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Abstract. This article is concerned with a matrix splitting preconditioning technique

with two selective relaxations and algebraic multigrid subsolves for (G + 2) × (G + 2)

block-structured sparse linear systems derived from the three-dimensional flux-limited

multi-group radiation diffusion equations, where G is the number of photon energy

groups. We introduce an easy-to-implement algebraic selection strategy for the sole

contributing parameter, report a spectral analysis and investigate the degree of the min-

imal polynomial of its left and right preconditioned matrices, and discuss its sequential

practical implementation together with the two-level parallelization. Experiments are

run with the representative real-world unstructured capsule implosion test cases and

it is found that the numerical robustness, computational efficiency and parallel scala-

bility of the proposed preconditioner evaluated on the Tianhe-2A supercomputer with

up to 2,816 processor cores are superior to some existing popular monolithic and block

preconditioning approaches.
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gebraic multigrid, parallel computing.

1. Introduction

The numerical simulation of the thermal radiation transport [39] requires solving com-

plicated partial differential equations (PDEs) of parabolic type with highly nonlinear co-

efficients in a background medium with numerous materials. It is worth noting that the
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thermal radiation transport process occurs in various branches of physics, such as the op-

tical remote sensing, the massive star formation and the inertial confinement fusion ex-

periments. During the past couple of decades, a large amount of research efforts have

been devoted to the development of mathematically less complicated and computationally

cheaper yet numerically more accurate approximations. Among these approximations, the

simplest and the most extensively used one is the flux-limited multi-group radiation diffu-

sion (MGD) equations [21], where the frequency-dependent radiation energy densities are

categorized into multiple photon energy (or frequency) groups and, more importantly, are

assumed to be equably distributed over the respective frequency ranges.

Traditionally, the adaptive backward Eulerian time-integration is utilized to eliminate

the need of severe time-step constraints for the numerical stability. For the resulting nonlin-

ear reaction-diffusion systems, we take advantage of the method of frozen coefficients [30]

as the iterative linearization technique, followed by a cell-centered finite volume discretiza-

tion scheme [11,44] ensuring a local conservation property, however, requiring the solution

of a great deal of sparse, ill-conditioned, unsymmetric but positive definite linear systems

with the number of degrees of freedom ranging from 107 to 1011 because of the presence

of hydrodynamic instabilities as well as the wave-like propagation characteristics and mul-

tiple spatio-temporal scales in exact and approximate solutions, which is computationally

expensive, generally accounting for more than eighty percent of the total simulation time.

Therefore, this motivates research efforts aimed at the development of robust, accurate and

reliable numerical solution algorithms in an efficient and scalable manner.

Despite the reliability and accessibility of sparse direct solvers such as MUMPS [2],

PARDISO [42], PaStiX [23], STRUMPACK [19], SuperLU [34], SuperMF [48] and UMF-

PACK [13] for small systems of linear equations, the memory requirements and difficulties

in developing effective massively parallel implementations restrict their scope of practical

applications. While on the contrary, the sparse iterative solvers become increasingly at-

tractive to meet the sustaining demand for higher-spatial resolutions, due to their smaller

memory utilizations, far easier to implement on parallel computers and higher degrees of

parallelism. One of the most powerful sparse iterative solvers is on the strength of specific

projections/orthogonalizations onto Krylov subspaces — e.g. Bi-CGSTAB [46], CG [25],

GMRES [40] and MINRES [37] as the prominent representatives, whose numerical per-

formance, such as their convergence behaviors, needs to be further boosted via favorable

preconditioners. They consistently transform the original system of linear equations into

a mathematically equivalent linear system, however, with some more advantageous prop-

erties — e.g. smaller (spectral) condition numbers and a more clustered eigenvalue dis-

tribution. It is worth highlighting that the two fundamental peculiarities of modern pre-

conditioning approaches are the numerical robustness (with reference to the geometric,

physical and discrete parameters and the number of processors) and the implementation

scalability — i.e. the setup phase and every iteration step should be scalable in a parallel

environment [12]. The numerical robustness is, without doubt, a preemptive requirement

to attain a scalable implementation.

Multitudinous scholars and experts at home and abroad have come up with a wide

range of resultful preconditioning schemes in an efficient and scalable manner. They can
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be principally categorized into three different styles: the monolithic, block (also known as

physical-variable-based) as well as symmetric and asymmetric combined preconditioning

algorithms accompanied by some sort of adaptive strategy — cf. Refs. [3, 6, 9, 20, 26, 27,

36,43,49–51,53–58]. Another critical criterion of classifying these preconditioners is that

how much application information is used. From this point of view, they are supposed

to descend into three different categories: the sparse purely-algebraic (general-purpose),

semi-algebraic (block-structure specific) and purely-analytic (application specific) precon-

ditioning techniques. Although great progress has been made in this area of research, with

the continuous refinement on physical modelings — i.e. much more complicated applica-

tion characteristics, and the further increase of grid resolutions — i.e. much more signifi-

cant computational requirements, new challenges and higher demands are put forward for

the numerical solution algorithms, primarily on the advanced preconditioning approaches,

in the acquisition of well-timed and reliable modeling predictions. In the present article, we

propose, analyze, implement and examine a novel matrix splitting block preconditioner of

the semi-algebraic category with two selective relaxations (including three positive param-

eters, however, two of them have no effect on the preconditioning behavior) and algebraic

multigrid subsolves for better numerical and parallel scalabilities. It should be empha-

sized that the proposed preconditioning strategy does not require any other information

except the flux-limited MGD coefficient matrix and its inherent physics-informed sparse

block structure.

The remaining sections of this study are structured as follows. After introducing in Sec-

tion 2 the model problem as well as its linearized and discretized formulations, in Section 3

we present the principal contribution, including the construction of the proposed precondi-

tioning algorithm induced by a two-step alternating direction implicit iteration scheme, the

algebraic quasi-optimal choice strategy of the involved parameter together with the spec-

tral distribution and the degree of the minimal polynomial of its preconditioned matrix.

In Section 4, we provide the preconditioner’s sequential implementation procedure and its

two-level parallelization. Several sequential and parallel computational results of realistic

unstructured benchmark problems are also reported and analyzed in this section to inspect

the numerical robustness, computational efficiency as well as parallel strong and weak scal-

ing properties of our preconditioning algorithm. Section 5 concludes the manuscript and

suggests a couple of future directions.

2. Problem Configuration, Linearization and Discretization

In the present work we are interested in the numerical solution of the flux-limited non-

linear time-dependent MGD equations, on a spherically symmetrical bounded geometry

Ω ⊂ R3, given by

∂ Eg

∂ t
=∇ ·

�

Dg(Eg)∇Eg

�

+ c
�

σBgBg(TE)−σP g Eg

�

+ Sg , g = 1, . . . , G, (2.1a)

ρcI

∂ TI

∂ t
=∇ ·

�

DI(TI )∇TI

�

−wI E(TI − TE), (2.1b)
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ρcE

∂ TE

∂ t
=∇ ·

�

DE(TE)∇TE

�

− c

G∑

g=1

�

σBgBg(TE)−σP g Eg

�

+wI E(TI − TE) (2.1c)

supplied with appropriate initial and boundary conditions, in search of the radiation energy

density functions E1, · · · , EG : Ω × I → R, the ion temperature function TI : Ω × I → R

and the electron temperature function TE : Ω × I → R for some given bounded open

temporal interval I ⊂ R+, the density of medium ρ updated in hydrodynamics process,

specific heat capacities cI and cE , nonlinear thermal-conductivity coefficients DI(TI ) and

DE(TE) together with the nonlinear radiation diffusion coefficient Dg(Eg), scattering and

absorption coefficients σBg and σP g , source item Sg and electron scattering energy density

Bg(TE) for the photon frequency group index g = 1, . . . , G.

Discretizing the nonlinear coupled PDE system (2.1) by the adaptive backward Eulerian

scheme results in the chain of semi-discrete nonlinear systems of the form

−∇ ·
�

Dg(Eg)∇Eg

�

+

�
1

∆tk+1

+ cσP g

�

Eg − cσBg Bg(TE)

= Sg +
1

∆tk+1

E(k)g , g = 1, . . . , G,

−∇ ·
�

DI(TI )∇TI

�

+

�
ρcI

∆tk+1

+wI E

�

TI −wI E TE =
ρcI

∆tk+1

T
(k)
I

,

−∇ ·
�

DE(TE)∇TE

�

+

�
ρcE

∆tk+1

+wI E

�

TE + c

G∑

g=1

σBgBg(TE)

− c

G∑

g=1

σP g Eg −wI E TI =
ρcE

∆tk+1

T
(k)
E

(2.2)

at the (k + 1)-th time level, where ∆tk+1 is the immediate temporal mesh size and terms

with superscript (k) symbolize the discrete-in-time counterparts at the k-th time level. Sub-

sequently, we linearize the nonlinear system (2.2) iteratively by means of the method

of frozen coefficients [30], thus obtaining a suite of coupled systems of linear reaction-

diffusion equations

−∇ ·
�

D(δ)g ∇Eg

�

+

�
1

∆tk+1

+ cσ
(δ)
P g

�

Eg − cσ
(δ)
Bg

�
∂ Bg

∂ TE

�(δ)

TE

= S(δ)g +
1

∆tk+1

E(k)g + cσ
(δ)
Bg

�

B(δ)g −

�
∂ Bg

∂ TE

�(δ)

T
(δ)
E

�

, g = 1, . . . , G, (2.3a)

−∇ ·
�

D
(δ)
I
∇TI

�

+

�

ρc
(δ)
I

∆tk+1

+w
(δ)
I E

�

TI −w
(δ)
I E

TE =
ρc
(δ)
I

∆tk+1

T
(k)
I

, (2.3b)

−∇ ·
�

D
(δ)
E ∇TE

�

+




ρc
(δ)
E

∆tk+1

+ w
(δ)
I E + c
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g=1

σ
(δ)
Bg

�
∂ Bg

∂ TE

�(δ)



 TE − c
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g=1

σ
(δ)
P g Eg −w

(δ)
I E TI
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=
ρc
(δ)
E

∆tk+1

T
(k)
E − c

G∑

g=1

σ
(δ)
Bg

�

B(δ)
g
−

�
∂ Bg

∂ TE

�(δ)

T
(δ)
E

�

(2.3c)

at the (δ + 1)-th nonlinear iterative step, where the initial guess spatial function at tk+1,

i.e. the specific case with δ = 0, is just a relevant approximate spatial function at tk. In

the end we employ a cell-centered locally conservative finite volume scheme for the spatial

discretization of (2.3), yielding the undermentioned fully-discrete coupled system of linear

algebraic equations in an arrowhead form

Au ≡





AR O DRE

O AI DI E

DER DEI AE









eR

t I

tE



=





fR
fI

fE



 ≡ f, (2.4)

where the sub-matrices and sub-vectors intimately related to the discrete radiation variables

are written as single block entities — i.e.

AR =





A1

. . .

AG



 ∈ RGn×Gn, DRE =





D1E
...

DGE



 ∈ RGn×n,

eR =





e1
...

eG



 ∈ RGn, fR =





f1
...

fG



 ∈ RGn

and DER = (DE1, · · · , DEG) ∈ R
n×Gn while AI , DI E, DEI and AE are real n× n matrices. Here

n is the number of mesh cells and n-dimensional sub-vectors eg , g = 1, . . . , G, t I and tE

serve the purpose of approximating the g-th radiation energy density, ion and electron

temperatures on each spatial cell. It is important to mention that the implicit solution

process of the linear system (2.4) will be taken place within each nonlinear iterative step

at each time level. Several important observations on the coefficient matrix A defined by

(2.4) that should be made are

• the nonzero structure of each diagonal sub-block is, without exception, shaped as that

of a discrete linear scalar reaction-diffusion operator, however, with the involved coef-

ficients in pretty different orders of magnitude and potentially strong discontinuities,

which indicates that sub-blocks A1, · · · ,AG , AI , and AE are sparse, symmetric positive

definite and multiscale;

• each off-diagonal sub-block Dg g ′, g 6= g′ is diagonal with non-positive entries at pos-

sibly remarkably different scales and compliant with the undermentioned conditions

DEI = DI E while DE g 6= DgE for g = 1, . . . , G,

which means that A must be sparse, nonsymmetric positive definite, multiscale and

multi-physics coupled.
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It follows from the above analysis that the algebraic characteristics of the coefficient matrix

A are much worse than those of its diagonal sub-blocks, which is precisely the primary

reason why multifarious block preconditioning studies have been reported previously —

i.e. instead of directly solving (2.4), but making use of the flexible restarted GMRES solver,

denoted by FGMRES(m), to solve a mathematically equivalent preconditioned system

P−1Au= P−1f or (AP−1)x = f with u = P−1x,

where m is the number of Krylov directions to orthogonalize against and P is a block pre-

conditioner chosen appropriately.

3. A Selectively Relaxed Splitting Preconditioner

3.1. Related works

Let us firstly make reference to related works. The relaxed splitting preconditioning

scheme was developed originally for the saddle point problems from the incompressible

Navier-Stokes equations in [45], which is on the strength of the relaxed type precondi-

tioner investigated in [7] together with Hermitian and skew-Hermitian splitting idea origi-

nally proposed in [4]. Yet another relaxed splitting preconditioner was introduced in [33]

for general saddle point problems. Subsequently, the generalized, modified and inexact

modified variants were proposed in [10,16,31] for the generalized saddle point problems.

In the meanwhile, for the same type of sparse linear systems, the relaxed triangular and

block-triangular splitting preconditioners as well as a new relaxed splitting preconditioner

modeled as the multiplication of block lower and upper triangular matrices were reported

in [17,32,59]. The lattermost and most recent one for solving (2.4) has the form

P̃ =





AR O O

O Iπ O

DER α̃DEI Iπ









Iπ O α̃DRE

O AI DI E

O O β̃ Iπ + AE



 ,

where Iπ represents the identity matrix of suitable size. Another important point is that

the positive parameters α̃ and β̃ were simply determined by the trial-and-error procedure

in [32], namely, they were chosen to be the experimentally optimal values in one significant

digit, however, at a large extra computational cost. To go a little further, it can easily be

seen that the relaxed splitting preconditioner

P̂ =





AR O O

O Iπ O

DER α̂DEI Iπ









Iπ O α̂DRE

O AI DI E

O O ŜE



 , (3.1)

which will be taken for a comparison study in Section 4, would behave better than P̃ de-

fined above since there is only one positive parameter to be determined and the respective

difference P̂−A takes on fewer nonzero sub-blocks than P̃−A, where

ŜE = AE − α̂(DERDRE + DEI DI E) = AE − α̂

 
G∑

g=1

DE g DgE + DEI DI E

!

possesses the same nonzero pattern as AE .
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3.2. Preconditioner constitution

In this subsection, a new-type preconditioning algorithm is proposed for solving the

flux-limited MGD system of linear equations (2.4). Utilizing the special block structure of

A, we are able to split it into

A=





AR O DRE

O O O

DER O O



+





O O O

O AI DI E

O DEI AE



 =: A1 +A2.

Consider now the following two splittings of A:

A= (Λ1 +A1)− (Λ1 −A2) and A = (Λ2 +A2)− (Λ2 −A1) (3.2)

with two selective relaxations

Λ1 =





O O O

O β Iπ O

O O αIπ



 and Λ2 =





γIπ O O

O O O

O O O



 ,

using three positive parameters β ,α and γ. The matrices Λ1+A1 and Λ2+A2 are obviously

nonsingular. On account of (3.2) and a practical use of the two-sweep alternating direction

implicit idea, we establish the following iteration scheme:

(Λ1 +A1)u
(k+1/2) = (Λ1 −A2)u

(k) + f,

(Λ2 +A2)u
(k+1) = (Λ2 −A1)u

(k+1/2) + f,
k = 0,1,2, . . .

for a given initial guess vector u(0). Removing the intermediate variable u(k+1/2) from the

above two formulae, yields

u(k+1) = (Λ2 +A2)
−1(Λ2 −A1)(Λ1 +A1)

−1(Λ1 −A2)
︸ ︷︷ ︸

:=G

u(k)

+ (Λ2 +A2)
−1(Λ2 +Λ1)(Λ1 +A1)

−1

︸ ︷︷ ︸

:=P−1

f,

where G is the iteration matrix and can be written as

G= [Iπ − (Λ2 +A2)
−1A][Iπ − (Λ1 +A1)

−1A] = Iπ − P−1A

with Iπ ∈ R
(G+2)n×(G+2)n being the identity matrix, together with our selectively relaxed

splitting (SRS) preconditioning matrix

P= (Λ1 +A1)(Λ2 +Λ1)
−1(Λ2 +A2) =






AR

1

α
DRE DEI

1

α
DREAE

O AI DI E

DER DEI AE




 (3.3)

deduced from the definitions of Λ1,A1,Λ2 and A2.

Remark 3.1. It is worthwhile to point out that positive parameters β and γ both vanish

when constructing the preconditioner P, i.e. they have no effect on the specific precondi-

tioning behavior.
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3.3. An algebraic selection strategy for determining the involved parameter

This subsection is devoted to deriving an algebraic, quasi-optimal and feasible estima-

tion formula for the involved positive parameter α in (3.3), using the fact that a good

choice of α would make the preconditioner P quite close to the coefficient matrix A, which

results in a clustered spectrum of the left- or right-preconditioned matrix as well as a fast

and smooth convergence behavior of the preconditioned flexible restarted GMRES solver.

To put it simply, the parameter α must be selected so that the difference between P and A

vanishes almost everywhere, namely,

R= P−A=






O
1

α
DRE DEI DRE

�
1

α
AE − Iπ

�

O O O

O O O




 ≈ O, (3.4)

which, exploiting a similar idea developed in [28], is equivalent to minimizing the objective

function

η(α) = ‖R‖2F = trace(RR⊤) = trace

�

1

α2
DRE D2

EI D
⊤
RE + DRE

�
1

α
AE − Iπ

�2

D⊤RE

�

.

Then a straightforward calculation yields

η(α) =
1

α2
k1 −

2

α
k2 + k3 = k1

�
1

α
−

k2

k1

�2

+ k3 −
k2

2

k1

,

where

k1 = trace
�

DRE(D
2
EI + A2

E)D
⊤
RE

�

, k2 = trace
�

DREAE D⊤RE

�

, k3 = trace
�

DRE D⊤RE

�

.

Thus we have the quasi-optimal expression for the involved positive parameter

α∗ =
k1

k2

=

∑G

g=1 trace
�

DgE(D
2
EI + A2

E)DgE

�

∑G

g=1 trace
�

DgEAE DgE

� . (3.5)

Remark 3.2. It can be analogously shown that the quasi-optimal choice of the positive

parameter α̂ in (3.1) is

α̂∗ =
trace

�∑G

g=1 DgE DgEAR + DEIAI DEI

�

trace
�

AR

∑G

g=1 DgE DgEAR + DEIA
2
I DEI

� . (3.6)

3.4. Spectral properties of the preconditioned matrix

Regarding the SRS left-preconditioned matrix P−1A, or equivalently, the SRS right-

preconditioned variant AP−1, we have the eigenvalue and eigenvector distribution results

stated in the following theorem.
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Theorem 3.1. Assume that sub-matrices AR, DRE ,AI , DI E, DER, DEI and AE are defined by (2.4)

and α is an arbitrarily given positive parameter. Then the eigenvalues of P−1A (or equivalently,

AP−1) are given by 1 with algebraic multiplicity at least (G+1)n and 1−µi with µi being the

i-th eigenvalue of the real n× n matrix

Zα =

�
1

α
DEIA

−1
I DI E −

1

α
AE + Iπ

�

S−1
E DERS−1

R DRE, (3.7)

where

SR = AR −
1

α
DRE DER, SE = AE − DEIA

−1
I

DI E. (3.8)

Moreover, (v⊤R , v⊤I , v⊤E )
⊤ is an eigenvector of P−1A associated with the eigenvalue one if

1

α
S−1

R DRE DEI vI + S−1
R DRE

�
1

α
AE − Iπ

�

vE = 0 (3.9)

and vR can be chosen arbitrarily; concerning a non-unitary eigenvalue, vR is the eigenvector of

the matrix

S−1
R DRE

�
1

α
SE − Iπ

�

S−1
E DER + Iπ (3.10)

associated with the same eigenvalue while

vI = A−1
I

DI ES−1
E

DERvR, vE = −S−1
E

DERvR. (3.11)

Proof. With taking advantage of the undermentioned block tri-factorization

P=





SR O 1
αDRE

O Iπ O

O O Iπ









Iπ O O

O Iπ O

DER DEIA
−1
I Iπ









Iπ O O

O AI DI E

O O SE



 , (3.12)

it is easy to verify that

P−1 =





Iπ O O

O A−1
I −A−1

I DI ES−1
E

O O S−1
E









Iπ O O

O Iπ O

−DER −DEIA
−1
I Iπ










S−1
R O −

1

α
S−1

R DRE

O Iπ O

O O Iπ






and

P−1R=









O
1

α
S−1

R DRE DEI S−1
R DRE

�
1

α
AE − Iπ

�

O
1

α
A−1

I DI ES−1
E DERS−1

R DRE DEI A−1
I DI ES−1

E DERS−1
R DRE

�
1

α
AE − Iπ

�

O −
1

α
S−1

E DERS−1
R DRE DEI −S−1

E DERS−1
R DRE

�
1

α
AE − Iπ

�









(3.13)
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using the formula (3.4) as well as the definitions of SR and SE in (3.8). Observe from the

block structure of P−1R that its eigenvalues are 0 with algebraic multiplicity Gn and those

of the bottom right 2n× 2n sub-matrix

Yα =






1

α
A−1

I DI ES−1
E DERS−1

R DRE DEI A−1
I DI ES−1

E DERS−1
R DRE

�
1

α
AE − Iπ

�

−
1

α
S−1

E DERS−1
R DRE DEI −S−1

E DERS−1
R DRE

�
1

α
AE − Iπ

�




 .

Additionally, it is easy to show that

Yα =

�
A−1

I DI ES−1
E DERS−1

R DRE

−S−1
E DERS−1

R DRE

�

︸ ︷︷ ︸

:=U

h
1

α
DEI

1

α
AE − Iπ

i

︸ ︷︷ ︸

:=V

,

which has the same nonzero eigenvalues as Zα defined in (3.7) and computed by the for-

mula Zα = V U while the other eigenvalues are 0 with algebraic multiplicity at least n. Then

the first desired result can be directly verified through the relation

P−1A= P−1(P−R) = Iπ − P−1R

and the similarity transformation AP−1 = P(P−1A)P−1 between AP−1 and P−1A.

The second part of the theorem can now be proved by expanding P−1Av = (Iπ −

P−1R)v= λv into

vR −
1

α
S−1

R DRE DEI vI − S−1
R DRE

�
1

α
AE − Iπ

�

vE = λvR, (3.14a)

�

Iπ −
1

α
A−1

I DI ES−1
E DERS−1

R DRE DEI

�

vI

− A−1
I DI ES−1

E DERS−1
R DRE

�
1

α
AE − Iπ

�

vE = λvI , (3.14b)

1

α
S−1

E DERS−1
R DRE DEI vI +

�

Iπ + S−1
E DERS−1

R DRE

�
1

α
AE − Iπ

��

vE = λvE (3.14c)

from exploiting (3.13), where v = (v⊤
R

, v⊤
I

, v⊤
E
)⊤ is an eigenvector of P−1A associated with

the eigenvalue λ. We first assume that λ= 1. Then, the two formulas (3.14b) and (3.14c)

are readily satisfied when the relation (3.9) is true, which just happens to be derived from

(3.14a). Under the assumption that λ 6= 1, the expression

(λ− 1)vI = (λ− 1)A−1
I DI ES−1

E DERvR

can be obtained by substituting (3.14a) into (3.14b) while

(λ− 1)vE + (λ− 1)S−1
E

DERvR = 0
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upon substituting (3.14a) into (3.14c). Consequently, the two relations in (3.11) hold.

Substituting them into (3.14a) yields

S−1
R DRE

�
1

α
AE − Iπ −

1

α
DEIA

−1
I DI E

�

S−1
E DERvR = (λ− 1)vR,

which indicates that vR is the eigenvector of (3.10) associated with λ by exploiting the

second relation in (3.8). This completes the proof.

A low degree minimal polynomial in its left- or right-preconditioned matrix is a well-

known sufficient condition for searching a good preconditioning strategy [47]. We can de-

duce the following result from utilizing Theorem 3.1 in a similar way to [5, Proposition 2.2]

and [22, Theorem 4].

Theorem 3.2. The degree of the minimal polynomial of P−1A or AP−1, namely, the dimension

of the Krylov subspaceK (P−1A, r0) orK (AP−1, r0) for an arbitrary vector r0, is at most n+1.

Remark 3.3. It is easily seen from Theorem 3.2 that at most n + 1 iterations of the full

GMRES algorithm are required for convergence, applying the preconditioner P from the

left or right, when solving the flux-limited MGD linear system (2.4).

4. Practical Implementation and Performance Evaluation

4.1. Sequential implementation issue

The SRS preconditioner, defined by (3.3), is applied frequently to accelerate the con-

vergence rate of the FGMRES(m) solver. Nonetheless, the resulting solver involves the

solutions of a suite of the generalized residual equations

Pw ≡






AR

1

α
DRE DEI

1

α
DREAE

O AI DI E

DER DEI AE










wR

wI

wE



 =





bR

bI

bE



≡ b, (4.1)

where w and b are the outgoing Krylov solution and an arbitrarily incoming Krylov vector,

respectively. Utilizing the block tri-factorization (3.12), the residual equation (4.1) can be

treated by solving the system






SR O
1

α
DRE

O Iπ O

O O Iπ










uR

uI

uE



 =





bR

bI

bE



 ,

first. After that we solve the system





Iπ O O

O Iπ O

DER DEIA
−1
I

Iπ









vR

vI

vE



 =





uR

uI

uE



 ,
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and finally the system





Iπ O O

O AI DI E

O O SE









wR

wI

wE



 =





vR

vI

vE



 .

Therefore, a specific implementation procedure for computing the generalized residual so-

lution vector w is as follows:

1. Radiation segment. Solve wR from SRwR = bR− (1/α)DRE bE , which is approximated

by
�

Ag −
1

α
DgE DE g

�

wg = bg −
1

α
DgE bE , g = 1, . . . , G. (4.2)

2. Solve ṽI from AI ṽI = bI and set

vE = bE −

G∑

g=1

DE gwg − DEI ṽI .

3. Electron segment. Solve wE from SEwE = vE, which is approximatively accomplished

by

(AE − DEIΛ
−1
I DI E)wE = vE

with ΛI representing the row-Schur norm (a type of diagonal approximation) of AI

defined by

ΛI = diag





√
√
√
√

n∑

j=1

�

aI
1 j

�2
, · · · ,

√
√
√
√

n∑

j=1

�

aI
n j

�2



 , (4.3)

where aI
i j

is the (i, j)-th entry of AI .

4. Ion segment. Compute pI = bI − DI EwE and solve wI from AI wI = pI .

It is easy to see from the above procedure that there are G + 3 sparse linear subsystems in

the same nonzero structure needed to solve, either by a designated number of best prac-

tices algebraic multigrid V-cycles [14] or by iterating till a prescribed relative tolerance is

reached.

Remark 4.1. A significant advantage of diagonal approximations (4.2) over the full block

matrix SR is that they can be carried out in embarrassingly parallel, which may lead to

a slight increase in the iteration count of the FGMRES(m) solver.

Remark 4.2. It should be mentioned that Step 4 is mathematically equivalent to

4†. (The corrected ion segment). Compute pI = DI EwE , solve wI from AI wI = pI and set

wI = ṽI −wI ,

which is exactly our practical implementation of this step.
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Remark 4.3. It has been revealed by the comparison of numerical results in [56] that,

when constructing block preconditioning approaches, the row-Schur norm approximation

(4.3) is not inferior to and often outperforms other popular choices, such as the classical

diagonal, row-maximum and row-infinity approximations.

Remark 4.4. For an application of the relaxed splitting preconditioner P̂ defined by (3.1),

i.e. to perform the preconditioning operation w = P̂−1b, the solution vector w can be

computed by the following procedure:

1. Solve vR = (v
⊤
1 , · · · , v⊤

G
)⊤ from Ag vg = bg for g = 1, . . . , G.

2. Calculate vE = bE − DERvR − α̂DEI bI .

3. Electron segment. Solve wE from ŜEwE = vE .

4. Ion segment. Compute pI = bI − DI EwE and solve wI from AI wI = pI .

5. Radiation segment. Set wR = vR − α̂DREwE .

In this situation, it is clear that we need to operate G + 2 sparse sub-matrix inverses, one

fewer inverse than that of P, however, with more expensive manipulations and communi-

cations (in parallel) to determine α̂∗ by the formula (3.6). In addition, the FGMRES(m)

solver preconditioned by P would be more efficient when its iteration count is less than that

of P̂.

4.2. Parallel implementation details

A critical issue when investigating and surveying the thermal radiation transport pro-

cess, such as the hydrodynamic Rayleigh-Taylor instability during the deceleration phase of

a laser-driven spherical implosion [18], is the supersized computational load driven by an

ultrahigh mesh resolution, which imposes a large requirement for the software and hard-

ware resources. The increase in hardware resource demand is quite justifiable with the

ever-increasing computational availability of supercomputers. Meanwhile, an appropri-

ately designed distributed and parallel algorithm, which can be scalable to a great deal of

processors and ensures robustness in relation to different physical model parameters and

spatio-temporal mesh step sizes, is required for effective utilization of the modern power-

ful hardware resources. It should particularly be emphasized that the algorithmic paral-

lelism achieved via supercomputers, which are interconnected by means of a high-speed

network and exchange messages exploiting the message passing interface (MPI) library,

is the de-facto standard, whose particular concern is the cost of communication. In our

MPI-parallel C codes, the two-level parallelization strategy is chosen so that the communi-

cation overhead can be reduced as much as possible to efficiently make use of the existing

supercomputer resources:

• At first, we break up the global communicator containing a total number of (G+2)q

parallel processor cores into G + 2 communication sub-groups, which are differenti-

ated by their owned ‘color’ value, namely, COMM_R (which is further spanided into
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communication sub-group:

local processor identifier:

COMM_I COMM_ECOMM_GCOMM_1 {
COMM_R

A1

D1E DE1

b1 bE

 0   1         -1q⋯

bE

 0   1         -1q⋯  0   1         -1q⋯

DE1

bE

 0   1         -1q⋯

AG
DGE DEG

bG

AI

DIE

bI

AE
DEG

DEI DIE， ，

， ，，， ，

，

， ，

，

，

Figure 1: An abridged general view of the G + 2 communication sub-groups stemmed from a decom-
position of the global communicator containing (G + 2)q processors, each of them associated with the
coefficient matrix (left), the right-hand side vector and some additional vectors (middle) and q parallel
processor cores (right).

COMM_1, · · · , COMM_G), COMM_I and COMM_E. This procedure is invariably ac-

complished by invoking the MPI function ‘MPI_Comm_split’ and illustrated in Fig. 1,

which aims at apportioning sparse linear subsystems accompanied by some addi-

tional vectors among communication sub-groups in a consistent one-to-one matching

manner. Furthermore, each communication sub-group is comprised of q processors

labeled with local continuous index — i.e. ‘key’, values, starting from 0, as shown in

Fig. 1.

• The second-level parallelization is embodied in the distribution of degrees of free-

dom (i.e., rows) of the sub-matrix Ag , g = 1, . . . , G, I , E and sub-vectors (including

off-diagonal sub-blocks Dg g ′ and some auxiliary vectors) onto different processors

within the communication sub-group COMM_g in a roughly uniform mode (i.e., at

most one more row is fallen into a certain processor compared with the other proces-

sor cores). Concretely speaking, Ag is stored in the parallel CSR (compressed sparse

row) matrix format, namely, the ParCSRMatrix container in the hypre (high perfor-

mance preconditioners and solvers featuring multigrid) software package [15], while

sub-vectors are in the parallel vector storage scheme (i.e., the ParVector container in

hypre).

Note that the communication mechanism for exchanging messages among these commu-

nication sub-groups is rather simple: communications only take place between processors

with the same ‘key’ value — i.e. local identifier.

Remark 4.5. The ‘row-wise distribution’ in the second-level parallelization phase is equiva-

lent to the direct row-wise decomposition of (2.4) onto the global communicator only when

n can be divisible by q.

Remark 4.6. The positive parameters α∗ defined by (3.5) and α̂∗ defined by (3.6) must be

determined at the cost of the computation of all diagonal entries of one and G+1 (however,

in embarrassingly parallel) ParCSRMatrix-by-ParCSRMatrix multiplications, respectively,

which are easy to implement via certain modifications to the subroutine ‘hypre_ParMatmul’

in hypre to simply generate the first — i.e. the diagonal element of each row, which means

that we do not have to calculate the entire product.

We present the parallel operation flowchart and the data communication network topol-

ogy on an individual application call of the proposed preconditioner P in Fig. 2, whose
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⋯ ⋯⋯

COMM_1 COMM_G

0         1         -1q⋯ 0         1         -1q⋯
⋯

0         1         -1q⋯

COMM_I

{
⋯

COMM_E

0         1         -1q⋯

(a) (a) (a) (a) (a) (a)

(a) (a) (a)

(b) (b) (b)

COMM_R

step1 step1 step1

step2

step3

Figure 2: The diagrammatic drawing of the parallel operation flowchart and the data communication
mode of a single application of the proposed preconditioner P.

detailed interpretation is as follows:

1. Parallel operation (step1). Within the communication sub-group COMM_g, g =

1, . . . , G, solve for wg from (Ag − (1/α)DgE DE g)wg = bg − (1/α)DgE bE via Boomer-

AMG — a frequently-used and prestigious parallel implementation of classical alge-

braic multigrid in hypre [24] in a specified number of iterations nmax
g and a prescribed

relative tolerance δg while in parallel, inside the communication sub-group COMM_I,

seek for the approximate solution ṽI provided by AI ṽI = bI using BoomerAMG with

nmax
I

and δI prescribed.

2. Data transfer (a). Send the real arrays wg , g = 1, . . . , G and ṽI from COMM_g and

COMM_I, respectively, to COMM_E among processors of the same ‘key’ value.

3. Parallel operation (step2). Within COMM_E, receive the data packets, update bE ←

bE −
∑G

g=1 DE gwg − DEI ṽI and determine the numerical solution wE from (AE −

DEIΛ
−1
I DI E)wE = bE by exploiting BoomerAMG with nmax

E and δE prescribed.

4. Data backhaul (b). Among processors of the same ‘key’ value, send the resulting real

array wE from COMM_E to COMM_I.

5. Parallel operation (step3). Within COMM_I, after the piece of data is received, gen-

erate pI = DI EwE , numerically solve AI wI = pI via BoomerAMG to obtain wI and

update wI ← ṽI −wI .

It is important to mention that the computation-communication overlap technique† is used

in the above algorithm and the setup phase of P including the generation of the quasi-

optimal parameter α and the row-Schur norm ΛI (stored in a real array) defined by (3.5)

†The computation-communication overlap is to interlard as many computations as possible between a non-

blocking communication call — i.e. the MPI function ‘MPI_Isend’ and its blocking wait primitive ‘MPI_Wait’.
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and (4.3), respectively, and the ‘setup’ phase of BoomerAMG on matrices Ag−(1/α)DgE DE g ,

AI and AE − DEIΛ
−1
I DI E. Also, the generation of ΛI occurs within COMM_I, and then the

array is sent to the processor with the same local identifier within COMM_E while the

generation of α requires a bit complicated procedures:

1. Within COMM_E, calculate the auxiliary array trace(A2
E) while in parallel, inside

COMM_I, compute D2
EI .

2. Send trace(A2
E) and diag(AE) from COMM_E together with D2

EI from COMM_I to

COMM_g, g = 1, . . . , G among processors of the same ‘key’ value.

3. Compute the numerator and denominator of formula (3.5) via the MPI reduction

operation ‘MPI_Reduce’ and invoke the MPI broadcast function ‘MPI_Bcast’ to copy

the required parameter α in the root processor to all leaf processors.

4.3. Experimental setup

We take advantage of three unstructured (adaptive) computational grids (namely,M0,

M1 andM2) with different numbers of mesh cells under the JAUMIN (J adaptive unstruc-

tured meshes applications infrastructure) framework [35] to investigate the grid-indepen-

dent convergence and seven flux-limited MGD linear systems (i.e., the 3rd, 2nd, 1st, 3rd,

1st, 2nd and 1st nonlinear iterations at the 27th, 86th, 35th, 92nd, 41st, 113rd and 174th

time levels, which are symbolized by U27-3, U86-2, U35-1, U92-3, U41-1, U113-2 and

U174-1) to research the robustness under different physical parameters. Fig. 3 shows

two side elevations of the coarsest unstructured computational grid M0. Two other un-

structured meshes, M1 and M2, are created on the trot by refining M0 once and twice,

respectively. Initial and boundary value conditions of the mentioned real-world twenty-

group (G = 20) simulations are: the initial radiation energy densities are all computed

through the Plank interpolation formula [8] with the contained radiation temperature be-

ing 3.0 × 10−4 while the initial ion and electron temperatures are also set to 3.0 × 10−4;

concerning the ion and electron temperature variables, we impose the zero-flow condition

at all physical boundaries, while, regarding the radiation energy density variables, the zero-

flow condition is imposed at the angle direction and spherical center as well as the inflow

condition at the outer radius.

Numerical tests are performed on the Tianhe-2A supercomputer at China’s National

Supercomputer Center in Guangzhou (NSCC-GZ), currently ranked 16th in the June 2024

TOP500 list — cf. https://www.top500.org/lists/top500/list/2024/06/, which

employs Kylin Linux operating system and delivers 100.68 petaflops peak performance in

theory and 61.44 petaflops Linpack performance with 17,792 compute nodes. Each of

these nodes is assembled with dual 12-core Intel Xeon E5-2692v2 central processing units

(24 compute cores in total) clocked at 2.2 gigahertz and 64.0 gigabytes of DDR3 main

memory as well as the Matrix-2000 processor for performance acceleration. The propri-

etary high-speed TH Express-2 interconnect network topology is an opto-electronic hybrid

and hierarchical fat tree. We utilize the Intel C compiler (icc) with Tianhe’s self-optimized
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Figure 3: External and internal side elevations of the coarsest computational gridM0 with 372,708 mesh
cells.

mpich-3.2 in MPI-only mode (i.e., the ‘configure’ script is carried out with ‘–with-MPI’

and ‘–without-openmp’ options and the pure MPI implementation is investigated) and

the optimization flag ‘-O3 -mavx’ as our practical compilation tool, and link all C codes to

Intel MKL composer_xe_2015.1.133. All of the 24 MPI processes (i.e., physical cores) are

made use of running parallel codes on each compute node.

In the next subsection we numerically inspect the actual convergence, performance and

scalability of the FGMRES(m) solvers preconditioned by BoomerAMG [24], the relaxed

splitting preconditioner P̂ defined by (3.1), the SRS preconditioner P defined by (3.3), and

the physical-variable based coarsening two-level (PCTL) preconditioner [27,50,57], which

are effectively implemented in the hypre [15] and JXPAMG (parallel algebraic multigrid

solvers developed by JiuSuo and XTU) [52] software libraries, respectively. What is par-

ticularly noteworthy is that, for the solution of all the solitary sparse linear subsystems de-

rived from discrete linear scalar second-order reaction-diffusion operators and involved in

practical implementations of P̂, P and PCTL algorithms, a single BoomerAMG V(1,1)-cycle

with 1 pre- and 1 post-smoothing step is simply utilized — i.e. nmax
g = 1 and δg = 10−4

(which, usually, cannot be reached) in the parallel operations (step1), (step2) and (step3)

for the index g = 1, . . . , G, I , E. All of the invoked applications of BoomerAMG are in its

best practices scenario [14], i.e. using commonly recommended by the hypre configuration

parameters developers — viz.

• In the setup phase, a strength-of-connection measure of 0.25 in the HMIS coarsen-

ing strategy (coarsen_type: 10), the aggressive coarsening scheme on the finest level

(agg_num_levels: 1), the ‘extended+i’ interpolation strategy (interp_type: 6) fol-

lowed by a truncation to no more than five nonzero entries per row (P_max_elmts:

5), the coarse-grid operator (i.e., the triple sparse matrix product) determined al-

gebraically via the Galerkin approach and the termination of the coarsening process

when the coarse-grid size (i.e., the number of current degrees of freedom) is less than

100 (max_coarse_size: 100).
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• In the solve phase, the Gaussian elimination (grid_relax_type[3]: 9) as the smoother

at the coarsest grid level while, at the other grid levels, one sweep of the hybrid ℓ1
Gauss-Seidel smoothing in the ‘Coarse-Fine’ forward ordering on the down cycle (re-

lax_type: 13) and ‘Fine-Coarse’ backward ordering on the up cycle (relax_type: 14).

For the numerical results on real-world test cases described above in the next subsec-

tion, we choose the restart parameter m = 30, use a relative convergence tolerance of 10−8

in Euclidean norms of the current residual vector and the right-hand side vector (since the

initial guess vector is zero) and the maximum number of the preconditioned FGMRES(m)

iteration steps i termax = 200 as our stopping criterion, and further report the realistic

number of iteration steps i ternp and total elapsed time-to-solution timetot
np in seconds (av-

eraged over 10 test runs and measured via the MPI function ‘MPI_Wtime’) that the pre-

conditioned FGMRES(m) solver would require to converge when our MPI parallel code is

executed across np MPI tasks. Also, the parallel weak or strong efficiency e f c yk
p evaluated

by timetot
p /timetot

kp
or timetot

p /(k · timetot
kp
) [41] is provided below.

4.4. Results and discussions

4.4.1. Convergence and efficiency comparisons

Here, of particular practical interests are the convergence performance and computational

efficiency on one processor of the four integrated preconditioned FGMRES(m) solvers when

dealing with the seven twenty-group linear systems mentioned above over two unstructured

adaptive computational meshesM0 andM1 with 8,199,576 and 65,596,608 unknowns.

As reported in Table 1, we first see overall similar and good enough robustness and

high convergence rate (in terms of the number of iterations) of the FGMRES(30) solvers

preconditioned with P̂ defined by (3.1) and P defined by (3.3) under the computational

grid refinement and the physical parameter variation, namely, their convergence are both

achieved with roughly the same number of iterations (in no more than 11 steps) regardless

of the problem size and numeration.

Furthermore, BoomerAMG does not iterate robustly in regard to the spatial mesh size

and physical parameters — e.g. radiative free paths of possibly rather different scales,

and exhibits a low convergence rate for U86-2, U92-3, U113-2 and U174-1, while two

test cases — viz. U92-3 and U113-2, are not solvable by the PCTL algorithm within the

maximum number of iteration steps allowed. It is important to mention that, for these two

problems, PCTL exhibits a pathological convergence behavior — e.g. forM0 andM1 the

relative residual norm does not decrease after 16 and 18 and after 21 and 24 iterations,

respectively. However, PCTL solves U27-3, U86-2, U35-1, U41-1 and U174-1, with a slightly

lower convergence rate than that of preconditioners P̂ and P, in a nearly robust manner.

Taken together, the fastest rate of reduction in the relative residual norm — i.e. the best

preconditioning behavior, is obtained by the preconditioner P defined by (3.3). Moreover,

it results in an average of 13.79 and 1.08 times faster than BoomerAMG and the precon-

ditioner P̂ defined by (3.1) on the unstructured adaptive meshM0, while, on the refined
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Table 1: Iteration counts and elapsed time-to-solutions of four types of right-preconditioned FGM-
RES(30) solvers applied to solving seven twenty-group linear systems over two unstructured adaptive
computational meshes M0 (top) and M1 (bottom). Dashed entries (-) indicate the numerical solutions
failed to converge after 200 iteration steps while values in parentheses represent the order of magnitude
of the final relative residual norm.

M0

BoomerAMG P̂ defined by (3.1) P defined by (3.3) PCTL

i ter1 t imetot
1 i ter1 t imetot

1 i ter1 t imetot
1 i ter1 t imetot

1

U27-3 17 60.48 5 7.66 5 7.79 12 13.73

U86-2 54 127.73 8 9.81 6 8.54 14 14.84

U35-1 23 71.41 6 8.37 5 7.76 13 14.26

U92-3 69 155.04 9 10.52 7 9.28 - (10−5) -

U41-1 21 67.78 5 7.68 4 7.04 13 14.28

U113-2 80 175.02 8 9.84 7 9.31 - (10−4) -

U174-1 76 167.65 9 10.55 8 10.12 15 15.39

M1

BoomerAMG P̂ defined by (3.1) P defined by (3.3) PCTL

i ter1 t imetot
1

i ter1 t imetot
1

i ter1 t imetot
1

i ter1 t imetot
1

U27-3 28 815.45 6 68.53 5 64.54 13 137.73

U86-2 81 1645.83 9 82.79 7 74.48 17 154.35

U35-1 35 925.07 7 73.28 6 69.57 15 146.29

U92-3 90 1787.86 8 78.04 7 74.61 - (10−4) -

U41-1 32 878.14 7 73.25 5 64.53 16 150.48

U113-2 97 1896.42 10 87.52 8 79.45 - (10−3) -

U174-1 94 1849.51 11 92.30 9 84.42 19 165.61

mesh M1, the speedup ratios are 19.15 and 1.09; it runs averagely 1.79 and 2.17 times

faster than PCTL onM0 andM1, respectively, for the five test problems that can be tackled

by PCTL.

4.4.2. Parallel strong and weak scaling performance

A practical and important aspect of distributed parallel solvers is their inherent strong and

weak scaling properties. The strong scalability investigation measures the intrinsic parallel

performance by taking advantage of a fixed problem with increasing MPI processes while

the actual performance of parallel solvers under weak scaling is evaluated with a fixed

problem size — i.e. the number of the degrees of freedom, per processor core.

A strong scaling analysis is carried out over the seven test problems considered in

this study on the unstructured adaptive meshM1 while the number of parallel processor

cores used is altered from 88 to 704, doubling every time. Accordingly, 745,416, 372,708,

186,354 and 93,177 degrees of freedom are distributed on each physical core. It is crucial

to point out that PCTL is not considered in this subsection for its hyperslow convergence be-
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Table 2: Iteration counts, elapsed time-to-solutions and parallel efficiencies of three right-preconditioned
FGMRES(30) solvers in a strong scalability investigation.

M1

BoomerAMG

np=88 np=176 np=352 np=704

i t er88 t imetot
88

i t er176 t imetot
176

e f c y2
88

i t er352 t imetot
352

e f c y2
176

i t er704 t imetot
704

e f c y2
352

U27-3 31 126.36 33 71.09 88.9% 34 42.39 83.8% 37 28.58 74.2%

U86-2 86 261.13 89 140.87 92.7% 93 82.14 85.7% 95 52.70 77.9%

U35-1 39 145.94 41 81.06 90.0% 43 48.45 83.6% 46 32.32 75.0%

U92-3 96 285.62 99 153.34 93.1% 101 87.52 87.6% 103 56.03 78.1%

U41-1 35 136.14 37 76.11 89.5% 39 45.75 83.2% 41 30.25 75.6%

U113-2 103 302.75 105 160.73 94.2% 109 92.91 86.5% 112 59.77 77.7%

U174-1 97 288.07 101 155.82 92.4% 103 88.87 87.7% 104 56.44 78.6%

M1

P̂ defined by (3.1)

np=88 np=176 np=352 np=704

i t er88 t imetot
88

i t er176 t imetot
176

e f c y2
88

i t er352 t imetot
352

e f c y2
176

i t er704 t imetot
704

e f c y2
352

U27-3 6 10.26 6 6.04 84.9% 6 3.75 80.5% 6 2.51 74.8%

U86-2 10 13.59 10 7.76 87.6% 10 4.72 82.3% 11 3.27 72.2%

U35-1 7 11.10 8 6.91 80.4% 8 4.24 81.5% 8 2.81 75.3%

U92-3 9 12.76 9 7.33 87.1% 10 4.69 77.7% 10 3.12 75.7%

U41-1 8 11.93 8 6.88 86.3% 8 4.22 81.4% 9 2.96 71.4%

U113-2 12 15.26 12 8.64 88.5% 13 5.45 79.2% 13 3.57 76.2%

U174-1 11 14.43 11 8.19 88.0% 11 4.96 82.6% 12 3.42 72.5%

M1

P defined by (3.3)

np=88 np=176 np=352 np=704

i t er88 t imetot
88

i t er176 t imetot
176

e f c y2
88

i t er352 t imetot
352

e f c y2
176

i t er704 t imetot
704

e f c y2
352

U27-3 5 9.58 5 5.67 84.3% 5 3.55 80.1% 5 2.38 74.5%

U86-2 8 12.19 8 7.03 86.7% 9 4.56 77.2% 9 3.01 75.6%

U35-1 6 10.45 7 6.58 79.4% 8 4.30 76.4% 8 2.86 75.4%

U92-3 7 11.32 8 7.01 80.5% 8 4.32 81.7% 9 2.99 71.4%

U41-1 6 10.43 6 6.13 85.2% 7 4.05 75.6% 7 2.70 75.1%

U113-2 8 12.17 8 7.05 86.5% 8 4.33 81.5% 8 2.84 75.3%

U174-1 9 13.06 10 7.93 82.3% 10 4.81 82.4% 11 3.33 72.2%

havior when solving certain flux-limited MGD linear systems. The parallel results tabulated

in Table 2 demonstrate that BoomerAMG, P̂ defined by (3.1) and P defined by (3.3) right-

preconditioned FGMRES(30) solvers, in the strong sense, all exhibit excellent numerical

and parallel scaling properties, that is, their iteration counts and elapsed time-to-solutions

required for convergence with the specified tolerance remain primarily unchanged and ap-

propriately decreased in relation to the number of parallel processor cores: their average

strong parallel efficiencies are 91.5%, 85.4% and 76.7% for BoomerAMG, 86.1%, 80.7%

and 74.0% for P̂ defined by (3.1) while 83.6%, 79.3% and 74.2% for P defined by (3.3),

respectively. Despite the fact that P defined by (3.3) is numerically inferior to the other

two preconditioners, it reveals the lowest amplitude of relative decrease (actually, 16.2%,

14.1% and 11.2% for these three preconditioners with the number of MPI tasks varied from
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Table 3: A weak scalability investigation on the number of iterations, elapsed wall-clock time and parallel
efficiencies of three right-preconditioned FGMRES(30) solvers.

BoomerAMG

np=44,M0 np=352,M1 np=2,816,M2

i t er44 t imetot
44

i t er352 t imetot
352

e f c y8
44

i t er2,816 t imetot
2,816

e f c y8
352

U27-3 29 33.32 34 42.39 78.6% 40 59.22 71.6%

U86-2 87 76.02 93 82.14 92.5% 104 107.76 76.2%

U35-1 38 39.94 43 48.45 82.4% 51 67.66 72.6%

U92-3 94 81.17 101 87.52 92.7% 109 111.54 78.5%

U41-1 32 35.53 39 45.75 77.6% 45 63.10 72.5%

U113-2 100 85.59 109 92.91 92.1% 117 117.92 78.8%

U174-1 95 81.91 103 88.87 92.2% 108 110.88 80.1%

P̂ defined by (3.1)

np=44,M0 np=352,M1 np=2,816,M2

i t er44 t imetot
44

i t er352 t imetot
352

e f c y8
44

i t er2,816 t imetot
2,816

e f c y8
352

U27-3 6 3.14 6 3.75 83.6% 6 5.17 72.6%

U86-2 9 3.77 10 4.72 79.9% 10 6.45 73.2%

U35-1 8 3.56 8 4.24 83.8% 9 6.13 69.2%

U92-3 10 3.98 10 4.69 84.7% 11 6.76 69.3%

U41-1 7 3.35 8 4.22 79.3% 8 5.82 72.5%

U113-2 11 4.19 13 5.45 76.9% 14 7.78 70.0%

U174-1 10 3.95 11 4.96 80.2% 12 7.11 69.8%

P defined by (3.3)

np=44,M0 np=352,M1 np=2,816,M2

i t er44 t imetot
44

i t er352 t imetot
352

e f c y8
44

i t er2,816 t imetot
2,816

e f c y8
352

U27-3 5 2.96 5 3.55 83.3% 5 4.89 72.6%

U86-2 8 3.62 9 4.56 79.4% 10 6.57 69.4%

U35-1 7 3.39 8 4.30 78.9% 8 5.90 72.9%

U92-3 8 3.64 8 4.32 83.7% 9 6.23 69.3%

U41-1 6 3.18 7 4.05 78.4% 7 5.57 72.7%

U113-2 8 3.59 8 4.33 83.6% 9 6.25 69.2%

U174-1 9 3.84 10 4.81 79.8% 11 6.92 69.6%

88 to 704). Besides, it should be mentioned that P̂ defined by (3.1) and P defined by (3.3)

both show an insensitivity toward problem characteristics and P defined by (3.3) achieves

an average speedup of 15.7 and 1.08 over BoomerAMG and P̂ defined by (3.1) when using

704 MPI ranks.

A weak scalability investigation is proceeded to compare BoomerAMG, P̂ defined by

(3.1) and P defined by (3.3) by exploiting 44, 352 and 2,816 parallel processor cores, oc-

tupling every time on the strength of 186,354 degrees of freedom per physical core. More

exactly, three particular cases np = 44, np = 352 and np = 2,816 correspond to the coars-

est, intermediate and finest computational meshesM0,M1 andM2, respectively. It serves

the purpose of inspecting the numbers of these three right-preconditioned FGMRES(30)

iterations and their elapsed wall-clock time against the number of processor cores. By

inspecting Table 3, we observe that the average parallel efficiencies in this weak scaling
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examination for BoomerAMG, P̂ defined by (3.1) and P defined by (3.3) are 75.8%, 70.9%

and 70.8%, respectively, when using 2,816 MPI ranks, in which case we further notice 15.1

and 1.1 times higher computational performance for P defined by (3.3) than for Boomer-

AMG and P̂ defined by (3.1). It is obvious that the two proposed preconditioners P̂ defined

by (3.1) and P defined by (3.3) both weakly scale well from the viewpoint of numerical

and parallel scalabilities (with respect to the number of iterations and elapsed wall-clock

time, respectively) and have the same desirable weak scaling property.

5. Conclusion and Outlook

We have proposed an improved relaxed splitting preconditioner and a selectively re-

laxed splitting preconditioner both with algebraic multigrid subsolves and their easy-to-

implement algebraic estimations on the respective contributing parameter for efficient mo-

nolithic solutions of three-dimensional flux-limited MGD equations. The spectral distri-

bution and the minimal polynomial of the latter preconditioned matrix have been rigor-

ously proved. We have highlighted their stable behaviors to different physical parame-

ters and spatial mesh lengths, remarkable overall computational efficiency and excellent

numerical and parallel scalabilities in strong and weak senses. We foresee the extension

of the present work in four ways: (1) mixed precision preconditioning and solution al-

gorithms [1], (2) Krylov subspace recycling strategy [38], (3) Gaussian process regres-

sion technique based on the Bayesian inference to predict the optimal parameter [29] and

(4) computations on heterogeneous architectures consisting of central and graphics pro-

cessing devices for explorations of the MPI+OpenMP/CUDA-based parallelism.
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