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Abstract. A relaxation two-step Newton-based matrix splitting (RTNMS) iteration me-

thod is proposed to solve the generalized absolute value equations associated with cir-

cular cones (CCGAVE). The convergence of the RTNMS iteration method is investigated

under suitable conditions. Numerical results illustrate that the RTNMS iteration method

is feasible and effective for solving the CCGAVE. Moreover, some sufficient conditions

for the unique solvability of the CCGAVE are given.
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1. Introduction

The circular cone (CC) is a pointed closed convex cone having hyperspherical sections

orthogonal to its axis of revolution around which the cone is invariant with respect to

rotation [5, p. 102]. According to the definition, one can see that [31]

L n
θ =
�

x = (x1, x2) ∈ R×R
n−1 | ‖x2‖ ≤ x1 tanθ

	

(1.1)
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is a CC in Rn, where θ ∈ (0,π/2) is its half-aperture angle and ‖ · ‖ denotes the Euclidean

norm. If θ = π/4, then L n
θ

reduces to the well-known second-order cone (SOC)

K n =
�

x = (x1, x2) ∈ R×R
n−1 | ‖x2‖ ≤ x1

	

.

When θ = π/4 and n= 1, letL n
θ

be the set of nonnegative real. In general, we can consider

the following Cartesian product Lθ of circular cons L
ni

θ
in Rn:

Lθ =L
n1

θ
×L

n2

θ
× · · · ×L

nr

θ
,

where L
ni

θ
is defined as in (1.1) and n1 + n2 + · · ·+ nr = n with r, n1, n2, · · · , nr ≥ 1. In

addition, let us also recall — cf. [6, p. 4], that for any nonempty set C ⊆ Rn, its dual cone

is defined by

C ∗ := {y ∈ Rn | 〈y, x〉 ≥ 0 for all x ∈ C} .

A cone C with C = C ∗ is called a self-dual or symmetric cone. Note that unlike the SOC

K n, the CC L n
θ

is not a self-dual cone whenever θ ∈ (0,π/2)\{π/4}. Indeed, according

to [31], we have

�

L n
θ

�∗
=
�

y = (y1, y2) ∈ R×R
n−1 | ‖y2‖ ≤ y1 cotθ

	

.

Furthermore,

L ∗θ =
�

L
n1

θ

�∗
×
�

L
n2

θ

�∗
× · · · ×
�

L
nr

θ

�∗
.

With any CC we can associate generalized absolute value equations (CCGAVE) — viz.

Ax − B|x |= b, (1.2)

where A, B ∈ Rn×n, b ∈ Rn, x = (x
⊺

1
, · · · , x⊺r )

⊺ ∈ Rn1 × · · · ×Rnr , and |x | denotes the abso-

lute value of x corresponding to Lθ . To the best of our knowledge, CCGAVE (1.2) is first

introduced in [19] and it reduces to the generalized absolute value equations associated

with SOC (SOCGAVE) [9] when θ = π/4. More specifically, if θ = π/4 and r = n, CC-

GAVE (1.2) boils down to the generalized absolute value equations (GAVE) in Rn [23]. The

GAVE is relevant to many scientific problems, such as linear complementarity problems, in-

terval linear equations, quadratic programs and others — cf. [15,17,21,22] and references

therein. Any SOCGAVE is equivalent to a linear complementarity problem associated with

SOC, which has numerous applications in control, finance and robust optimization [1, 4].

We are mainly interested in CCGAVE (1.2) because it is not only present the extensions of

the GAVE and SOCGAVE but also gives an equivalent reformulation of linear complementar-

ity problems associated with CC (CCLCP). The later plays a crucial role in the optimization

community [2,13].

Over the past two decades, a lot of efforts have been made in developing numerical

methods and analyzing theoretical properties of the GAVE [3, 8, 14–17, 21, 25–30] and

SOCGAVE [9,10,18,20]. However, the study on CCGAVE (1.2) is still in its infancy, and to

our knowledge, there is no work except for the results in [19]. This motivates us to do the

job here.


