−v−

uv−−(1− u−v−)− uv−w−

1



 , ǧ0 =





1
0
0

−∆−1
1 (w+ uv−)

0



 , ǵ0 =





0
0
0
1
0



 ,

where ∆1∆
−1
1 = ∆

−1
1 ∆1 = 1. The initial conditions mean to identify constants of summa-

tion as zero. Additionally, two matrix operators K and J are defined by
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K =





(u∆w+ Eu)E E2 −wE 0 uE2 0
−E−1v 0 w− − E−1 −v 0
w∆wE 0 0 w∆E 0

0 −v uE 0 ∆

(∆w+ Euv−)E − uv−E−1 v(E −w)E u(w− − E−1) ∆∆1 0



 ,

J =





0 1 0 0 u

0 0 −E 0 −vE

−∆∆1 −v+E2 u 0 0
0 −v uE 0 ∆

(∆w+ Euv−)E − uv−E−1 v(E −w)E u(w− − E−1) ∆∆1 0



 .

Then ĝ j, ǧ j and ǵ j are uniquely determined by the recursion equation (2.2) up to a term in
KerJ , which we always assume to be zero. For example, the first several members read as

ĝ1 =





â1

−uê1 − (u
++s+ + u+w)s

−v− ê1 − E−2(v−s+ vw)s+

d̂1

−uv−w− −∆1uv−−s−




, ǵ1 =





−uv−

u

v−

uv−−s− + uv−w−

0



 ,

ǧ1 =





(E2 − 1)−1
�
−w∆(ď+0 +w) + uč1 − v+ b̌++1

�

u∆w+ u+ − u2v− + uď++0 − uě1

v−− + v−(ď−0 − ě1)

ď1

uv−




,

where

â1 = −(1+ E2)uv−−s−s−− − u+v−ws− uv−−w−−s− + uv−∆1uv−−s+ (uv−)2w−,

d̂1 = −(v
−−s− + v−w−)(v−u+u+ u++s+ +wu+)s− v−−−−us−−−s−−s−

− v−−−(u−v−− +w− +w−−−)us−s−− − (uv−−s−)2

− v−−u(u−v−−w−− + 2v−w−u+w−w−−)s− −
�
uv−w−

�2
,

ď1 = (E
2 − 1)−1

�
uč−1 − uw− č1 + v

�
wb̌+1 − b̌++1

�
+ uv−ǎ−1 − u+vǎ++1 −∆wǎ+1

�

with s = uv − 1.
To obtain a discrete integrable hierarchy, let us first focus on the stationary discrete

zero-curvature equation

(EV )U − UV = 0, V =




V11 λV12 λV13

V21 V22 V23

V31 λV32 λV33



 , (2.3)
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which is equivalent to

EV12 + vEV13 −λV21 = 0,

λ(EV11 − V22) +wEV12 = 0,

uEV12 + EV13 −λV23 = 0,

λEV31 + (wE − 1)V32 − vV12 = 0,

uEV32 +∆V33 − vV13 = 0,

EV22 − V11 + vEV23 −wV21 − uV31 = 0,

u(EV22 − V33) + EV23 − V13 −wV23 = 0,

v(EV33 − V11) + EV32 − V31 = 0,

λEV21 +w∆V22 − V12 − uV32 = 0.

(2.4)

Each entry of the Lax matrix V , denoted by Vi j = Vi j(a, b, c, d , e), is assumed to have the fol-
lowing polynomial dependence on the spectral parameterλ and lattice functions a, b, c, d , e:

V11 = d , V12 = a, V13 = b,

V21 = a+ + v b+, V22 = d+ +wa+, V23 = ua+ + b+,

V31 = v−a− + c− −w−c, V32 = c, V33 = e.

(2.5)

Substituting (2.5) into (2.4) yields

(uw+ + u+)a++ − uwa+ + b++ −wb+ + ud++ −λ(b+ ue) = 0,

−v−a− +w−c − c− − vd +λ(c+ + ve+) = 0,

w∆(wa+ + d+) +λ(a++ − a+ v+b++ − uc) = 0,

∆e+ uc+ − v b = 0,

∆wa+ + u+va++ − uv−a− + v(b++ −wb+) + uw−c − uc− + d++ − d = 0.

(2.6)

Expand a, b, c, d and e into Laurent series in λ, i.e.

a =
∑

j≥0

a jλ
− j, b =

∑

j≥0

b jλ
− j, c =

∑

j≥0

c jλ
− j, d =

∑

j≥0

d jλ
− j, e =

∑

j≥0

e jλ
− j.

Then the Eqs. (2.6) is equivalent to the recurrence equation

KG j = JG j+1, JG0 = 0, j ≥ 0,

where G j = (a j, b j , c j , d j, e j)
T . Since the equation JG0 = 0 has a solution — viz.

G0 = α0 ĝ j + β0 ǧ j + γ0 ǵ j,

the vector G j can be expressed as

G j = α0 ĝ j + β0 ǧ j + γ0 ǵ j +α1 ĝ j−1 + β1 ǧ j−1 + γ1 ǵ j−1

+ · · ·+α j ĝ0 + β j ǧ0 + γ j ǵ0, j ≥ 0, (2.7)
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where α j ,β j and γ j are arbitrary constants. Thus, the stationary zero-curvature equation
(2.3) is solved. Using Eq. (2.7), we define the Lax matrix

V (q) = (λqV )+ =





V
(q)

11 λV
(q)

12 λV
(q)

13

V
(q)

21 V
(q)

22 V
(q)

23

V
(q)

31 λV
(q)

32 λV
(q)

33



 ,

V
(q)

i j
= Vi j(a

(q), b(q), c(q), d(q), e(q)),

(2.8)

where

(a(q), b(q), c(q), d(q), e(q))T =

q∑

j=0

G jλ
q− j, q ≥ 0.

Assuming that V (q) satisfies the stationary zero curvature equation

(EV (q))U − UV (q) = 0, (2.9)

one obtains the stationary hierarchy

KGq = JGq+1 = 0.

Next, we turn to the time-dependent case. Let ψ satisfy the discrete spectral problem (2.1)
and the auxiliary problem

ψtr
= eV (r)ψ, eV (r) =





eV (r)11 λeV (r)12 λeV (r)13

eV (r)21
eV (r)22

eV (r)23

eV (r)31 λeV (r)32 λeV (r)33



 , (2.10)

where
eV (r)

i j
= Vi j(ã

(r), b̃(r), c̃(r), d̃(r), ẽ(r)),

(ã(r), b̃(r), c̃(r), d̃(r), ẽ(r))T =
∑

j≥0

G̃ jλ
r− j (2.11)

with G̃ j = (ã j , b̃ j , c̃ j , d̃ j , ẽ j)
T determined by

eG j = α̃0 ĝ j + α̃1 ĝ j−1 + · · ·+ α̃ j ĝ0, j ≥ 0. (2.12)

The constants {α̃ j} in (2.12) are independent of {α j}. Then the compatibility of Eqs. (2.1)

and (2.10) yields the discrete zero-curvature equation, Utr
= (EeV (r))U − U eV (r), which is

equivalent to the discrete integrable hierarchy

(utr
, vtr

, wtr
)T = X r , r ≥ 0 (2.13)

with the vector fields
X j =P (K eG j) =P (J eG j+1), j ≥ 0,
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where P is the projective map (γ1,γ2,γ3,γ4,γ5)
T
→ (γ1,γ2,γ3)

T
. The first nontrivial

member in the hierarchy (2.13) is as follows:

ut0
= −α̃0(1− uv)

�
u++(1− u+v+)− u+w

�
,

vt0
= α̃0(1− uv)

�
v−−(1− u−v−)− v−w−

�
,

wt0
= α̃0w∆(1− uv)u+v−,

which is exactly Eq. (1.1) while α̃0 = 1, t0 = t.

3. Stationary Baker-Akhiezer Function

In this section, we first introduce the corresponding trigonal curve Km−1 with the help
of the Lax matrix V (q) for the discrete integrable hierarchy. Then the stationary Baker-
Akhiezer function and the fundamental meromorphic functions on Km−1 are studied.

It can be directly checked that y I−V (q) also satisfies the stationary zero-curvature equa-
tion (2.9). Hence, the characteristic polynomial of Lax matrix V (q), Fm(λ, y) = det(y I −
V (q)), is independent of the variable n with the expansion

det(y I − V (q)) = y3 − Rm(λ)y
2 + Sm(λ)y − Tm(λ),

where Rm,Sm and Tm are constant coefficient polynomials of λ. According to the q-th
stationary zero curvature equation (2.9), we can set dq = ρ and wa+q = σ, where ρ and σ
are two constants satisfying ρσ(ρ +σ) 6= 0. Then one obtains from (2.5) and (2.8) that

Rm(λ) = tr (V (q)) = V
(q)

11 + V
(q)

22 +λV
(q)

33 = α0λ
q+1+ (α1 + 2γ0)λ

q + · · ·+ 2ρ+σ,

Sm(λ) =

�����
V
(q)

11 λV
(q)

12

V
(q)

21 V
(q)

22

�����+

�����
V
(q)

22 V
(q)

23

λV
(q)

32 λV
(q)

33

�����+

�����
V
(q)

11 λV
(q)

13

V
(q)

31 λV
(q)

33

�����

=
�
2α0γ0 − β

2
0

�
λ2q+1 + · · ·+ρ2 +ρσ,

Tm(λ) = det(V (q)) =

��������

V
(q)

11 λV
(q)

12 λV
(q)

13

V
(q)

21 V
(q)

22 V
(q)

23

V
(q)

31 λV
(q)

32 λV
(q)

33

��������
= λ

�
−α0β

2
0λ

3q+1 + · · ·
�

.

(3.1)

This immediately leads to a trigonal curve of degree m by the equation

Km−1 : Fm(λ, y) = y3 − Rm y2 + Sm y − Tm = 0, (3.2)

where m = 3q + 2 as α0β0 6= 0. For q ≥ 1, these curves are non-hyperelliptic. In what
follows, we always assume α0β0 6= 0 for the rest of the paper. By (3.1) and (3.2), the
trigonal curveKm−1 can be compacted by joining two different infinite points P∞1

and the
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double branch point P∞2
. The compactification of the curve Km−1 is still denoted by the

same symbol for convenience. The discriminant of the curve (3.2) is

∆(λ) = 4S3
m − R2

mS2
m + 4R3

mTm − 18RmSmTm − 27T 2
m

= −4α4
0β

2
0λ

6q+5 + · · · −ρ2σ2(ρ +σ)2.

Thus, by the Riemann-Hurwitz formula the genus of Km−1 is 3q + 1. The trigonal curve
Km−1 becomes a three-sheeted compact Riemann surface of genus m− 1 if it is nonsingu-
lar and irreducible. Points P on Km−1 are denoted as P = (λ, y) satisfying Fm(λ, y) = 0
together with P∞1

and P∞2
. In addition, one infers from Eq. (3.2) thatKm−1 has three dif-

ferent points at λ= 0, which are denoted by P01
, P02

and P03
. Introducing local coordinates

ζQ0
: P 7→ (λ−λ0) near the point Q0 = (λ0, y0) ∈Km−1, where Q0 is neither a branch point

nor a infinite point; ζP∞1
: P 7→ λ−1 near P∞1

; ζP∞2
: P 7→ λ−1/2 near P∞2

; ζP0 j
: P 7→ λ

near P0 j
for j = 1,2,3 and similar at other branch points of Km−1.

In the following, we introduce the stationary Baker-Akhiezer function ψ(P, n, n0)

Eψ(P, n, n0) = U
�
u(n), v(n), w(n);λ(P)

�
ψ(P, n, n0),

V (q)
�
u(n), v(n), w(n);λ(P)

�
ψ(P, n, n0) = y(P)ψ(P, n, n0),

ψ3(P, n0, n0) = 1, P ∈Km−1\{P∞1
, P∞2
}, n, n0 ∈ Z.

(3.3)

The fundamental meromorphic functions are defined by

φ13(P, n) =
ψ1(P, n, n0)

ψ3(P, n, n0)
, P ∈Km−1, n, n0 ∈ Z, (3.4)

φ23(P, n) =
ψ2(P, n, n0)

ψ3(P, n, n0)
, P ∈Km−1, n, n0 ∈ Z. (3.5)

Through some straightforward algebraic calculations, one obtains from Eqs. (3.3)-(3.5)
that

ψ3(P, n, n0) =






n−1∏
n′=n0

�
v(n′)φ13(P, n′) + 1

�
, n≥ n0 + 1,

1, n= n0,
n0−1∏
n′=n

�
v(n′)φ13(P, n′) + 1

�−1
, n≤ n0 − 1,

(3.6)

and

φ13(P, n) =
yV
(q)

12 (λ, n) + Cm(λ, n)

yV
(q)

32 (λ, n) + Am(λ, n)

=
λFm−1(λ, n)

y2V
(q)

12 (λ, n)− y
�
Cm(λ, n) + V

(q)

12 (λ, n)Rm(λ)
�
+ Dm(λ, n)

=
y2V

(q)

32 (λ, n)− y
�
Am(λ, n) + V

(q)

32 (λ, n)Rm(λ)
�
+ Bm(λ, n)

Em−1(λ, n)
, (3.7)



88 Y. Xu, M. Jia, X. Geng and Y. Zhai

φ23(P, n) =
yV
(q)

21 (λ, n) +Cm(λ, n)

yV
(q)

31 (λ, n) +Am(λ, n)

=
Hm−1(λ, n)

y2V
(q)

21 (λ, n)− y
�
Cm(λ, n) + V

(q)

21 (λ, n)Rm(λ)
�
+Dm(λ, n)

=
y2V

(q)

31 (λ, n)− y
�
Am(λ, n) + V

(q)

31 (λ, n)Rm(λ)
�
+Bm(λ, n)

−λEm−1(λ, n)
, (3.8)

where

Am = V
(q)

12 V
(q)

31 − V
(q)

11 V
(q)

32 ,

Bm = λV
(q)

31

�
V
(q)

12 V
(q)

33 − V
(q)

13 V
(q)

32

�
+λV

(q)

32

�
V
(q)

22 V
(q)

33 − V
(q)

23 V
(q)

32

�
,

Cm = λ
�
V
(q)

13 V
(q)

32 − V
(q)

12 V
(q)

33

�
,

Dm = V
(q)

12

�
V
(q)

11 V
(q)

22 −λV
(q)

12 V
(q)

21

�
+λV

(q)

13

�
V
(q)

11 V
(q)

32 − V
(q)

12 V
(q)

31

�
,

(3.9)

Am = λV
(q)

21 V
(q)

32 − V
(q)

22 V
(q)

31 ,

Bm = λV
(q)

31

�
V
(q)

11 V
(q)

33 − V
(q)

13 V
(q)

31

�
+λV

(q)

32

�
λV

(q)

21 V
(q)

33 − V
(q)

23 V
(q)

31

�
,

Cm = V
(q)

23 V
(q)

31 −λV
(q)

21 V
(q)

33 ,

Dm = V
(q)

21

�
V
(q)

11 V
(q)

22 −λV
(q)

12 V
(q)

21

�
+ V

(q)

23

�
V
(q)

22 V
(q)

31 −λV
(q)

21 V
(q)

32

�
,

(3.10)

Em−1 = λV
(q)

21

�
V
(q)

32

�2
+ V

(q)

31 V
(q)

32

�
V
(q)

11 − V
(q)

22

�
− V

(q)

12

�
V
(q)

31

�2
,

Fm−1 =
�
V
(q)

12

�2
V
(q)

23 + V
(q)

12 V
(q)

13

�
λV

(q)

33 − V
(q)

22

�
−λ

�
V
(q)

13

�2
V
(q)

32 ,

Hm−1 = λ
�
V
(q)

21

�2
V
(q)

13 + V
(q)

21 V
(q)

23

�
λV

(q)

33 − V
(q)

11

�
− V

(q)

31

�
V
(q)

23

�2
.

(3.11)

There are some interrelationships among above polynomials Am, Bm, Cm, Dm,Am,Bm,Cm,
Dm, Em−1, Fm−1, Hm−1,Rm,Sm, Tm, for example

λV
(q)

32 Fm−1 = V
(q)

12 Dm−
�
V
(q)

12

�2
Sm − (Cm)

2 − V
(q)

12 CmRm,

λAmFm−1 =
�
V
(q)

12

�2
Tm + CmDm,

(3.12)

V
(q)

12 Em−1 = V
(q)

32 Bm −
�
V
(q)

32

�2
Sm − (Am)

2 − V
(q)

32 AmRm,

CmEm−1 =
�
V
(q)

32

�2
Tm + AmBm,

(3.13)

V
(q)

31 Hm−1 = V
(q)

21 Dm −
�
V
(q)

21

�2
Sm −C

2
m
− V

(q)

21 CmRm,

AmHm−1 =
�
V
(q)

21

�2
Tm +CmDm,

(3.14)
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−λV
(q)

21 Em−1 = V
(q)

31 Bm −
�
V
(q)

31

�2
Sm −A

2
m
− V

(q)

31 AmRm,

−λCmEm−1 =
�
V
(q)

31

�2
Tm +AmBm.

(3.15)

From Eqs. (3.11), one infers that Em−1, Fm−1, Hm−1 are polynomials with respect to λ of
degree m− 1. Therefore, they can be represented in the form

Em−1(λ, n) = α2
0β0

�
v−(n)

�2
m−1∏

j=1

�
λ−µ j(n)

�
,

Fm−1(λ, n) = −α2
0β0u(n)

m−1∏

j=1

�
λ− ν j(n)

�
,

Hm−1(λ, n) = −α2
0β0u+(n)

�
1− u(n)v(n)

�m−1∏

j=1

�
λ− ξ j(n)

�
,

(3.16)

where {µ j}
n
j=1, {ν j}

n
j=1, {ξ j}

n
j=1 are zeros of Em−1, Fm−1, Hm−1, respectively. Define

µ̂ j(n) =
�
µ j(n), y(µ̂ j(n))

�
=

 
µ j(n),−

Am(µ j(n), n)

V
(q)

32 (µ j(n), n)

!

=

 
µ j(n),−

Am(µ j(n), n)

V
(q)

31 (µ j(n), n)

!
, j = 1, . . . , m− 1,

ν̂ j(n) =
�
ν j(n), y(ν̂ j(n))

�
=

 
ν j(n),−

Cm(ν j(n), n)

V
(q)

12 (ν j(n), n)

!
, j = 1, . . . , m− 1,

ξ̂ j(n) =
�
ξ j(n), y(ξ̂ j(n))

�
=

 
ξ j(n),−

Cm(ξ j(n), n)

V
(q)

21 (ξ j(n), n)

!
, j = 1, . . . , m− 1.

It follows from (3.12)-(3.15) that {µ̂ j(n)} j=1,...,m−1 ⊂ Km−1, {ν̂ j(n)} j=1,...,m−1 ⊂ Km−1 and

{ξ̂ j(n)} j=1,...,m−1 ⊂Km−1.
Next, we will give the asymptotic expansions for φ13 and φ23 near P∞1

, P∞2
, P01

, P02

and P03
. A direct calculation from Eqs. (3.3) yields

�
v(n)φ13(P, n) + 1

�
φ+13(P, n) = λφ23(P, n),

�
v(n)φ13(P, n) + 1

�
φ+23(P, n) = φ13(P, n) +w(n)φ23(P, n) + u(n).

(3.17)

Lemma 3.1. (I) Let ζ = λ−1 and ζ = λ−1/2 be the local coordinates near P∞1
and P∞2

,

respectively. Then

φ13(P, n) =
ζ→0






−u(n) + O (ζ) as P → P∞1
,

1

v−(n)
ζ−1 + O (1) as P → P∞2

,
(3.18a)
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φ23(P, n) =
ζ→0






−u+(n)
�
1− u(n)v(n)

�
ζ+ O (ζ2) as P → P∞1

,
1

v−(n)
+ O (ζ) as P → P∞2

.
(3.18b)

(II) Let ζ= λ be the local coordinates near P01
, P02

, and P03
. We have

φ13(P, n) =
ζ→0






κ(n) + O (ζ) as P → P01
,

−
1

v(n)
+ O (ζ) as P → P02

,

χ−(n)ζ+ O (ζ2) as P → P03
,

φ23(P, n) =
ζ→0






κ(n)w−(n)ζ−1 + O (1) as P → P01
,

1− u(n)v(n)

v(n)w(n)
+ O (ζ) as P → P02

,

χ(n) + O (ζ) as P → P03
,

(3.19)

where κ(n) and χ(n) satisfy the equations

κ+(n)
�
v(n)κ(n) + 1

�
= w−(n)κ(n), χ+(n) = w(n)χ(n) + u(n).

Moreover, the divisors of φ13 and φ23 are given by

�
φ13(P, n)

�
= DP03

,ν̂1(n),...,ν̂m−1(n)
(P)−DP∞2

,µ̂1(n),...,µ̂m−1(n)
(P), (3.20)

�
φ23(P, n)

�
= DP∞1

,ξ̂1(n),...,ξ̂m−1(n)
(P)−DP01

,µ̂1(n),...,µ̂m−1(n)
(P). (3.21)

Proof. Inserting the following two sets of ansatz:

φ13(P, n) =
ζ→0

∑

j≥0

κ1, j(n)ζ
j , φ23(P, n) =

ζ→0

∑

j≥1

χ1, j(n)ζ
j , P → P∞1

,

φ13(P, n) =
ξ→0

∑

j≥−1

κ2, j(n)ξ
j , φ23(P, n) =

ξ→0

∑

j≥0

χ2, j(n)ξ
j , P → P∞2

,
(3.22)

into Eqs. (3.17), respectively, and comparing the coefficients of the same powers of ζ yield

κ1,0 = −u, κ1,1 = −u++s+s− u+ws,

χ1,1 = u+s, χ1,2 = s+s
�
u++(w+ + u+v) + u+++s++

�
+ (u+)2vws,

v

k∑

i=0

κ1,iκ
+
1,k−i

+ κ+1,k = χ1,k+1, v

k∑

i≥1

κ1,k−iχ
+
1,i +χ

+
1,k = κ1,k +wχ1,k, k ≥ 2,

(3.23)

and

κ2,−1 =
1

v−
, κ2,0 =

1

v−

�
∆
−1
1 (w

− + u−v−−)−
v−−

v−

�
,
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χ2,0 =
1

v−
, χ2,1 =

1

v−

�
w− + u−v−− −

v−−

v−

�
,

v−χ2,2 = v−κ+2,0(1+ vκ2,0) +∆1v−κ2,1,

v

k∑

i=0

κ2,iκ2,k−i + κ
+
2,k = χ2,k+1, v

k∑

i=−1

κ2,iχ2,k−i + χ
+
2,k = κ2,k +wχ2,k, k ≥ 2.

This proves (3.18). Similarly, we can prove (3.19). The relations (3.18) and (3.19) imply
that φ13(P, n) has a simple zero P03

and a simple pole P∞2
. Additionally, it follows from

(3.8), (3.16) that {ν̂1(n), . . . , ν̂m−1(n)} and {µ̂1(n), . . . , µ̂m−1(n)} are m−1 zeros and m−1
poles of φ13, respectively. This proves (3.20) and (3.21) hold for the same reason.

Lemma 3.2. (I) Near P∞ j
∈ Km−1, in terms of the local coordinate ζ = λ−1/ j , j = 1,2,

we have

ψ3(P, n, n0) =






O (1) as P → P∞1
,

v−(n)

v−(n0)
ζn0−n

�
1+ O (ζ)

�
as P → P∞2

.
(3.24)

(II) Near P0 j
∈Km−1, j = 1,2,3, in terms of the local coordinate ζ = λ, we have

ψ3(P, n, n0) =






O (1) as P → P01
,

Γ (n, n0)ζ
n−n0

�
1+ O (ζ)

�
as P → P02

,

1+ O (ζ) as P → P03
,

(3.25)

where

Γ (n, n0) =






n−1∏
n′=n0

�
v+(n′)

�
u(n′)v(n′)− 1

�

v(n′)w(n′)

�
as n≥ n0 + 1,

1 as n= n0,
n0−1∏
n′=n

�
v+(n′)

�
u(n′)v(n′)− 1

�

v(n′)w(n′)

�−1

as n≤ n0 − 1.

The divisor (ψ3(P, n, n0)) of ψ3(P, n, n0) is given by
�
ψ3(P, n, n0)

�
= Dµ̂1(n),µ̂2(n),...,µ̂m−1(n)

−Dµ̂1(n0),µ̂2(n0),...,µ̂m−1(n0)

+ (n− n0)(DP02
−DP∞2

). (3.26)

Proof. From Lemma 3.1, we obtain (3.24) and (3.25). Using the relations (3.3)-(3.5)
and (3.7), one computes

1+ vφ13(P, n) =
λ(1− uv)

λ+ vwφ+13(P, n) +λvφ+23(P, n)
=

P→µ̂ j(n)

E+
m−1(P)

Em−1(P)
O (1). (3.27)

Then, the meromorphic function 1+vφ13 onKm−1\{P∞1
, P∞2

, P01
, P02

, P03
} has m−1 zeros

µ̂+1 , . . . , µ̂+
m−1 and m − 1 poles µ̂1, . . . , µ̂m−1. Hence, we get (3.26) by using (3.6), (3.24),

(3.25) and (3.27).
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4. Finite Genus Solutions of Stationary Discrete Integrable Hierarchy

In this section, we construct the Riemann theta function representations of φ13,φ23

and ψ3, from which finite genus solutions of the stationary discrete integrable hierarchy
are obtained.

Let us equip the Riemann surface Km−1 with canonical basis of cycles a1, . . . , am−1,
b1, . . . , bm−1 satisfying the following intersection numbers:

a j ◦ bk = δ jk, a j ◦ ak = 0, b j ◦ bk = 0, j, k = 1, . . . , m− 1,

where δi j stands for the Kronecker symbol. For the present, we will choose our holomorphic
differential basis as the following set:

ω̃l(P) =
1

3y2 − 2yRm + Sm

¨
λl−1dλ, 1≤ l ≤ 2q+ 1,

yλl−2q−2dλ, 2q+ 2≤ l ≤ m− 1.
(4.1)

Define period matrices A and B as

Ai j =

∫

a j

eωi, Bi j =

∫

b j

eωi , i, j = 1, . . . , m− 1,

which are invertible [25]. Set C = A−1, τ = A−1B. Taking the linear combinations

ω j =

m−1∑

l=1

C jlω̃l , j = 1, . . . , m− 1,

we obtain a canonical basis of holomorphic differentials ω = (ω1, . . . ,ωm−1), normalized
by the conditions

∫

ak

ω j = δ jk,

∫

bk

ω j = τ jk, j, k = 1, . . . , m− 1.

The matrix τ is called the period matrix of the Riemann surfaceKm−1, which is symmetric
and has a positive-definite imaginary part.

The Abelian differential of the third kind on Km−1\{Q1,Q2} is denoted by ω(3)
Q1 ,Q2

. It
satisfies the relations

ω
(3)
Q1,Q2

=
ζ→0

�
ζ−1 + O (1)

�
dζ as P → Q1,

ω
(3)
Q1,Q2

=
ζ→0

�
− ζ−1 + O (1)

�
dζ as P → Q2.

Here ω(3)
Q1,Q2

is normal if the normalized condition holds

∫

ak

ω
(3)
Q1 ,Q2

= 0, k = 1, . . . , m− 1.



Finite Genus Solutions to a Hierarchy of Integrable Semi-Discrete Equations 93

The relation of the normal Abelian differential of the third kind and the canonical holomor-
phic differential basis is given by

1

2πi

∫

bk

ω
(3)
Q1 ,Q2

=

∫ Q1

Q2

ωk, k = 1, . . . , m− 1.

Theorem 4.1. If {ω̃1, . . . , ω̃m−1} is a holomorphic differential basis, then the normalized

Abelian differentials of the third kind ω
(3)
P03

,P∞2
,ω(3)P∞1

,P01
and ω

(3)
P02

,P∞2
can be constructed by

ω
(3)
P03

,P∞2
=
(y −ρ)(y −σ−ρ)−α0λ

q+1 y

λFm,y(λ, y)
dλ+

m−1∑

j=1

z
(1)
j
ω̃ j,

ω
(3)
P∞1

,P01
=

y(ρ − y)

λFm,y(λ, y)
dλ+

m−1∑

j=1

z
(2)
j
ω̃ j,

ω
(3)
P02

,P∞2
=

y(y −α0λ
q+1 −σ−ρ)

λFm,y(λ, y)
dλ+

m−1∑

j=1

z
(3)
j
ω̃ j ,

(4.2)

where constants {z(1)
j
}m−1

j=1 , {z(2)
j
}m−1

j=1 and {z(3)
j
}m−1

j=1 are determined by the normalized condi-

tions ∫

ak

ω
(3)
P03

,P∞2
=

∫

ak

ω
(3)
P∞1

,P01
=

∫

ak

ω
(3)
P02

,P∞2
= 0, k = 1,2, . . . , m− 1.

Proof. Recalling (4.1) that the Abelian differentials λ eω3q+1 is holomorphic on Km−1\
{P∞1

, P∞2
} and has simple poles at P∞1

and P∞2
, λ−1 eω1 is holomorphic on Km−1\

{P∞1
, P∞2
} and has simple poles at P01

, P02
and P03

, λ−1 eω2q+2 is holomorphic on Km−1\
{P∞1

, P∞2
, P03
} and has simple poles at P01

and P02
. Moreover, the Abelian differential

λ−1F−1
m,y y2dλ has simple poles at P∞1

, P01
, P02

. Taking the linear combination of these
Abelian differentials and considering the definition of Abelian differentials of the third kind
yield (4.2).

It follows from Theorem 4.1 that

ω
(3)
P03

,P∞2
=
ζ→0

¨
O (1)dζ as P → P∞1

,�
−ζ−1 + O (1)

�
dζ as P → P∞2

,

ω
(3)
P∞1

,P01
=
ζ→0

¨�
ζ−1 + O (1)

�
dζ as P → P∞1

,

O (1)dζ as P → P∞2
,

ω
(3)
P02

,P∞2
=
ζ→0

¨
O (1)dζ as P → P∞1

,�
− ζ−1 + O (1)

�
dζ as P → P∞2

,

ω
(3)
P03

,P∞2
=
ζ→0






O (1)dζ as P → P01
,

O (1)dζ as P → P02
,�

ζ−1 + O (1)
�

dζ as P → P03
,
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ω
(3)
P∞1

,P01
=
ζ→0






�
− ζ−1 + O (1)

�
dζ as P → P01

,

O (1)dζ as P → P02
,

O (1)dζ as P → P03
,

ω
(3)
P02

,P∞2
=
ζ→0






O (1)dζ as P → P01
,�

ζ−1 + O (1)
�
dζ as P → P02

,

O (1)dζ as P → P03
.

Then we have
∫ P

Q0

ω
(3)
P03

,P∞2
=
ζ→0

¨
ω∞1(P03

, P∞2
) + O (ζ) as P → P∞1

,

− lnξ+ω∞2(P03
, P∞2

) + O (ζ) as P → P∞2
,

∫ P

Q0

ω
(3)
P∞1

,P01
=
ζ→0

¨
lnζ+ω∞1(P∞1

, P01
) + O (ζ) as P → P∞1

,

ω∞2(P∞1
, P01
) + O (ζ) as P → P∞2

,
∫ P

Q0

ω
(3)
P02

,P∞2
=
ζ→0

¨
ω∞1(P02

, P∞2
) + O (ζ) as P → P∞1

,

− lnζ+ω∞2(P02
, P∞2

) + O (ζ) as P → P∞2
,

(4.3)

∫ P

Q0

ω
(3)
P03

,P∞2
=
ζ→0






ω01(P03
, P∞2

) + O (ζ) as P → P01
,

ω02(P03
, P∞2

) + O (ζ) as P → P02
,

lnζ+ω03(P03
, P∞2

) + O (ζ) as P → P03
,

∫ P

Q0

ω
(3)
P∞1

,P01
=
ζ→0






− lnζ+ω01(P∞1
, P01
) + O (ζ) as P → P01

,

ω02(P∞1
, P01
) + O (ζ) as P → P02

,

ω03(P∞1
, P01
) + O (ζ) as P → P03

,

∫ P

Q0

ω
(3)
P02

,P∞2
=
ζ→0






ω01(P02
, P∞2

) + O (ζ) as P → P01
,

lnζ+ω02(P02
, P∞2

) + O (ζ) as P → P02
,

ω03(P02
, P∞2

) + O (ζ) as P → P03
,

(4.4)

where Q0 is an appropriately chosen base point on Km−1\{P∞1
, P∞2

, P01
, P02

, P03
} and

ω∞l , l = 1,2, ω0 j , j = 1,2,3, are integration constants depending on the base points Q0.
The b-periods of ω(3)

P02
,P∞2

is denoted by

U (3) =
�
U
(3)
1 , . . . , U

(3)
m−1

�
, U

(3)
k
=

1

2πi

∫

bk

ω
(3)
P02

,P∞2
(P), k = 1, . . . , m− 1. (4.5)

Let Tm−1 be the period lattice {z ∈ Cm−1 | z = N + Mτ, N , M ∈ Zm−1}. The complex
torus Jm−1 = C

m−1/Tm−1 is called Jacobian variety of Km−1. The Abel mapA :Km−1→
Jm−1 is defined by

A (P) =
�
A1(P), . . . ,Am−1(P)

�
=

�∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωm−1

�
(mod Tm−1).
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A direct linear extension to the divisor group Div(Km−1)

A
�∑

lkPk

�
=
∑

lkA (Pk).

Noting the nonspecial divisors

Dµ̂(n) =
m−1∑

k=1

µ̂k(n), Dν̂(n) =
m−1∑

k=1

ν̂k(n), Dξ̂(n) =
m−1∑

k=1

ξ̂k(n),

we define Abel-Jacobi coordinates

ρ(1)(n) =A

�
m−1∑

k=1

µ̂k(n)

�
=

m−1∑

k=1

∫ µ̂(n)

Q0

ω,

ρ(2)(n) =A

�
m−1∑

k=1

ν̂k(n)

�
=

m−1∑

k=1

∫ ν̂(n)

Q0

ω,

ρ(3)(n) =A

�
m−1∑

k=1

ξ̂k(n)

�
=

m−1∑

k=1

∫ ξ̂(n)

Q0

ω,

where ρ(1)(n), ρ(2)(n) and ρ(3)(n) can be linearized in the following text.
Let θ(z) denote the Riemann theta function associated with Km−1, i.e.

θ(z) =
∑

N∈Zm−1

exp
�
2πi〈N , z〉+πi〈N , Nτ〉

	
,

where z = (z1, . . . , zm−1) ∈ C
m−1, N = (N1, . . . , Nm−1) ∈ Z

m−1, the angle brackets denote
the Euclidean inner product

〈N , z〉=
m−1∑

j=1

N jz j , 〈N , Nτ〉=
m−1∑

j,k=1

τ jkN jNk.

For the sake of brevity, we define the function z :Km−1 ×σ
m−1Km−1→ C

m−1 by

z
�
P, µ̂(n)

�
= Λ−A (P) +ρ(1)(n), P ∈Km−1,

z
�
P, ν̂(n)

�
= Λ−A (P) +ρ(2)(n), P ∈Km−1,

z
�
P, ξ̂(n)

�
= Λ−A (P) +ρ(3)(n), P ∈Km−1,

(4.6)

where µ̂ = {µ̂1, . . . , µ̂m−1} ∈ σ
m−1Km−1, ν̂ = {ν̂1, . . . , ν̂m−1} ∈ σ

m−1Km−1, and ξ̂ =

{ξ̂1, . . . , ξ̂m−1} ∈ σ
m−1Km−1. Here σm−1Km−1 denotes the (m − 1)-th symmetric power

of Km−1, Λ = (Λ1, . . . ,Λm−1) is the vector of Riemann constants depending on the base
point Q0 by following expression:

Λ j =
1

2
(1+τ j j)−

m−1∑

i=1
i 6= j

∫

ai

ωi(P)

∫ P

Q0

ω j , j = 1, . . . , m− 1.



96 Y. Xu, M. Jia, X. Geng and Y. Zhai

Lemma 4.1. Assume that the curve Km−1 is nonsingular. Let (n, n0) ∈ Z
2, then

ρ(1)(n) = ρ(1)(n0) + (n− n0)
�
A (P∞2

)−A (P02
)
�

, (4.7)

ρ(2)(n) = ρ(2)(n0) + (n− n0)
�
A (P∞2

)−A (P02
)
�

, (4.8)

ρ(3)(n) = ρ(3)(n0) + (n− n0)
�
A (P∞2

)−A (P02
)
�

. (4.9)

Proof. Applying Abel’s theorem to (3.26) proves (4.7) and applying it to (3.20) and
(3.21) results in

ρ(1)(n) +A (P∞2
) = ρ(2)(n) +A (P03

), (4.10)

ρ(1)(n) +A (P01
) = ρ(3)(n) +A (P∞1

). (4.11)

Substituting (4.7) into (4.10) and (4.11) yields (4.8) and (4.9), respectively.

Using Lemma 4.1, (4.5) and (4.7) we can rewrite θ(z(P0 j
, µ̂(n))), θ(z(P0 j

, ν̂(n))),

θ(z(P0 j
, ξ̂(n))), θ(z(P∞l

, µ̂(n))), θ(z(P∞l
, ν̂(n))) and θ(z(P∞l

, ξ̂(n))), respectively, as

θ
�
z(P0 j

, µ̂(n))
�
= θ

�
eM (1)

j
− U (3)n

�
, θ

�
z(P∞l

, µ̂(n))
�
= θ

�
eK(1)

l
− U (3)n

�
,

θ
�
z(P0 j

, ν̂(n))
�
= θ

�
eM (2)

j
− U (3)n

�
, θ

�
z(P∞l

, ν̂(n))
�
= θ

�
eK(2)

l
− U (3)n

�
,

θ
�
z(P0 j

, ξ̂(n))
�
= θ

�
eM (3)

j − U (3)n
�

, θ(z(P∞l
, ξ̂(n))) = θ

�
eK(3)l − U (3)n

�
,

where

eM (s)j = Λ−A (P0 j
) +ρ(s)(n0) + U (3)n0, j = 1,2,3, s = 1,2,3,

eK(s)l = Λ−A (P∞l
) +ρ(s)(n0) + U (3)n0, l = 1,2, s = 1,2,3.

Lemma 4.2. Assume that Km−1 is nonsingular and irreducible. Let P = (λ, y) ∈ Km−1\
{P∞1

, P∞2
}, (n, n0) ∈ Z

2. Suppose that Dµ̂(n),Dν̂(n) andDξ̂(n) are nonspecial for n ∈ Z. Then

ψ3(P, n, n0) =
θ(z(P03

, µ̂(n0)))

θ(z(P03
, µ̂(n)))

θ(z(P, µ̂(n)))

θ(z(P, µ̂(n0)))

× exp

�
(n− n0)

�∫ P

Q0

ω
(3)
P02

,P∞2
−ω03(P02

, P∞2
)

��
, (4.12)

φ13(P, n) = N1(n)
θ(z(P, ν̂(n)))

θ(z(P, µ̂(n)))
exp

�∫ P

Q0

ω
(3)
P03

,P∞2

�
, (4.13)

φ23(P, n) = N2(n)
θ(z(P, ξ̂(n)))

θ(z(P, µ̂(n)))
exp

�∫ P

Q0

ω
(3)
P∞1

,P01

�
, (4.14)
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where

N1(n) = −
1

v(n0)

θ(z(P∞2
, µ̂+(n0)))

θ(z(P03
, µ̂+(n0)))

exp
�
−ω02(P03

, P∞2
)
�

× exp
�
(n− n0)

�
ω03

�
P02

, P∞2

�
−ω∞2

�
P02

, P∞2

���
,

N2(n) =
1

v−(n0)

θ(z(P∞2
, µ̂(n0)))

θ(z(P03
, µ̂(n0)))

θ(z(P03
, µ̂(n)))

θ(z(P∞2
, ξ̂(n)))

exp
�
−ω∞2(P∞1

, P01
)
�

× exp
�
(n− n0)

�
ω03(P02

, P∞2
)−ω∞2(P02

, P∞2
)
��

.

(4.15)

Moreover, the stationary finite genus solutions u(n), v(n), w(n) have the form

u(n) =
1

v(n0)

θ(z(P∞1
, ν̂(n)))

θ(z(P∞1
, µ̂(n)))

θ(z(P∞2
, µ̂+(n0)))

θ(z(P03
, µ̂+(n0)))

× exp
�
(n− n0)

�
ω03(P02

, P∞2
)−ω∞2(P02

, P∞2
)
�

+ω∞1(P03
, P∞2

)−ω02(P03
, P∞2

)
�

,

v−(n) = v−(n0)
θ(z(P03

, µ̂(n0)))

θ(z(P03
, µ̂(n)))

θ(z(P∞2
, µ̂(n)))

θ(z(P∞2
, µ̂(n0)))

× exp
�
(n− n0)(ω

∞2(P02
, P∞2

)−ω03(P02
, P∞2

)
�

,

w(n) =
�
1− u(n)v(n)

� v−(n0)

v(n)

θ(z(P∞2
, ν̂(n0)))

θ(z(P∞2
, µ̂(n0)))

θ(z(P∞2
, ξ̂(n)))

θ(z(P∞2
, ν̂(n)))

θ(z(P02
, µ̂(n)))

θ(z(P02
, ξ̂(n)))

× exp
�
(n− n0)(ω

∞2(P02
, P∞2

)−ω03(P02
, P∞2

))

+ω∞2(P∞1
, P01
)−ω02(P∞1

, P01
)
�
.

(4.16)

Proof. Let Ψ3(P, n, n0) be the right-hand side of (4.12). Our point of departure is to
prove Ψ3(P, n, n0) =ψ3(P, n, n0). It follows from (4.3) and (4.4) that

exp

�∫ Q

P0

ω
(3)
P02

,P∞2
−ω03(P02

, P∞2
)

�
=
ζ→0

ζ−1 + O (1) as P → P∞2
,

exp

�∫ Q

P0

ω
(3)
P02

,P∞2
−ω03(P02

, P∞2
)

�

=
ζ→0

ζexp
�
ω02(P02

, P∞2
)−ω03(P02

, P∞2
)
�
+ O (ζ2) as P → P02

,

exp

�∫ Q

P0

ω
(3)
P02

,P∞2
−ω03(P02

, P∞2
)

�
=
ζ→0

exp
�
O (ζ)

�
as P → P03

.

(4.17)

Employing Riemann’s vanishing theorem and the Riemann-Roch theorem, we deduce that
Ψ3 has the same simple poles and zeros as ψ3, especially that the holomorphic function
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Ψ3/ψ3 = γ, where γ is a constant. Using (4.17) and Lemma 3.2, one computes

Ψ3

ψ3
=
(1+ O (ζ))exp(O (ζ))

1+ O (ζ)
= 1+ O (ζ) as P → P03

,

from which one concludes γ= 1. This proves (4.12).
By (3.20), (3.21) and the Riemann-Roch theorem,φ13(P, n) andφ23(P, n) are of the type

in (4.13) and (4.14), where N1(n) and N2(n) are independent of P ∈Km−1. A comparison
of (4.12) and the asymptotic relations (3.25) near P∞2

, then yields the following expression
for v(n) in (4.16):

v−(n)

v−(n0)
=
θ(z(P03

, µ̂(n0)))

θ(z(P03
, µ̂(n)))

θ(z(P∞2
, µ̂(n)))

θ(z(P∞2
, µ̂(n0)))

× exp
�
(n− n0)

�
ω∞2(P02

, P∞2
)−ω03(P02

, P∞2
)
��

.

Comparing the asymptotic expressions of φ13 for P → P02
and P → P∞1

in (3.24), (3.25)
and (4.13), one obtains

−
1

v(n)
= N1(n)

θ(z(P02
, ν̂(n)))

θ(z(P02
, µ̂(n)))

exp
�
ω02(P03

, P∞2
)
�

as P → P02
,

−u(n) = N1(n)
θ(z(P∞1

, ν̂(n)))

θ(z(P∞1
, µ̂(n)))

exp
�
ω∞1(P03

, P∞2
)
�

as P → P∞1
,

(4.18)

which gives the representation of N1(n),

N1(n) = −
1

v(n0)

θ(z(P02
, µ̂(n)))

θ(z(P02
, ν̂(n)))

θ(z(P03
, µ̂+(n)))

θ(z(P03
, µ̂+(n0)))

θ(z(P∞2
, µ̂+(n0)))

θ(z(P∞2
, µ̂+(n)))

× exp
�
−ω02(P03

, P∞2
) + (n− n0)

�
ω03

�
P02

, P∞2
)−ω∞2(P02

, P∞2

�� �
.

Moreover, we obtain from (4.7)-(4.11) and (4.6) that

θ
�
z(P∞2

, µ̂+(n))
�
= θ

�
z(P02

, µ̂(n))
�
,

θ
�
z(P03

, µ̂+(n))
�
= θ

�
z(P∞2

, ν̂+(n))
�
= θ

�
z(P02

, ν̂(n))
�
.

The representation of N1(n) can be simplified as shown in (4.15) by using the above rela-
tions. Consequently, the Riemann theta function representation of u(n) in (4.16) is given
by (4.18). Meanwhile, comparing the asymptotic expressions of φ23 for P → P∞2

and
P → P02

in (3.18), (3.19) and (4.14), one obtains

1

v−(n)
= N2(n)

θ(z(P∞2
, ξ̂(n)))

θ(z(P∞2
, ν̂(n)))

exp
�
ω∞2(P∞1

, P01
)
�
,

1− u(n)v(n)

v(n)w(n)
= N2(n)

θ(z(P02
, ξ̂(n)))

θ(z(P02
, ν̂(n)))

exp
�
ω02(P∞1

, P01
)
�
,

from which we obtain N2(n) and w(n). This completes the proof.
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5. Finite Genus Solutions of Discrete Integrable Hierarchy

In this section, we extend the stationary Baker-Akhiezer function to the time-dependent
case, from which all those results obtained in Sections 3 and 4 are generalized to the time-
dependent cases. In particular, we obtain Riemann theta function representations for the
time-dependent Baker-Akhiezer function, the time-dependent meromorphic functions, and
the general time-dependent finite genus solutions of the discrete integrable hierarchy.

Similar to Eqs. (3.3), we introduce the time-dependent Baker-Akhiezer function

Eψ(P, n, n0, tr , t0,r) = U
�
u(n, tr ), v(n, tr ), w(n, tr );λ(P)

�
ψ(P, n, n0, tr , t0,r ),

ψtr
(P, n, n0, tr , t0,r ) = eV (r)

�
u(n, tr ), v(n, tr), w(n, tr );λ(P)

�
ψ(P, n, n0, tr , t0,r),

V (q)
�
u(n, tr ), v(n, tr ), w(n, tr );λ(P)

�
ψ(P, n, n0, tr , t0,r ) = y(P)ψ(P, n, n0 , tr , t0,r ),

ψ3(P, n0, n0, t0,r , t0,r ) = 1, P ∈Km−1\{P∞1
, P∞2
}, (n, tr ) ∈ Z×R.

(5.1)

The compatibility conditions of the first three members in (5.1) yield

Utr
− (EeV (r))U + U eV (r) = 0, (5.2)

(EV (q))U − UV (q) = 0, (5.3)

V
(q)
tr
− [eV (r), V (q)] = 0. (5.4)

A direct calculation shows that y I − V (q) satisfies (5.3) and (5.4), which implies that
det(y I − V (q)) is independent of n and tr . Define the associated time-dependent mero-
morphic functions

φ13(P, n, tr ) =
ψ1(P, n, n0, tr , t0,r )

ψ3(P, n, n0, tr , t0,r )
, P ∈Km−1,

φ23(P, n, tr ) =
ψ2(P, n, n0, tr , t0,r )

ψ3(P, n, n0, tr , t0,r )
, P ∈Km−1,

(5.5)

which implies by (5.1) that

φ13(P, n, tr ) =
yV
(q)

12 (λ, n, tr ) + Cm(λ, n, tr )

yV
(q)

32 (λ, n, tr ) + Am(λ, n, tr )
(5.6)

=
λFm−1(λ, n, tr )

y2V
(q)

12 (λ, n, tr )− y[Cm(λ, n, tr) + V
(q)

12 (λ, n, tr )Rm(λ)] + Dm(λ, n, tr )

=
y2V

(q)

32 (λ, n, tr )− y[Am(λ, n, tr) + V
(q)

32 (λ, n, tr )Rm(λ)] + Bm(λ, n, tr )

Em−1(λ, n, tr )
,

φ23(P, n, tr ) =
yV
(q)

21 (λ, n, tr ) +Cm(λ, n, tr)

yV
(q)

31 (λ, n, tr ) +Am(λ, n, tr )
(5.7)

=
Hm−1(λ, n, tr )

y2V
(q)

21 (λ, n, tr )− y[Cm(λ, n, tr ) + V
(q)

21 (λ, n, tr )Rm(λ)] +Dm(λ, n, tr )
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=
y2V

(q)

31 (λ, n, tr )− y[Am(λ, n, tr ) + V
(q)

31 (λ, n, tr )Rm(λ)] +Bm(λ, n, tr )

−λEm−1(λ, n, tr )
,

where the polynomials Am(λ, n, tr ), Bm(λ, n, tr ), Cm(λ, n, tr ), Dm(λ, n, tr ),Am(λ, n, tr ),
Bm(λ, n, tr ),Cm(λ, n, tr ),Dm(λ, n, tr ), Em−1(λ, n, tr ), Fm−1(λ, n, tr ) and Hm−1(λ, n, tr ) are
defined as (3.9)-(3.11). Therefore, in the present context the relations (3.12), (3.13) also
hold. Similarly, we have

Em−1(λ, n, tr ) = α0β0v−(n, tr )

m−1∏

j=1

�
λ−µ j(n, tr )

�
,

Fm−1(λ, n, tr ) = −α
2
0β0

�
u(n, tr )

�2
m−1∏

j=1

�
λ− ν j(n, tr )

�
,

Hm−1(λ, n, tr ) = −α
2
0β0u+(n, tr )

�
1− u(n, tr )v(n, tr)

�m−1∏

j=1

�
λ− ξ j(n, tr )

�
,

(5.8)

where {µ j(n, tr )}
m−1
j=1 , and {ν j(n, tr)}

m−1
j=1 , {ζ j(n, tr)}

m−1
j=1 are respectively the zeros of the

polynomials Em−1(λ, n, tr ), Fm−1(λ, n, tr ), and Hm−1(λ, n, tr ). Since

Em−1(λ, n, tr )|λ=µ j (n,tr )
=

�
λV

(q)

21

�
V
(q)

32

�2
+ V

(q)

31 V
(q)

32

�
V
(q)

11 − V
(q)

22

�
− V

(q)

12

�
V
(q)

31

�2����
λ=µ j (n,tr )

=
�
V
(q)

32 Am − V
(q)

31 Am

����
λ=µ j(n,tr )

= 0,

we have
Am(µ j(n, tr ), n, tr )

V
(q)

31 (µ j(n, tr), n, tr )
=

Am(µ j(n, tr), n, tr )

V
(q)

32 (µ j(n, tr ), n, tr )
.

Define

µ̂ j(n, tr ) =
�
µ j(n, tr ), y(µ̂ j(n, tr ))

�

=

 
µ j(n, tr ),−

Am(µ j(n, tr ), n, tr )

V
(q)

32 (µ j(n, tr), n, tr )

!

=

 
µ j(n, tr ),−

Am(µ j(n, tr ), n, tr )

V
(q)

31 (µ j(n, tr), n, tr )

!
∈Km−1, j = 1, . . . , m− 1,

ν̂ j(n, tr ) =
�
ν j(n, tr ), y(ν̂ j(n, tr ))

�

=

 
ν j(n, tr ),−

Cm(ν j(n, tr ), n, tr )

V
(q)

12 (ν j(n, tr ), n, tr )

!
∈Km−1, j = 1, . . . , m− 1,

ξ̂ j(n, tr ) =
�
ξ j(n, tr ), y(ξ̂ j(n, tr ))

�

=

 
ξ j(n, tr),−

Cm(ξ j(n, tr), n, tr )

V
(q)

21 (ξ j(n, tr), n, tr )

!
∈Km−1, j = 1, . . . , m− 1.

(5.9)
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Now we can infer the divisors of φ13(P, n, tr ) and φ23(P, n, tr ) are given by
�
φ13(P, n, tr )

�
= DP03

,ν̂1(n,tr ),...,ν̂m−1(n,tr )
(P)−DP∞2

,µ̂1(n,tr ),...,µ̂m−1(n,tr )
(P), (5.10)

�
φ23(P, n, tr )

�
= DP∞1

,ξ̂1(n,tr ),...,ξ̂m−1(n,tr )
(P)−DP01

,µ̂1(n,tr ),...,µ̂m−1(n,tr )
(P). (5.11)

Similarly, φ13(P, n, tr ) and φ23(P, n, tr ) satisfy the Riccati-type equations

φ+13(P, n, tr )
�
1+ v(n, tr)φ13(P, n, tr )

�
= λφ23(P, n, tr ),

φ+23(P, n, tr )
�
1+ v(n, tr)φ13(P, n, tr )

�
= φ13(P, n, tr ) +w(n, tr )φ23(P, n, tr ) + u(n, tr ).

The dynamics of the zeros µ j of Em−1 concerning the variable tr can be described by a first-
order system of nonlinear differential equations in terms of Dubrovin-type equations.

Lemma 5.1. Let the zeros {µ j(n, tr)} j=1,...,m−1 of Em−1 remain distinct for (n, tr) ∈ Z × R.

Then {µ j(n, tr)} j=1,...,m−1 satisfy the system of equations,

µ j,tr
(n, tr ) =

�
eV (r)32 (µ j(n, tr ), n, tr )V

(q)

31 (µ j(n, tr), n, tr ) (5.12)

−eV (r)31 (µ j(n, tr), n, tr )V
(q)

32 (µ j(n, tr ), n, tr )
�

×
3y2(µ̂ j(n, tr ))− 2y(µ̂ j(n, tr ))Rm(µ j(n, tr )) + Sm(µ j(n, tr))

α0β0v−(n, tr )
∏m−1

k=1
k 6= j

(µ j(n, tr )−µk(n, tr ))
, 1≤ j ≤ m− 1.

Proof. The relations (5.4) and (3.9)-(3.11) yield

Em−1,tr
(n, tr) =

�
λV
(q)

21

�
V
(q)

32

�2
+ V

(q)

31 V
(q)

32

�
V
(q)

11 − V
(q)

22

�
− V

(q)

12

�
V
(q)

31

�2�

tr

=
�
3λeV (r)33 −

eR(r)
��
λV
(q)

21

�
V
(q)

32

�2
+ V

(q)

31 V
(q)

32

�
V
(q)

11 − V
(q)

22

�
− V

(q)

12

�
V
(q)

31

�2�

− eV (r)31

�
2V
(q)

32 Sm − 3Bm + AmRm

�
+ eV (r)32

�
2V
(q)

31 Sm − 3Bm +AmRm

�
,

where eR(r) = eV (r)11 +
eV (r)22 +λ

eV (r)33 . Noticing (5.9), we have

Am

V
(q)

32

�����
λ=µ j(n,tr )

=
Am

V
(q)

31

�����
λ=µ j (n,tr )

= −y
�
µ̂ j(n, tr )

�
.

Recalling (3.12)-(3.15), we get
�
2V
(q)

32 Sm− 3Bm + AmRm

����
λ=µ j (n,tr )

= V
(q)

32

�
−3y2

�
µ̂ j(n, tr)

�
+ 2Rm y

�
µ̂ j(n, tr )

�
− Sm

�
,

�
2V
(q)

31 Sm− 3Bm +AmRm

����
λ=µ j(n,tr )

= V
(q)

31

�
−3y2

�
µ̂ j(n, tr )

�
+ 2Rm y

�
µ̂ j(n, tr )

�
− Sm

�
,

hence

Em−1,tr
(n, tr)

��
λ=µ j (n,tr )

=
�
eV (r)31 V

(q)

32 −
eV (r)32 V

(q)

31

�
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×
�
3y2

�
µ̂ j(n, tr )

�
− 2Rm y

�
µ̂ j(n, tr )

�
+ Sm

�
. (5.13)

Moreover, the derivative of Em−1(λ, n, tr ) in (5.8) with respect to tr evaluated at λ= µ j is

Em−1,tr
(λ, n, tr )

��
λ=µ j (n,tr )

= −α0β0v−(n, tr)µ j,tr
(n, tr)

m−1∏

k=1
k 6= j

�
µ j(n, tr )−µk(n, tr)

�
,

which together with (5.13) gives rise to (5.12).

Next, let us turn to the analytic properties of the Baker-Akhiezer functionψ3. From the
first two expressions of (5.1), we have

ψ3(P, n, n0, tr , t0,r )

= exp

�∫ tr

t0,r

�eV31(λ, n0, t′)φ13(P, n0, t′) +λeV32(λ, n0, t′)φ23(P, n0, t′) +λeV33(λ, n0, t′)
�
d t′

�

×






n−1∏
n′=n0

�
v(n′, tr )φ2(P, n′, tr ) + 1

�
as n≥ n0 + 1,

1 as n= n0,
n0−1∏
n′=n

�
v(n′, tr )φ2(P, n′, tr ) + 1

�−1
as n≤ n0 − 1.

(5.14)

By inspection, we verify that

ψ3(P, n, n0, tr , t0,r ) =ψ3(P, n0, n0, tr , t0,r )ψ3(P, n, n0, tr , tr ). (5.15)

Considering the integrand in (5.14), let us define

Ir(P, n, tr ) = eV (r)31 (λ, n, tr)φ13(P, n, tr ) +λeV (r)32 (λ, n, tr )φ23(P, n, tr ) +λeV (r)33 (λ, n, tr )

=
�
v−ã(r)− + c̃(r)− −w− c̃(r)

�
φ13 +λc̃(r)φ23 +λẽ(r). (5.16)

We have used (2.10) to obtain the second equation in (5.16). The homogeneous case of
Îr(P, n, tr ) is defined by

Îr(P, n, tr ) =
�
v−â(r)− + ĉ(r)− −w− ĉ(r)

�
φ13 +λĉ(r)φ23 +λê(r),

where

â(r) = ã(r)|α̃0=1,α̃1=···=α̃r=0,

ĉ(r) = c̃(r)|α̃0=1,α̃1=···=α̃r=0,

ê(r) = ẽ(r)|α̃0=1,α̃1=···=α̃r=0.

It can be verified that

Ir (P, n, tr ) =

r∑

l=0

α̃r−l Îl(P, n, tr ). (5.17)
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Lemma 5.2. Suppose that (n, tr) ∈ Z×R. Then

Îr(P, n, tr ) =
ζ→0





ζ−r−1 + O (1) as P → P∞1

,

−êr+1 −
ĉr+1

v−
+ O (ζ) as P → P∞2

,
(5.18)

Îr(P, n, tr ) =
ζ→0






O (1) as P → P01
,

O (1) as P → P02
,

O (ζ) as P → P03
.

(5.19)

Proof. We use the inductive method to prove (5.18). For r = 0,

Î0 =
ζ→0

�
v−â−0 + ĉ−0 −w− ĉ0

�
φ13 + ζ

−1 ĉ0φ23 + ζ
−1 ê0

=
ζ→0
−ζ−1 − ê1 + O (ζ) as P → P∞1

,

Î0 =
ζ→0

�
v−â−0 + ĉ−0 −w− ĉ0

�
φ13 + ξ

−2 ĉ0φ23 + ξ
−2 ê0

=
ζ→0
−

ĉ1

v−
− ê1 + O (ζ) as P → P∞2

.

Suppose that

Îr (P, n, tr ) = −ζ
−r−1 +

∞∑

j=0

σ j(n, tr)ζ
j as P → P∞1

,

Îr (P, n, tr ) =

∞∑

j=0

δ j(n, tr )ζ
j as P → P∞2

(5.20)

for some coefficients {σ j(n, tr )} j∈N, {δ j(n, tr )} j∈N to be determined. Differentiating the
first equation in (5.5) with respect to tr and using (5.1) yields

(vφ13 + 1)tr
=

�
ψ+3
ψ3

�

tr

=
ψ+3,tr

ψ3 −ψ
+
3ψ3,tr

ψ2
3

=
ψ+3
ψ3

�
ψ+3,tr

ψ+3
−
ψ3,tr

ψ3

�

= (vφ13 + 1)∆
ψ3,tr

ψ3
= (vφ13 + 1)∆Ir . (5.21)

In particular, we have

(vφ13 + 1)tr
|α̃0=1,α̃1=···=α̃r=0 = (vφ13 + 1)∆ Îr . (5.22)

Inserting (3.22) and (5.20) into (5.22) as P → P∞i
, i = 1,2. Comparing the same powers

of ζ in (5.21), we can obtain

(vκ1, j)tr
|α̃0=1,α̃1=···=α̃r=0 = v

j∑

l=0

κ1,l∆σ j−l +∆σ j, j ≥ 0,

(vκ2,−1)tr
|α̃0=1,α̃1=···=α̃r=0 = vκ2,−1∆δ0,

(vκ2, j)tr
|α̃0=1,α̃1=···=α̃r=0 = v

j∑

l=−1

κ2,l∆δ j−l +∆δ j, j ≥ 0.



104 Y. Xu, M. Jia, X. Geng and Y. Zhai

Using (5.2) and Lemma 3.1, we have

∆σ0 = −∆êr+1,

∆δ0 = −∆

�
êr+1 +

ĉr+1

v−

�
,

∆δ1 = −∆â−r+1 +∆
v−−ĉr+1 − v− ĉ−

r+1 − u−v−−v− ĉr+1

(v−)2
,

(E2 − 1)δ2 = −(E
2 − 1)

��
v−â−

r+1 −w− ĉr+1 + ĉ−
r+1

�
κ2,0 + ĉr+1χ2,2 + êr+2 +

ĉr+2

v−

�
.

Note that there are no arbitrary constants in the expansions of φ13 near P∞i
, i = 1,2, nor

in the homogeneous coefficients â j, b̂ j , d̂ j with the condition ∆∆−1 =∆−1
∆ = 1, hence

σ0 = −êr+1,

δ0 = −êr+1 −
ĉr+1

v−
,

δ1 = −â−r+1 +
v−−ĉr+1 − v− ĉ−

r+1 − u−v−−v− ĉr+1

(v−)2
,

δ2 = −(v
−â−

r+1 −w− ĉr+1 + ĉ−
r+1)κ2,0 − ĉr+1χ2,2 − êr+2 −

ĉr+2

v−
.

Then

Îr+1(P, n, tr ) =
�
v−(â(r+1))− −w− ĉ(r+1) + (ĉ(r+1))−

�
φ13 + λĉ(r+1)φ23 +λê(r+1)

=
ζ→0

ζ−1 Îr +
�
v−â−r+1 + ĉ−r+1 −w− ĉr+1

�
φ13 + ζ

−1 ĉr+1φ23 + ζ
−1êr+1

=
ζ→0
−ζ−r−1 + (σ0 + êr+1)ζ

−1 + O (1)

=
ζ→0
O (1) as P → P∞1

,

Îr+1 =
ζ→0

ζ−2 Îr +
�
v−â−r+1 −w− ĉr+1 + ĉ−r+1

�
φ13 + ζ

−2 ĉr+1φ23 + ζ
−2êr+1

=
ζ→0

ζ−2
�
δ0 +

ĉr+1

v−
+ êr+1

�
+ ζ−1

�
δ1 + â−r+1 +

ĉ−r+1 −w− ĉr+1

v−
+ ĉr+1χ2,1

�

+δ2 +
�
v−â−r+1 −w− ĉr+1 + ĉ−r+1

�
κ2,0 + ĉr+1χ2,2 + O (ζ)

=
ζ→0
−êr+2 −

ĉr+2

v−
+ O (ζ) as P → P∞2

.

In summary, we complete the proof of (5.18). Similarly, we can prove (5.19).

Using Lemma 5.2 and (5.17), we arrive at

Ir(P, n, tr ) =
ζ→0






−
∑r

l=0 α̃r−lζ
−l−1 + O (1) as P → P∞1

,

v−
tr
(n, tr )

v−(n, tr )
+ O (ζ) as P → P∞2

,
(5.23)
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Ir(P, n, tr ) =
ζ→0






O (1) as P → P01
,

O (1) as P → P02
,

O (ζ) as P → P03
.

(5.24)

Letω(2)
P∞1

, j be the normalized differential holomorphic of second kind onKm−1\{P∞1
}with

a pole of order j ≥ 2 at P∞1
,

ω
(2)
P∞1

, j =ζ→0

�
ζ− j + O (1)

�
dζ as P → P∞1

, λ= ζ−1

with vanishing a-periods
∫

ak

ω
(2)
P∞1

, j = 0, k = 1, . . . , m− 1.

From (5.23), we introduce the Abelian differential

Ω̃
(2)
r (P) =

r∑

l=0

α̃r−l(l + 1)ω(2)
P∞1

,l+2(P). (5.25)

Integrating (5.25) yields

∫ P

Q0

eΩ(2)r (P) =
ζ→0






−
r∑

l=0

α̃r−lζ
−l−1 + Ω̃∞1

r (Q0) + O (ζ), P → P∞1
,

Ω̃
∞2
r (Q0) + O (ζ), P → P∞2

,

∫ P

Q0

eΩ(2)
r
(P) =

ζ→0






Ω̃
01
r (Q0) + O (ζ), P → P01

,

Ω̃
02
r (Q0) + O (ζ), P → P02

,

Ω̃
03
r (Q0) + O (ζ), P → P03

,

(5.26)

where eΩ∞1
r (Q0), eΩ

∞2
r (Q0), eΩ

01
r (Q0), eΩ

02
r (Q0) and eΩ03

r (Q0) are integration constants de-
pending on the base point Q0 ∈Km−1\{P∞1

, P∞2
}.

Lemma 5.3. Let the curve Km−1 be nonsingular and irreducible. Let P = (λ, y) ∈ Km−1

\{P∞1
, P∞2

, P01
, P02

, P03
} and (n, n0, tr , t0,r ) ∈ Z

2 × R2. Suppose that Dµ̂(n,tr )
and Dν̂(n,tr )

and Dξ̂(n,tr )
is nonspecial for each (n, tr) ∈ Z×R, then we have

φ13(P, n, tr ) = N1(n, tr )
θ(z(P, ν̂(n, tr)))

θ(z(P, µ̂(n, tr)))
exp

�∫ P

Q0

ω
(3)
P03

,P∞2

�
, (5.27)

φ23(P, n, tr ) = N2(n, tr )
θ(z(P, ξ̂(n, tr )))

θ(z(P, µ̂(n, tr)))
exp

�∫ P

Q0

ω
(3)
P∞1

,P01

�
, (5.28)
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ψ3(P, n, n0, tr , t0,r ) (5.29)

=
θ(z(P03

, µ̂(n0, t0,r )))

θ(z(P03
, µ̂(n, tr )))

θ(z(P, µ̂(n, tr )))

θ(z(P, µ̂(n0, t0,r )))

× exp

�
(n− n0)

�∫ P

Q0

ω
(3)
P02

,P∞2
−ω03(P02

, P∞2
)

�
+ (tr − t0,r )

�∫ P

Q0

eΩ(2)r −
eΩ03

r

��
,

where

N1(n, tr ) = −
1

v(n0, t0,r )

θ(z(P∞2
, µ̂+(n0, t0,r )))

θ(z(P03
, µ̂+(n0, t0,r )))

× exp
�
(tr − t0,r )

�eΩ03
r −

eΩ∞2
r

�
+ (n− n0)

×
�
ω03(P02

, P∞2
)−ω∞2(P02

, P∞2
)
�
−ω02(P∞1

, P01
)

�
, (5.30)

N2(n, tr ) =
1

v−(n0, t0,r )

θ(z(P∞2
, µ̂(n0, t0,r )))

θ(z(P03
, µ̂(n0, t0,r )))

θ(z(P∞2
, ν̂(n, tr )))

θ(z(P∞2
, ξ̂(n, tr)))

× exp
�
−ω∞2(P∞1

, P01
)
�

exp
�
(n− n0)

�
ω03(P02

, P∞2
)−ω∞2(P02

, P∞2
)
�

+(tr − t0,r )
�eΩ03

r −
eΩ∞2

r

��
. (5.31)

Proof. Denote the right-hand side of (5.29) by Ψ3(P, n, n0, tr , t0,r ). Our goal is to show
that

Ψ3(P, n, n0, tr , t0,r ) =ψ3(P, n, n0, tr , t0,r).

In fact,
Ψ3(P, n, n0, tr , t0,r ) = Ψ3(P, n, n0, tr , tr )Ψ3(P, n0, n0, tr , t0,r ). (5.32)

It is easily seen from (5.14), and (5.15), (5.27) that

ψ3(P, n, n0, tr , tr ) =






n−1∏
n′=n0

�
v(n′, tr)φ13(P, n′, tr ) + 1

�
as n≥ n0 + 1,

1 as n= n0,
n0−1∏
n′=n

�
v(n′, tr )φ13(P, n′, tr ) + 1

�−1
as n≤ n0 − 1

= Ψ3(P, n, n0, tr , tr ).

It is necessary to prove

ψ3(P, n0, n0, tr , t0,r ) = Ψ3(P, n0, n0, tr , t0,r ). (5.33)

Now Lemma 5.1 and (5.6), (5.7), (5.16), give

Ir(P, n, tr ) = eV (r)31 (λ, n, tr)φ13(P, n, tr ) +λeV (r)32 (λ, n, tr )φ23(P, n, tr ) +λeV (r)33 (λ, n, tr )
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= eV (r)31

y2V
(q)

32 − y(Am + V
(q)

32 Rm) + Bm

Em−1

−λeV (r)32

y2V
(q)

31 − y(Am + V
(q)

31 Rm) +Bm

Em−1
+λeV (r)33

= eV (r)31

V
(q)

32 (3y2 − 2Rm y + Sm)

Em−1
− eV (r)32

V
(q)

31 (3y2 − 2Rm y + Sm)

Em−1
+λeV (r)33

=
(eV (r)31 V

(q)

32 −
eV (r)32 V

(q)

31 )(3y2 − 2Rm y + Sm)

Em−1
+ λeV (r)33

= −
µ j,tr
(n, tr )

λ−µ j(n, tr )
+ O (1)

= ∂tr
ln
�
λ−µ j(n, tr )

�
+ O (1) as P → µ̂ j(n, tr), λ→ µ j(n, tr ),

which implies

ψ3(P, n0, n0, tr , t0,r )

= exp

�∫ tr

t0,r

Itr
(P, n0, t′)d t′

�
=
λ−µ j(n0, tr )

λ−µ j(n0, t0,r )
O (1)

=






�
λ−µ j(n0, tr )

�
O (1) for P near µ̂ j(n, tr) 6= µ̂ j(n, t0,r ),

O (1) for P near µ̂ j(n, tr) = µ̂ j(n, t0,r ),�
λ−µ j(n0, tr )

�−1
O (1) for P near µ̂ j(n, t0,r ) 6= µ̂ j(n, tr ),

where O (1) 6= 0. Hence, all zeros and poles ofψ3(P, n0, n0, tr , t0,r ) and Ψ3(P, n0, n0, tr , t0,r )

onKm−1\{P∞1
, P∞2

, P01
, P02

, P03
} are simple and coincide. Taking into account (5.23) and

(5.26), we note that the singularities of ψ3(P, n0, n0, tr , t0,r ) and Ψ3(P, n0, n0, tr , t0,r ) at
P∞1

, P∞2
, P01

, P02
and P03

are coincide. The Riemann-Roch uniqueness result is that

Ψ3(P, n0, n0, tr , t0,r )

ψ3(P, n0, n0, tr , t0,r )
= γ

for a constant γ ∈ C. It is not difficult to verify that γ = 1 from the asymptotic expansions
near P03

, that is

Ψ3(P, n0, n0, tr , t0,r )

ψ3(P, n0, n0, tr , t0,r )
=
ζ→0

(1+ O (ζ))exp(O (ζ))

exp(O (ζ))
=
ζ→0

1+ O (ζ) as P → P03
.

Hence, using (5.15), (5.32) and (5.33), we have demonstrated (5.29).
Similar to Lemma 4.2, we conclude that φ13 and φ23 are of the form (5.27) and (5.28),

respectively. As P → P∞2
, the asymptotic expansions of ψ3 shows

v−(n, tr )

v−(n0, t0,r )
=
θ(z(P03

, µ̂(n0, t0,r )))

θ(z(P03
, µ̂(n, tr )))

θ(z(P∞2
, µ̂(n, tr )))

θ(z(P∞2
, µ̂(n0, t0,r)))
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× exp
�
(tr − t0,r )

�eΩ∞2
r
− eΩ03

r

�
+ (n− n0)(ω

∞2(P02
, P∞2

)−ω03(P02
, P∞2

))
�

, (5.34)

which yields (5.39) for v−(n, tr ). Comparing the asymptotic expressions of φ13 for P → P02

in (3.19) and (5.27), one obtains

−
1

v(n, tr)
= N1(n, tr )

θ(z(P02
, ν̂(n, tr)))

θ(z(P02
, µ̂(n, tr )))

exp
�
ω02(P03

, P∞2
)
�

as P → P02
.

Similar to the stationary case, N1(n, tr ) can be simplified as (5.30). Meanwhile, comparing
the asymptotic expressions of φ23 for P → P∞2

in (3.18) and (5.28), one obtains

1

v−(n, tr )
= N2(n, tr)

θ(z(P∞2
, ξ̂(n, tr )))

θ(z(P∞2
, ν̂(n, tr )))

exp
�
ω∞2(P∞1

, P01
)
�

as P → P∞2
,

which yields (5.31) for N2(n, tr ). This completes the proof.

The b-period of the differential eΩ(2)r is denoted by

eU (2)r =
�
eU (2)

r,1 , . . . , eU (2)
r,m−1

�
, eU (2)

r,k =
1

2πi

∫

bk

Ω
(2)
r , k = 1, . . . , m− 1.

Lemma 5.4. Assume that the curve Km−1 is nonsingular and let (n, tr ), (n0, t0,r ) ∈ Z ×R.

Then

ρ(1)(n, tr ) = ρ
(1)(n0, t0,r)− U (3)(n− n0)− eU

(2)
r
(tr − t0,r ) (mod Tm−1), (5.35)

ρ(2)(n, tr ) = ρ
(2)(n0, t0,r)− U (3)(n− n0)− eU

(2)
r (tr − t0,r ) (mod Tm−1), (5.36)

ρ(3)(n, tr ) = ρ
(3)(n0, t0,r)− U (3)(n− n0)− eU

(2)
r (tr − t0,r ) (mod Tm−1). (5.37)

Proof. We introduce the meromorphic differential on Km−1 by

Ω(n, n0, tr , t0,r ) =
∂

∂ λ
ln
�
ψ3(n, n0, tr , t0,r )

�
dλ.

From the representation of (5.29) we have

Ω(n, n0, tr , t0,r ) = (n− n0)ω
(3)
P02

,P∞2
+ (tr − t0,r )eΩ(2)r

+

m−1∑

j=1

ω
(3)
µ̂ j(n,tr ),µ̂ j(n0,t0,r )

+ ω̄,

where ω̄ denotes a holomorphic differential on Km−1, that is ω̄ =
∑m−1

j=1 ē jω j for some
ē j ∈ C, j = 1, . . . , m− 1. Since ψ3(P, n, n0, tr , t0,r ) is single-valued on Km−1, all a-periods
and b-periods of Ω are integer multiples of 2πi and hence

2πiMk =

∫

ak

Ω(n, n0, tr , t0,r ) =

∫

ak

ω̄= ēk, k = q, . . . , m− 1,
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form some Mk ∈ Z. Similarly, for some Nk ∈ Z,

2πiNk =

∫

bk

Ω(n, n0, tr , t0,r )

= (n− n0)

∫

bk

ω
(3)
P02

,P∞2
+ (tr − t0,r)

∫

bk

eΩ(2)r +

m−1∑

j=1

∫

bk

ω
(3)
µ̂ j(n,tr ),µ̂ j(n0,t0,r )

+

∫

bk

ω̄

= 2πi(n− n0)U
(3)
k
+ 2πi(tr − t0,r)eU (2)r,k + 2πi

m−1∑

j=1

∫ µ̂ j(n,tr )

µ̂ j(n0,t0,r )

ωk + 2πi
m−1∑

j=1

M j

∫

bk

ω j

= 2πi(n− n0)U
(3)
k
+ 2πi(tr − t0,r)eU (2)r,k + 2πi

 
m−1∑

j=1

∫ µ̂ j(n,tr )

Q0

ωk −
m−1∑

j=1

∫ µ̂ j(n0,t0,r )

Q0

ωk

!

+ 2πi
m−1∑

j=1

M jτ jk, k = 1, . . . , m− 1.

Therefore, we have

N = (n− n0)U
(3) + (tr − t0,r)eU (2)r +

m−1∑

j=1

∫ µ̂ j(n,tr )

Q0

ω−
m−1∑

j=1

∫ µ̂ j(n0,t0,r )

Q0

ω+Mτ,

where N = (N1, . . . , Nm−1), M = (M1, . . . , Mm−1) ∈ Z
m−1, and hence (5.35) holds. Applying

Abel’s Theorem to (5.10) and (5.11), we have

ρ(2)(n, tr ) = ρ
(1)(n, tr) +A (P∞2

)−A (P03
),

ρ(3)(n, tr ) = ρ
(1)(n, tr) +A (P01

)−A (P∞1
),

then we can prove (5.36) and (5.37).

Recalling (4.6), we extend the function z(P, µ̂(n)), z(P, ν̂(n)) and z(P, ξ̂(n)) into time-
dependent cases

z
�
P, µ̂(n, tr)

�
= Λ−A (P) +ρ(1)(n, tr ), P ∈Km−1,

z
�
P, ν̂(n, tr)

�
= Λ−A (P) +ρ(2)(n, tr ), P ∈Km−1,

z
�
P, ξ̂(n, tr)

�
= Λ−A (P) +ρ(3)(n, tr ), P ∈Km−1.

We rewrite θ(z(P0 j
, µ̂(n, tr))), θ(z(P0 j

, ν̂(n, tr ))), θ(z(P0 j
, ξ̂(n, tr ))), θ(z(P∞l

, µ̂(n, tr ))),

θ(z(P∞l
, ν̂(n, tr ))) and θ(z(P∞l

, ξ̂(n, tr))), respectively, as

θ
�
z(P0 j

, µ̂(n, tr ))
�
= θ

�
eM (1)j − U (3)n− eU (2)r tr

�
,

θ
�
z(P∞l

, µ̂(n, tr ))
�
= θ

�
eK(1)l − U (3)n− eU (2)r tr

�
,
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θ(z(P0 j
, ν̂(n, tr ))) = θ

�
eM (2)

j − U (3)n− eU (2)r tr

�
,

θ
�
z(P∞l

, ν̂(n, tr ))
�
= θ

�
eK(2)l − U (3)n− eU (2)r tr

�
,

θ
�
z(P0 j

, ξ̂(n, tr))
�
= θ

�
eM (3)

j − U (3)n− eU (2)r tr

�
,

θ
�
z(P∞l

, ξ̂(n, tr ))
�
= θ

�
eK(3)

l
− U (3)n− eU (2)

r
tr

�
,

where

eM (s)

j = Λ−A (P0 j
) +ρ(s)(n0, t0,r ) + U (3)n0 + eU

(2)
r t0,r ,

eK(s)l = Λ−A (P∞k
) +ρ(s)(n0, t0,r ) + U (3)n0 + eU

(2)
r

t0,r , j = 1,2,3, l = 1,2, s = 1,2,3

are constants independent of the discrete variable n and the time variable tr . Then we
arrive at the following theorem.

Theorem 5.1. Assume that the curve Km−1 is nonsingular and irreducible. Let P = (λ, y) ∈
Km−1\{P∞1

, P∞2
, P01

, P02
, P03
} and let (n0, t0,r ), (n, tr ) ∈ Z×R. Suppose that Dµ̂(n, tr ) and

Dν̂(n, tr ) and Dξ̂(n, tr) is nonspecial. Then, finite genus solutions of the discrete integrable

hierarchy (2.13) read

u(n, tr ) =
1

v(n0, t0,r )

θ(z(P∞2
, µ̂+(n0, t0,r )))

θ(z(P03
, µ̂+(n0, t0,r )))

θ(z(P∞1
, ν̂(n, tr )))

θ(z(P∞1
, µ̂(n, tr)))

× exp
�
(n− n0)

�
ω03(P02

, P∞2
)−ω∞2(P02

, P∞2
)
�

+ (tr − t0,r)
�eΩ03

r −
eΩ∞2

r

�
+ω∞1(P∞2

, P03
)−ω02(P∞2

, P03
)
�
, (5.38)

v−(n, tr ) = v−(n0, t0,r )
θ(z(P03

, µ̂(n0, t0,r )))

θ(z(P∞2
, µ̂(n0, t0,r )))

θ(z(P∞2
, µ̂(n, tr)))

θ(z(P03
, µ̂(n, tr )))

× exp
�
(tr − t0,r )

�eΩ∞2
r
− eΩ03

r

�

+ (n− n0)
�
ω∞2(P∞2

, P03
)−ω03(P∞2

, P03
)
��

, (5.39)

w(n, tr ) =
�
1− u(n, tr )v(n, tr )

� v−(n0, t0,r)

v(n, tr)

θ(z(P∞2
, ν̂(n0, t0,r )))

θ(z(P∞2
, µ̂(n0, t0,r )))

×
θ(z(P∞2

, ξ̂(n, tr )))

θ(z(P03
, ν̂(n, tr )))

θ(z(P02
, µ̂(n, tr )))

θ(z(P02
, ξ̂(n, tr )))

× exp
�
ω∞2(P01

, P∞1
)−ω02(P01

, P∞1
) + (tr − t0,r)

�eΩ∞2
r −

eΩ03
r

�

+ (n− n0)
�
ω∞2(P∞2

, P03
)−ω03(P∞2

, P03
)
��

. (5.40)

Proof. From (5.34), we can get the expressions of v(n, tr) in (5.39). By considering the
asymptotic expansions of φ13 near P∞1

and φ23 near P02
, we arrive at

−u(n, tr ) = N1(n, tr)
θ(z(P∞1

, ν̂(n, tr)))

θ(z(P∞1
, µ̂(n, tr)))

exp
�
ω∞1(P03

, P∞2
)
�

as P → P∞1
,
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1− u(n, tr )v(n, tr)

v(n, tr)w(n, tr )
= N2(n, tr)

θ(z(P02
, ξ̂(n, tr)))

θ(z(P02
, ν̂(n, tr )))

exp
�
ω02(P∞1

, P01
)
�

as P → P02
,

which together with (5.30) and (5.31) yields (5.38) and (5.40).
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