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Abstract. A relaxation two-step Newton-based matrix splitting (RTNMS) iteration me-
thod is proposed to solve the generalized absolute value equations associated with cir-
cular cones (CCGAVE). The convergence of the RTNMS iteration method is investigated
under suitable conditions. Numerical results illustrate that the RTNMS iteration method
is feasible and effective for solving the CCGAVE. Moreover, some sufficient conditions
for the unique solvability of the CCGAVE are given.
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1. Introduction

The circular cone (CC) is a pointed closed convex cone having hyperspherical sections
orthogonal to its axis of revolution around which the cone is invariant with respect to
rotation [5, p. 102]. According to the definition, one can see that [31]

Ly = {X =(x1,X%2) ER X R | [Ixo]l < x; tan@} (1.1)
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is a CC in R", where 6 € (0, t/2) is its half-aperture angle and || - || denotes the Euclidean
norm. If 6 = 7t/4, then .ng reduces to the well-known second-order cone (SOC)

A ={x=(x1,x) ERXR™ | |Ix,l < x3}.

When 6 = 7/4 and n = 1, let £} be the set of nonnegative real. In general, we can consider
the following Cartesian product %, of circular cons .5,”6’1 "in R™:

gezggl xgenzx...xge”r,

where xgi is defined as in (1.1) and n; + ny, +-:-+n, = n with r,ny,ny,--+,n, = 1. In
addition, let us also recall — cf. [6, p. 4], that for any nonempty set ¢ C R", its dual cone
is defined by

¢ :={yeR"|(y,x)=0 forall xe%}.

A cone € with ¥ = €* is called a self-dual or symmetric cone. Note that unlike the SOC
A", the CC £ is not a self-dual cone whenever 6 € (0,7/2)\{r/4}. Indeed, according
to [31], we have

(28) ={y = 01, 72) ER xR | ly,]l < y; cot 6} .

Furthermore,

;= (ggl)* X (,%gz)* % oen X (genr)*

With any CC we can associate generalized absolute value equations (CCGAVE) — viz.
Ax —B|x|=b, (1.2)

where A, B € R™" b eR", x = (xI,-'- ,XxI)T € R™M x -+ x R™, and |x| denotes the abso-
lute value of x corresponding to %,. To the best of our knowledge, CCGAVE (1.2) is first
introduced in [19] and it reduces to the generalized absolute value equations associated
with SOC (SOCGAVE) [9] when 6 = ©/4. More specifically, if 6 = ©/4 and r = n, CC-
GAVE (1.2) boils down to the generalized absolute value equations (GAVE) in R" [23]. The
GAVE is relevant to many scientific problems, such as linear complementarity problems, in-
terval linear equations, quadratic programs and others — cf. [15,17,21,22] and references
therein. Any SOCGAVE is equivalent to a linear complementarity problem associated with
SOC, which has numerous applications in control, finance and robust optimization [1,4].
We are mainly interested in CCGAVE (1.2) because it is not only present the extensions of
the GAVE and SOCGAVE but also gives an equivalent reformulation of linear complementar-
ity problems associated with CC (CCLCP). The later plays a crucial role in the optimization
community [2,13].

Over the past two decades, a lot of efforts have been made in developing numerical
methods and analyzing theoretical properties of the GAVE [3, 8, 14-17, 21, 25-30] and
SOCGAVE [9,10,18,20]. However, the study on CCGAVE (1.2) is still in its infancy, and to
our knowledge, there is no work except for the results in [19]. This motivates us to do the
job here.
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This paper presents a relaxation two-step Newton-based matrix splitting (RTNMS) it-
eration method for solving CCGAVE (1.2). As special cases, the RTNMS iteration method
can generate some well-known methods, such as the two-step Newton-based matrix split-
ting (TNMS) iteration method, the relaxation Newton-based matrix splitting (RNMS) iter-
ation method, the Newton-based matrix splitting (NMS) iteration method, the relaxation
modified Newton-type (RMN) iteration method, the modified Newton-type (MN) itera-
tion method, the Picard iteration method, the Douglas-Rachford splitting (DRs) iteration
method and the shift splitting (SS) iteration method. Moreover, the convergence analysis
of the proposed RTNMS iteration method is established. Numerical experiments are given
to demonstrate the efficiency of our method.

The rest of this paper is organized as follows. In Section 2, we review some basic
concepts and important properties associated with CC. Besides, the unique solvability of
CCGAVE (1.2) is studied. In Section 3, we develop the RTNMS iteration method for solving
CCGAVE (1.2). In Section 4, the convergence analysis of the RTNMS iteration method
is established. In Section 5, numerical results are reported to show the efficiency of the
proposed RTNMS iteration method. Finally, some conclusions are given in Section 6.

Notation. The set of all n x n real matrices is denoted by R™*" and R" = R™*!. We use
I to denote the identity matrix with suitable dimension. The transposition of a matrix or
a vector a is denoted by aT. For any x,y € R", the Euclidean inner product is defined as
(x,y) = xTy, while the Euclidean norm ||x|| = 4/(x, x). The spectral norm of A € R"*" is
denoted by ||A|| and is defined by the formula ||A|| = max{||Ax|| : x € R", ||x|| = 1}. We use
tridiag(a, b, c) to denote a tridiagonal matrix, which has a, b, ¢ as the subdiagonal, main
diagonal and superdiagonal entries, respectively, and the same goes to the block tridiagonal
matrix blktridiag(A, B, C). The set of all eigenvalues of matrix A is defined by sp(A), and
the Kronecker product is defined as ®.

2. Preliminaries

In this section, we collect a few important results on CC which lay the foundation of
our theoretical analysis. In addition, a sufficient condition for the unique solvability of
CCGAVE (1.2) is provided. For the sake of simplicity, we concentrate on the case of r =1,
since the results can be extended to the case of r > 1 according to the property of the
Cartesian product. Meanwhile, the theoretical analysis in this paper hold for any given
0 €(0,m/2).

For any vector x € R", here and in the sequel, let x. denote the projection of x onto Ly
and x_ be the projection of —x onto (£;)*. According to the definition of the projection,
it is obvious that x, € £ and x_ € (£,)". Concretely, we have [31]

"The projection mapping from R" onto 2, denoted by P, is defined as P,[x] = arg min{||x —z|||z € Q}.
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where
x1 + ||x5]| tan 6
1+ tan? 6
s >
(x1+||x2||tan9 ) X
———=——tan6
1+tan2 6 [|x5]|
0, if xey,
x_=4—x, if xe—(Z)),
e, otherwise,
and
x; — 1yl cot 6
1+ cot26
e =
x1 — ||x,]| cot 6 X
——=—cotf | —
1+ cot? 6 Bl
For any vector x € R", it can be confirmed that
X=Xx,—Xx_ (2.1)

and (x;,x_) = 0. In addition, the absolute value of x € R" with respect to the CC £ is
defined as
|x|=x, +x_. (2.2)

According to (2.1) and (2.2), we have the following lemma.

Lemma 2.1. For any two vectors x,y € R", it holds that

[Hx| =1yl < llx—yll.
Proof. It follows from (2.1) and (2.2) that

[l = ¥ 11> = [ o] = Ly 11>
={x—y,x—y)—(IxI—=lyl, lx| =1y
=xTx—xTy —yTx+yTy —|x|Tlx|+ [x[Ty| + [y [Tlx| = ¥y
= 2({lxl, Iy 1) = (x,3))
= 2(<x+ oyt y )= —x,y, _.V—>)
= 4({xs, y2) + (x,y4)) =0,
where the last inequality use the definition of the dual cone and the fact that x,,y, €

%y and x_,y_ € (¥£4)". Then the proof is completed by the fact that [|x — y|| > 0 and
x| =1ylll = 0. O

The proof of Lemma 2.1 is inspired by the proof of [18, Lemma 4.1], which seems to
be simpler than that of [12, Proposition 2.2].

In the following, we will explore the expression of |x| associate with CC £ . To this
end, the following spectral decomposition theorem is included.
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Theorem 2.1 (cf. Zhou & Chen [31, Theorem 3.1]). If x = (x;,x,) € R x R"™\, then x can
be represented in the form

x = A(lx)‘u(lx) + A(zx)‘u(zx),
where l(lx), A(zx) and ,u(lx), ,u(zx) are the spectral values and associated spectral vectors of x, viz.

A% = x; — [lx, ][ cot 0, A5 = x; + x| tan 6,

‘u(x) _ 1 1 ,U(x) _ 1 1
! 14cot20 \—(cotO)i > ™2 1+tan20 \(tan6)i
with i = x5 /|| || if x5 # 0, and any vector in R™ ! satisfying |||l = 1 if x, = 0.
According to the spectral decomposition of x, we have [31]
x = (A07), i+ (A7),
and [19]
o= (28wl +(2570) s,
where A, = max{0,A} and A_ = max{0,—A} for A € R. Then
— () () () () () ()
el =[ (A7 )+ +(257)_Jui? + [ (25 )+ +(257)_ ]
— |9, (A, 0x)
= |}‘1x |“1x + |)‘2x |“2x .

More exactly,

( ||
, if x,=0,

x| = |x1 —lIxallcot 6] |x; + llx,|[ tan 6] (2.3)
1+ cot26 1+tan26 " 20
, if x .
(|x1+||x2||tan9| anf — |x1 — llxa |l cot O] 9) X 2
1+tan26 1+ cot2 60 1Byl

By some calculation, it can be shown that | - | defined as in (2.2) is equal to that defined as
in (2.3).

Before ending this section, we will give a sufficient condition for the unique solvability
of CCGAVE (1.2). In [19], the authors pointed out that CCGAVE (1.2) has at least one
solution for any b € R" provided that all singular values of A € R™" exceed the maximal
singular value of B € R™" (or equivalently, 0 ,x(B) < 0min(A)). Note the same result is
obtained for SOCGAVE in [9, Corollary 3.2]. In the following, as a direct extension of the
result in [11, Proposition 2.3], we will prove that CCGAVE (1.2) has a unique solution for
any b € R" if 0,,4(B) < 0 pin(A).
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Theorem 2.2. If 0,.(B) < Opnin(A), then CCGAVE (1.2) has a unique solution for any
beR"

Proof. Since 0 ,,x(B) < 0 pin(A), the matrix A is nonsingular and we can define
H(x)=x—eAc(x),

where ¢(x) = Ax —B|x|—b and ¢ € (0,1). Then for any b € R", x* € R" is a solution of
CCGAVE (1.2) if and only if x* = 5#(x*). Hence, the result holds if the mapping s# has
a unique fixed-point in R" for any b € R". According to the Banach fixed-point theorem [6,
p. 144], for any b € R", one only has to show that the mapping # is contractive in R".
Using the triangle inequality and Lemma 2.1 gives

llo#(x) — 2 (¥l

= ||x — A" (Ax — Blx| — b) — y + eA"'(Ay —Bly| — b)|
= ||(1—&)(x — ) + A" B(Ix| =y ]|
<(1—-g)llx—yll+elABllllx—yll
=(1—e+ellABI) Ix—yl

for all x,y € R". Thus the mapping 4 is contractive in R" if |A~'B|| < 1, which is true
whenever 0,4 (B) < T pin(A). O

3. RTNMS Iteration Method

In this section, the RTNMS iteration method for solving CCGAVE (1.2) is suggested. To
this end, inspired by [30], we split the matrix A as
A=M; —N; =M;— N,
and introduce two nonnegative relaxation parameters ¢; and ¢,. Let
F(x) =Ax—B|x|— b,

then we have
F(x) = G1(x) + T;(x) = Gy(x) + Ty(x),

where
Gy(x) = Qx + ¢ M x,
Gy(x) = Qx + ¢, Myx
are differentiable,
Ti(x)=—Qx —N;x —(p; —1)M;x —B|x|—b,
Ty(x) =—Qx —Nox — (py —1)Myx —B|x|—b

are non-differentiable, O € R™" is a given matrix such that Q + p;M; and Q + @, M, are
nonsingular. It follows from F(x) = 0 that
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(p1M; +Q)x = (Ny + (91 — 1M, + Q)x + Blx| + b,
(paMy + Q)x = (Ny + (93 — 1M, + Q)x + Blx| + b,

from which the following RTNMS iteration method for solving CCGAVE (1.2) is established.

Algorithm 3.1 RTNMS Iteration Method.
1: Let A= M; —N; = M, — N, be two splittings of the matrix A € R™", Be R™", b € R".
2: Assume that x(*) € R" is an arbitrary initial guess.
3: for k =0,1,2,... until the iteration sequence {x ()} ]‘:i o is convergent do
4:  Compute x 1 e R" by

x D = (o, My + Q)7 (N + (91 — DMy + Q)x® + Blx®)| + b ],

— 3.1
XD = (0, My + Q)7 [(Ny + (93 — 1My + Q)x*F1/2) 4 |y kH1/2)) 4 p]

where ¢4, @5 = 0 are nonnegative relaxation parameters, and € is a given matrix
such that ¢ M; + Q and ¢,M, + Q are nonsingular.
5: end for

To the best of our knowledge, the only method proposed in the literature for solving
CCGAVE (1.2) is the generalized Newton (GN) method [19]. In this sense, the RTNMS
iteration method gives a new general framework for solving CCGAVE (1.2), which contains
some extensions of the existing methods for solving the GAVE (see the following remarks
for more details). Particularly, if ¢; = ¢4 = 1, the RTNMS iteration method will be called as
the TNMS iteration method. By suitably selecting the matrix splittings, it can also generate
some relaxation versions of the RTNMS iteration method, see Remarks 3.1-3.4.

Remark 3.1. Let A= D —L—U, where D is the diagonal part of A, and —L and —U are the
strictly lower-triangular and the strictly upper-triangular parts of A, respectively. If

1 1
M, =—-(D—-BL), N1=—|:(1—a)D+(a—[5)L+aU:|,
a a
1 1
M, =—=(D—pU), N2=—|:(1—a)D+(a—ﬁ)U+aL:|,
a a
then (3.1) leads to the relaxation two-step Newton-based accelerated overrelaxation (RT-
NAOR) iteration scheme

X2 = (1D — 91 BL+ )"
X [(aQ +(p;—a)D—(p18—a)L + aU)x(k) + a(B|x(k)| + b)],
xUD = (@D — 0, U + a2) ™!
X [(aQ +(py—a)D —(pyf —a)U + aL)x(kH/z) + a(B|x(k+1/2)| + b)].
When a = f# and @ = 3 = 1, the RTNAOR iteration scheme reduces to the relaxation

two-step Newton-based successive overrelaxation (RTNSOR) iteration scheme and the re-
laxation two-step Newton-based Gauss-Seidel (RTNGS) iteration scheme, respectively.
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Remark 3.2. Let A=M —N.IfM; =M, =M, N; =N, =N, ¢, =y = >0, then (3.1)
reduces to the RNMS iteration scheme

D = (oM + Q' [(N + (p = DM +2)x® + BIx®)| + b]. (3.2)

The RNMS iteration scheme can be seen as an extension of the scheme proposed in [29], in
which the GAVE is concerned. In addition, in the context of the GAVE, the method proposed
in [29] includes the NMS iteration method [30], the Picard iteration method [24], the MN
iteration method [26], and the SS iteration method [14] as special cases. These methods
can also be extended to solve CCGAVE (1.2), which are special cases of the RTNMS iteration
method.

Remark 3.3. Let M; = My =A, N; =N, =0 and ¢; = ¢, = ¢ > 0, then (3.1) reduces to
the RMN iteration scheme

xED = (pA+ Q) [((p — DA+ 0)x® + B|x®| + b],
which is an extension of the scheme proposed in [25].

Remark 3.4. Let M\; = My, =A, N; =N, =0, 2 = (2/y —1)A with y € (0,2) and ¢; =
¢, =1, then (3.1) with B =1 translates into the DRs iteration scheme

1 1
x (kD = (1 — —y) x® 4+ Zpa7 (1x W] + 1),
2 2
which is an extension of the scheme proposed in [3].

4. Convergence Analysis

In this section, we will establish the convergence analysis of the RTNMS iteration me-
thod for solving CCGAVE (1.2).

Theorem 4.1. Let A,B € R™" and A= M; — N; = M, — N, be two splittings of the matrix
A. Assume that @4, @, = 0 and 2 € R™" is such that the matrices o, M; + Q, @,M, + Q and
p1 My + oM, + 202 — A are nonsingular. Define

Mm(Q) = ||(e1M; + Q)7 (N + (01 =DM +Q)||, £1(Q) = ||(0:1M; +2)7'B
n2(Q2) = ||(902M2 +Q) T Ny + (02— DM, +Q)||,  E2() = ||(<P2M2 +0Q)7'B
5 = (M () +£1(D)(n2(Q2) + £5(Q)), p = [|(p1 My + .M, +20—A) B

If

B

B

max{d,p} <1, “4.1)

then for any b € R", CCGAVE (1.2) has a unique solution x* and the sequence generated by
Algorithm 3.1 converges to x* for any initial vector x(® € R".
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Proof. To begin with, we prove that {x(k)}]‘:i o and {xctk+1/ 2)}]‘2 o are Cauchy sequences.
It follows from (3.1) that

x*D = (o My + Q)T (N + (91 — DMy + Q)x D 4+ Blx kD] 4+ p],

~ 3 ~ (4.2)
X0 = (p, My + Q) [ (Ny + (93 — 1)My + )x®1/2) 4 Blx*=1/2)| 4 p].
Subtracting (4.2) from (3.1), we get
L (k+1/2) _ | (k=1/2) (4.32)

= (p1My + Q)7 [(N1 + (01 = DMy +Q)(x ™ —x* D) 4 B(|x®] = [xED])],
L) _ (0 (4.3b)
= (M + Q) [(Ny + (9 — DMy + Q) (02 — x (=1/2) (|5 kt1/2)| |5 (k172

Taking the Euclidean norm on both sides of Eq. (4.3a) and using the triangle inequality and
Lemma 2.1, we can conclude that

[|ac k172 _ (k=172

= [[CorMy + Q)7 [(V1 + (o1 = DMy +2)(x® = x ) 4 B (] = [x D)) ]
= [[Cp1 My + Q) (N + (91 — DMy +02)(x® — XD

+(p1 My + Q) B (|0 — [xED))|
< H(%Ml + Q)—l(N1 +(p; —1)M; + Q)(x(k) . x(k—l))”

ot 0 B (-
< [|CpMy + Q)N + (o1 — 1My + )| - 1 — kD)

+ ||(<P1M1 +Q)—1B|| . ” |x(k)| _ |X(k—1)| ”
< [|Cp My + Q)N + (o1 — 1M, + )] - [ — &)

+ 100 My + Q)7 1B]| - ||x®) — x =D
= (@1 My + Q) 1Ny + (91 — DMy + Q)| + [|(@1 My + Q) BJ|) - []x®) — x &=
= (11(Q) + &,()) lx®) — x|, )

Exploiting a similar strategy, we obtain from Eq. (4.3b) that

4D —x Ol < (|20 + Q)7 (N + (02 = 1My + Q)| +11(02Mo +2) 7B

x ||X(k+1/2) _ X(k—l/Z)”

= (12(Q) + &5(Q)) IIx <12 — x (12, (4.5)

As a result, we get
D) — x| < 51x 0 —xED,
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Then for each p > 1, we can deduce that

||X(k+p) _X(k)”

p
< Z ||X(k+i) _ X(k+i—1)”
i=1

<(BP T4 1)+ D — ()

§k(1—6P)
<oUZ0) w0
| ||
6k
< ——Jx® = x @)
| ||
Since §%/(1—8) — 0 as k — oo due to (4.1), we obtain that {x(k)},‘:io is a Cauchy se-
quence. Conversely, it follows from (4.5) that
8 = xED)| < (y(2) + () Ix <7D — x 2/,

Combining it with (4.4) yields

||x(k+1/2) _x(k—1/2)” < 5||X(k_1/2) . X(k_3/2)||.

Similarly, for each p > 1, we get

||X(k+1/2+p) _ X(k+1/2)”

p
< Z ||X(k+1/2+i) _ X(k—1/2+i)”
i=1
< (5p—1 +oeet 1)||X(k+3/2) _X(k+1/2)||
k(1 —sp
< MHXS/Z — x|
1—-6

< ||X3/2—X1/2||.

1-6

Since 6X/(1—8) — 0 as k — oo due to (4.1), this shows that {x(k“/z)}]fio is also a Cauchy

sequence.
Let x®®) — x* and xk*1/2) - %* as k — co. We prove x* = %* by contradiction. Taking

into account (4.2) with k — oo, we have

(o1 My + Q)%* = (Ny + (91 — 1)M; + Q)x* + B|x*| + b, (4.6)
(paMy + Q)x* = (Ny + (95 — 1)M, + Q)%* + B|%*| + b. 4.7)

Subtracting (4.7) from (4.6), and combining with A= M; —N; = M, —N,, we deduce that

B(]x*| —%*])
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== ((lel + (JOZMZ + 2Q —A))Z‘* - ((lel + LPZMZ + 29 _A)x*
= (1M + paM, + 22 —A)(X* — x¥).

Then based on the assumption, we have
F*—x* = (91 My + 9o My +2Q —A) 1 B(|x*| — [%F]). (4.8)

Taking the Euclidean norm on both sides of (4.8), by the condition (4.1) and Lemma 2.1,
it follows that

1% — x*|| = |(1 My + oMy + 22 —A) ' B(|x*| — [£*])|
< |1 M + oMy + 22 —A)'BJ| - || 1] — |x*| ||
< |I(@1M; + oMy + 22 —A) ' BJ| - ||%* — x*||

< [1%* = x*),

which is a contradiction if ¥* # x*. Therefore, the sequence generated by Algorithm 3.1
converges to x* and it follows from (4.6) and (4.7) that

Ax*—B|x*|—b=0,

that is, x* is a solution of CCGAVE (1.2).
Next, we prove the uniqueness of the solution for CCGAVE (1.2). If y* is another solu-
tion of CCGAVE (1.2) and y* # x*, we have

Ay*—B|y*|—-b=0.
Furthermore, we obtain
¥ = (1M + Q)7 ((Ny + (01 — DMy + Q)y* +Bly*| + b), (4.9)
¥ = (M, + Q) (N, + (9 — )My + Q)y* + Bly*| + b). (4.10)

Subtracting (4.9) from (4.6) and (4.10) from (4.7) (keep x* = X* in mind), then taking
the Euclidean norm on both sides of the first and second equations, we get

[l = y* Il < (I(p1 My + Q)7 (Ny + (1 — DMy + Q)| + (@1 My + Q) "B - [lc* — y*||

= (m (@) +&1()llx* — y*I,
[l = y*Il < (I(p2Ma + Q)7 (Ng + (3 — DMy + Q) + (92 My + Q) 'BII) - [lx* — y*||

= (12(Q) + &) llx* — y*|I.
Under condition (4.1), we conclude that
[l = y* 11 < (n1(2) + £1(2)) (M) + Eo() Ix* — ¥ < llx* — y*II,

which contradicts to the assumption y* # x*. This completes the proof. O
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The next corollary follows from the estimates
(1M1 + Q)7 (N7 + (91 — DMy + Q) + [I(91M; +Q)7'B]|
< [I(p1 My + Q) HIUIND + (01 — DM, + Q1+ [IBID),
I(@2Mp + Q) (N2 + (02 — DM + Q)| + [|(92 M, + Q)7 B||
< [I(p2Mz + Q) HI(INz + (02 — DM, + Q|1 + [IBI)).
Corollary 4.1. Let A,B € R™" and A = M; —N; = M, — N, be two splittings of the matrix
A. Assume that ¢, @, = 0 and 2 € R™" is such that the matrices p;M; + Q, p,M, + Q and
p1M; + M, + 202 — A are nonsingular. Define
& = lI(p1My + )7l - I(p2 Mz + Q)7
x (IINy + (91 = 1)M; + Q|| + 1B
x (1N + (92 = 1)M; + Q|| + |1B]]).
I 3
max{d,p} <1,

then for any b € R", CCGAVE (1.2) has a unique solution x* and the sequence generated
by Algorithm 3.1 converges to x* for any initial vector x©) € R™. Here, p is defined as in
Theorem 4.1.

According to the Banach perturbation lemma [7, Lemma 2.3.3.], we have the following
corollary as well.

Corollary 4.2. Let A,B € R™" and A= M; —N; = M, — N, be two splittings of the matrix
A, where M, and M, are nonsingular, ¢, @5 > O are positive relaxation parameters. Assume
that the matrix 2 € R™" is a positive semi-definite matrix such that ¢, M; + Q, oMy +Q
and @1 M; + @, M, + 22 — A are nonsingular. If
1
1211+ 1INy + (o1 — DM+l +1BII”
1
1211 + [N + (192 — 1)M, + QI + [IBII”
and p < 1, then for any b € R", CCGAVE (1.2) has a unique solution x* and the sequence
generated by Algorithm 3.1 converges to x* for any initial vector x°) € R". Here, p is defined
as in Theorem 4.1.

(M) <
(4.11)

1(paMa) 71l <

Proof. In the light of the Banach perturbation lemma [7, Lemma 2.3.3.] and (4.11), we
have
(o1 My + Q) Il (92 Mp + )|
< 11 M) M2 M) I + (M) T I + (92 Ma) ™) |
[l M1) I (p2Ma) 7|

— (A= ICorMy)HIIRAD (X = [ M)l
1

< .
(IIN7 + (o1 = DMy + Q|| + [IBIDCIN + (92 — 1M, + Q|| + [|BI)
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Therefore, the conclusion is drawn from Corollary 4.1. This completes the proof. O

In particular, when M;, M, € R™" are symmetric positive definite matrices and Q = wI
is a positive scalar matrix, then the following theorem can be obtained.

Theorem 4.2. Let A,B € R™" and A= M; — N; = M, — N, be two splittings of the matrix
A, where M, M, are symmetric positive definites. Assume that Q = wI with w > 0 such
that 1M, + p,M, + 2Q — A is nonsingular, p, @5 > 0 are positive relaxation parameters.
Let tpin, tmax D€ the smallest and the largest eigenvalues of the matrix My, and K pin, Kmax De
the smallest and the largest eigenvalues of the matrix M. Define ||B|| = ¥, 1 = [|[M] Ny,
Yy = ||M;'N,|| and

§= (LmaX|w1 +¢1—1] +w+ﬂ)(Kmax|¢2+‘P2_1| +CO+"0)
w+ ®1lmin w+ ¥2Kmin

If
max{é,p} <1, (4.12)

then for any b € R", CCGAVE (1.2) has a unique solution x*™ and the sequence generated
by Algorithm 3.1 converges to x* for any initial vector x©) € R™. Here, p is defined as in
Theorem 4.1.

Proof. According to Theorem 4.1, we just need to verify the sufficient condition (4.1).
Since
(01 My + Q)7 (N + (1 — DM, + Q)|
< [I(p1 My + Q)M (N + (91 — DM + [l (01 My + Q)72

[1(p2M; + Q)7 (Ny + (92 — 1M, + Q)|
< (@2 My + Q)7 (N + (92 = M) + (92 Mz + Q)02

one has to show that

(II(p1 My + Q) 1Ny + (@1 — DM+ I(01 My + )71 Q1 + [[(0 M + Q) 7'B|)
x (1(paMy + Q)7 Ny + (93 — DM + (92 My + 2)71Q| + [[(92My + 2)7'B|)) < 1.

Since M, is a symmetric positive definite matrix and = wI a positive scalar matrix, simple
calculations give

(o1 My + Q) (Ny + (91 —1)M,)|
= I(o1 My + Q)" M; My (Ny + (91 — 1My
< (@1 My + Q)7 My |[lIM; (N7 + (91 — DMl
= (o1 My + D) My [|IM7 Ny + o1 — 1|

U+ o1 =1 el + 01 —1]
max <
vesp(M;) w+ Pl w + Y1lmin
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(@1 M7 + Q)2 + (91 M; + Q)" B]|
< (@1 M7 + Q)M + 1B
= (w+ (1M + )|
w+1 w+1
= max = .
vesp(M;) w + Pt W + Q1lnin

Similarly, since M, is a symmetric positive definite matrix, we have

rnaxhbz + Py — 1|
w+(102Krnin
w+1

w+ $2Kmin

(02 My + Q) (N + (9 — 1Myl < =

I(0aMy + Q)1 + [|(p2My + Q) 'B|| <

Hence, we just require that
(Lmax|¢1+¥>1—1|+ w+ 7 )(Kmax|¢2+902—1|+ w+7 )<1
@+ P1lmin W+ P1lpin @ + P2Kmin W + PaKmin

Under condition (4.12), we can obtain the condition (4.1). The proof is complete. O

Remark 4.1. Since some spectral norms or eigenvalues need to be computed, the conver-
gence conditions provided in the above theorems and corollaries are generally not easy to
check in practice, especially for large-scale problems. The following example demonstrates
that the conditions of Theorem 4.1 can be satisfied. Let

6 —2 1 1
then consider two methods reported in Remark 3.1. We have
6 0 0 O 0 2
In addition, let ¢; = 1.2, ¢, = 0.8 and
2 1
o=(7))

(1) We take A= M1 —N1 = MZ _NZ with

6 0 0 2
Ml_D_L_(Z 6), Nl_U_(O 0),

6 —2 0 0
M2—D—U—(O . ) N2—L—(_2 0).

Then it can be checked that ¢ M; + Q, ¢oM, + Q and ¢ M7 + M, + 2Q — A are
nonsingular. Furthermore, we obtain max{§, p} = max{0.4174,0.2317} < 1. Hence,
the conditions of Theorem 4.1 are satisfied.
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(2) We take A=M; —N; =M, —N, witha = =1.3 and

1 4.6145 0
My=- (D=pL)= ( 2 4.6145 )

1 46154 -2
Ma= Z(D_ﬁU)_( 0  4.6154 )

leé[(l—a)D+(a—[5)L+aU]=(_1'3846 2 )

0 —1.3846
1 —1.3846 0
NZ—E[(l—a)D+(a—[5)U+aL]—( _o _1.3846 )

Then it can be checked that ¢;M; + Q, ¢oM, + Q and ¢ M7 + p, M, + 2Q — A are
nonsingular. In addition, we obtain max{§, p} = max{0.4825,0.3484} < 1. Hence,
the conditions of Theorem 4.1 are also satisfied.

Before ending this section, we present a convergence theorem for the RNMS iteration
method (see Remark 3.2 for the details). The proof is similar to that of Theorem 4.1 and is
omitted.

Theorem 4.3. Let A,B € R™" and A= M — N be a splitting of the matrix A. Assume that
¢ = 0and Q € R™" is such that the matrix ¢ M + Q is nonsingular. Define

Q) =M+ (N+ (¢ —DM+Q)ll, &) =l(¢M +2)'BJ|.
If
' =n(Q)+&(Q) <1, (4.13)

then for any b € R", CCGAVE (1.2) has a unique solution x* and the sequence generated by
RNMS iteration scheme (3.2) converges to x* for any initial vector x(® € R™.

Remark 4.2. In the proof of [29, Theorem 3.1], under the solvable assumption, the RNMS
iteration method is proved to converge to a solution of the GAVE if

I(eM +Q)HIUIN + (o — 1M + QI +[BI) < 1. (4.14)

However, the unique solvability of the GAVE is not explored in [29]. It can be checked that
(4.14) implies (4.13) but the converse is generally not true. Hence, comparing with [29,
Theorem 3.1], we get a stronger conclusion under a weaker condition here. Moreover, by
recalling Remark 3.2, the convergence theorem is available for the NMS iteration method,
the Picard iteration method, the MN iteration method and the SS iteration method.

5. Numerical Experiments

In this section, we present three numerical examples to demonstrate the effectiveness of
the RTNMS iteration method for solving CCGAVE (1.2). In our computations, all runs are
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implemented in MATLAB R2014b with a machine precision 2.22 x 1071° on a personal com-
puter with 1.60 GHz central processing unit (Intel(R) Core(TM) i5 —8265), 8 GB memory
and Windows 10 operating system.

As special cases, the Picard iteration method [24], the MN iteration method [26] and the
NMS iteration method [30] are extended to solve CCGAVE (1.2). Among which, the NGS
and NSOR iteration methods are tested as representatives of the NMS iteration method.
At the same time, the RTNGS and RTNSOR iteration methods are tested as representatives
of the RTNMS iteration method. We compare the above mentioned methods with the GN
method [19]. In the numerical results, we report the number of iteration steps (denoted
by IT’), the elapsed CPU time in seconds (denoted by ‘CPU’) and the relative residual error
(denoted by ‘RES’). Here, RES is set to be

_ llAax® —BIx®| b

RES ,
1]l

where x® is the k-th approximate solution to CCGAVE (1.2). The initial vector is chosen
to be
x©®=(1,0,1,0,...,1,0,...)T €R",

and all iterations are terminated once RES < 10~° or the number of the prescribed iteration
steps kpa.x = 500 is exceeded.

For the sake of fairness, we use the same matrix Q = (1/2)D in the MN, NGS, NSOR,
RTNGS and RTNSOR iteration methods, where D is the diagonal part of A. For the NSOR,
RTNGS and RTNSOR iteration methods, the experimentally optimal parameters are se-
lected, which leads to the smallest iteration step. For the GN method, the generalized
Jacobian matrix of |x| is specialized by t [19], and we choose t = 0. The LU factorization
is utilized to solve all the linear systems. We choose ¥y = ,%g T x ,%g X e X ,%g " and
set ny = --- =n, = n/r. Note that 0,,x(B) < o (A) is satisfied in the following three
numerical examples, CCGAVE (1.2) has a unique solution for any b € R".

Example 5.1. Consider CCGAVE (1.2) with

8 —1 -1 4
8§ —1 . 4
A= 3 1 GRnxn, B = 4 GRnxn,
—1
8 4

and b = Ax*— B|x*|, where x*=(-1,1,—-1,1,...,—1,1,...)T € R".

For this example, we take r = 1, 6 = ©/16 and r = 4, 6 = 1/12, respectively.
Tables 1-2 list the numerical results. According to Tables 1-2, we can observe that the
elapsed CPU time of all these test methods increase when the problem size n increases. In
addition, we find that all methods are convergent, but the six test methods proposed in this
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Table 1: Numerical results for Example 5.1 with r =1, 6 = n/16.

n
Method 60 802 1002 1202
IT 3 3 3 3
GN CPU 2.3811 9.6990 33.4310 122.9172
RES | 5.0929 x 1077 | 3.9990 x 1077 | 3.2869 x 10~7 | 2.7883 x 1077
IT 27 27 27 27
Picard | CPU 0.0068 0.0105 0.0252 0.0442
RES | 9.2806 x 1077 | 8.9308 x 1077 | 8.7256 x 10~/ | 8.5908 x 10~
IT 24 24 24 25
MN CPU 0.0057 0.0094 0.0213 0.0384
RES | 6.9032 x 1077 | 8.5012 x 107 | 9.4612 x 107 | 6.7344 x 10~
IT 23 24 24 24
NGS CPU 0.0047 0.0079 0.0176 0.0299
RES | 9.0751 x 1077 | 7.7916 x 10~/ | 8.8375 x 10~/ | 9.5352 x 1077
Aexp 1.2 1.2 1.2 1.2
NSOR IT 18 16 15 15
CPU 0.0042 0.0063 0.0103 0.0142
RES | 9.9203 x 1077 | 9.6722 x 1077 | 6.4599 x 10~/ | 9.7145 x 10~
Prexp 0.9 0.9 0.9 0.9
P2exp 0.3 0.3 0.3 0.3
RTNGS IT 6 6 7 7
CPU 0.0033 0.0054 0.0098 0.0133
RES | 3.6382 x 1077 | 8.6086 x 107 | 2.8110 x 1077 | 3.3520 x 1077
Aexp 2.0 2.0 0.6 1.7
Prexp 1.8 1.7 0.5 1.4
RTNSOR | P20 0.7 1.0 0.4 1.0
IT 6 5 5 5
CPU 0.0029 0.0049 0.0092 0.0122
RES | 8.2383x 1077 | 7.6161 x 10~/ | 1.3230 x 10~/ | 5.8776 x 1077

paper are better than the GN method in terms of the elapsed CPU time. For the test me-
thods proposed in this paper, the number of iteration steps and the elapsed CPU time of the
RTNGS and RTNSOR iteration methods are more efficient than the Picard, MN, NGS and
NSOR iteration methods. Furthermore, we check the convergence condition (4.1) in The-
orem 4.1 (for RTNGS and RTNSOR) and the convergence condition (4.13) in Theorem 4.3
(for Picard, MN, NGS and NSOR)*. Numerical results in Table 3 demonstrate the conver-
gence condition (4.1) in Theorem 4.1 and the convergence condition (4.13) in Theorem 4.3
are satisfied, where RTNSOR; and RTNSOR, represent the RTNSOR iteration method for
r=1,0=mn/16and r =4, 0 = /12, respectively.

*The same goes to the following two examples.
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Table 2: Numerical results for Example 5.1 with r =4, 6 = n/12.

n
Method 607 807 1007 1207
IT 4 4 4 4
GN CPU 2.7461 11.3115 38.3681 136.7964
RES | 2.2218 x 1078 | 2.5530 x 107® | 2.7686 x 1078 | 2.9197 x 1078
IT 25 24 24 24
Picard | CPU 0.0089 0.0102 0.0163 0.0378
RES | 6.1412x 1077 | 9.5237 x 1077 | 9.0013 x 1077 | 8.6667 x 10~/
IT 24 25 25 25
MN CPU 0.0080 0.0117 0.0182 0.0409
RES | 7.2114 x 1077 | 6.8807 x 1077 | 8.1281 x 1077 | 8.9612 x 1077
IT 23 24 25 25
NGS CPU 0.0071 0.0093 0.0138 0.0269
RES | 8.5061 x 1077 | 9.1274 x 1077 | 7.4707 x 1077 | 8.3960 x 10~
Aexp 1.2 1.2 1.2 1.2
IT 20 18 14 16
NSOR CPU 0.0048 0.0080 0.0109 0.0185
RES | 8.0920 x 1077 | 8.6258 x 1077 | 8.8741 x 1077 | 8.9638 x 1077
Prexp 0.9 0.9 0.9 0.9
Poexp 0.3 0.3 0.3 0.3
RTNGS IT 6 6 7 7
CPU 0.0042 0.0072 0.0103 0.0172
RES | 5.8215x 1077 | 8.0411 x 1077 | 3.2845 x 10~ | 4.3465 x 10~/
Aexp 2.0 2.0 2.0 1.8
Prexp 1.8 1.7 1.7 1.5
Vex 2.0 0.8 0.8 0.7
RTNSOR = P 4 p p p
CPU 0.0033 0.0059 0.0096 0.0143
RES | 7.4587 x 1077 | 9.3362 x 1077 | 8.0629 x 1077 | 7.8458 x 10~

Table 3: Values of max{5,p} in (4.1) and & in (4.13) for Example 5.1.

n

Method 607 80 | 100 | 120

Picard | 0.6667 | 0.6667 | 0.6667 | 0.6667
MN 0.8000 | 0.8000 | 0.8000 | 0.8000
NGS 0.8333 | 0.8333 | 0.8333 | 0.8333
NSOR 0.8125 | 0.8125 | 0.8125 | 0.8125
RTNGS | 0.8621 | 0.8621 | 0.8621 | 0.8621
RTNSOR, | 0.7758 | 0.5432 | 0.6221 | 0.5692
RTNSOR, | 0.7071 | 0.6856 | 0.6856 | 0.6964
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The CCLCP is to find two vectors u, v € R" such that

Pu—Qv=d,
vE Ly,

(5.1)

.U'G'ge, <nu, V):O,

where bQ € R™" and d € R". According to [19, Theorem 2.1], if we let A = P + Q,
B =Q—P, b =2d, then CCLCP (5.1) converts to CCGAVE (1.2). Based on this fact, we
give the following two examples.

Example 5.2. Consider CCLCP (5.1), let m be a positive integer, n = m?, Q = Q + 2I,,,
P = blktridiag(—I,,, W,—I,,,) € R™", and d = (1/2)(P(x* +|x*|) +Q(x*—|x*|)), where Q =

[,®W € R™" W = tridiag(—1,5,—1) e R"™*™and x* = (—1,1,-1,1,...,—-1,1,...)TeR™.
Table 4: Numerical results for Example 5.2 with r =1.
n
Method 602 802 1002 1202
IT 4 4 4 4
GN CPU 3.3993 18.2178 53.3196 149.8582
RES | 5.2394 x 107'? | 5.2502 x 10712 | 5.2572 x 10712 | 5.2609 x 1072
IT 17 17 17 17
Picard | CPU 0.0443 0.1543 0.3086 0.5395
RES | 8.1387 x 1077 | 7.9178 x 1077 | 7.7834x 1077 | 7.6932 x 107/
IT 15 15 15 15
MN CPU 0.0417 0.1385 0.2896 0.4916
RES | 7.1650 x 1077 | 7.4849 x 1077 | 7.6784 x 10~/ | 7.8080 x 10~/
IT 15 15 15 15
NGS CPU 0.0045 0.0081 0.0167 0.0256
RES | 8.3969 x 10™7 | 9.0838 x 1077 | 9.5006 x 1077 | 9.7804 x 10~
Aexp 1.3 1.3 1.3 1.3
IT 10 10 10 10
NSOR CPU 0.0036 0.0069 0.0129 0.0204
RES | 6.3585x 1077 | 7.4418x1077 | 8.3740x 1077 | 9.0772 x 1077
Prexp 0.9 0.9 0.9 0.9
Paexp 0.4 0.4 0.4 0.4
RTNGS IT 4 4 4 4
CPU 0.0030 0.0062 0.0110 0.0181
RES | 7.9232x 1077 | 7.7208 x 1077 | 7.6633 x 1077 | 7.6529 x 1077
Aexp 1.4 1.4 1.4 1.4
Prexp 1.1 1.1 1.1 1.1
RTNSOR | $2em 0.6 0.6 0.6 0.6
IT 4 4 4 4
CPU 0.0027 0.0058 0.0105 0.0167
RES | 5.4835x 1077 | 6.2186 x 1077 | 6.6973 x 1077 | 7.0294 x 10~/
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Table 5: Numerical results for Example 5.2 with r =m.

n
Method 607 807 1007 1207
IT 4 4 4 4
GN CPU 4.8509 21.4432 68.5549 205.6763
RES | 7.5635 x 1078 | 9.5964 x 1078 | 1.1182 x 1077 | 1.2460 x 10~
IT 19 19 19 19
Picard | CPU 0.0638 0.1581 0.3206 0.6366
RES | 9.1765 x 1077 | 7.4831 x 1077 | 6.4714 x 1077 | 5.7957 x 1077
IT 17 19 21 21
MN CPU 0.0606 0.1530 0.3182 0.6226
RES | 9.6039 x 1077 | 9.6874 x 107 | 7.2883 x 1077 | 9.8270 x 1077
IT 24 23 22 19
NGS CPU 0.0320 0.0422 0.0535 0.0662
RES | 8.7011 x 1077 | 7.9381 x 1077 | 6.6987 x 107 | 9.9007 x 10~
Aexp 1.9 2.0 2.0 2.0
IT 16 15 15 15
NSOR CPU 0.0219 0.0281 0.0386 0.0544
RES | 6.4907 x 1077 | 9.3739 x 107 | 8.9013 x 1077 | 8.5596 x 10~
Prexp 1.9 1.4 1.2 1.1
P2exp 0.7 0.6 0.6 0.6
RTNGS IT 7 6 6 6
CPU 0.0158 0.0197 0.0277 0.0406
RES | 9.0094 x 10~/ | 8.6502 x 1077 | 7.6970 x 107 | 9.1843 x 10~
Aexp 1.5 2.0 1.7 1.7
Prexp 1.9 1.9 1.7 1.6
Vex 1.0 1.1 0.8 0.8
RTNSOR T P p . : :
CPU 0.0136 0.0172 0.0230 0.0353
RES | 7.7104 x 1077 | 8.1813 x 1077 | 5.1160 x 10~7 | 7.1089 x 10~/

Table 6: Values of max{5,p} in (4.1) and &' in (4.13) for Example 5.2.

n

Method 607 807 | 1007 | 120°

Picard 0.6653 | 0.6659 | 0.6662 | 0.6663
MN 0.8326 | 0.8329 | 0.8331 | 0.8332
NGS 0.8660 | 0.8663 | 0.8664 | 0.8665
NSOR, | 0.8357 | 0.8360 | 0.8362 | 0.8363
NSOR, | 0.7844 | 0.7773 | 0.7774 | 0.7775
RTNGS, | 0.7853 | 0.7859 | 0.7862 | 0.7863
RTNGS, | 0.7638 | 0.7352 | 0.7529 | 0.7205
RTNSOR, | 0.6826 | 0.6831 | 0.6834 | 0.6835
RTNSOR, | 0.7115 | 0.6573 | 0.6617 | 0.6579
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In Example 5.2, we choose 6 = 7t/8 and pick two scenarios for the parameter r = 1, m.
Numerical results are listed in Tables 4-5, which indicate that each test method converges
to the solution x* of CCGAVE (1.2), and the elapsed CPU time also increases with the in-
crease of the dimension n of the coefficient matrix. Furthermore, we can find that the
RTNGS and RTNSOR iteration methods outperform the Picard, MN, NGS and NSOR itera-
tion methods in terms of the number of iteration steps and the elapsed CPU time. Although
the GN method requires fewer iteration steps, our methods take less the elapsed CPU time.
In addition, numerical results in Table 6 illustrate the convergence condition (4.1) in Theo-
rem 4.1 and the convergence condition (4.13) in Theorem 4.3 are satisfied, where NSOR;,
RTNGS;, RTNSOR; and NSOR,, RTNGS,, RTNSOR, represent the corresponding iteration
methods for r = 1 and r = m, respectively.

Example 5.3. Consider CCLCP (5.1), let m be a positive integer, n = m2,Q=0+3I P =
blktridiag(—1.5I,,, W, —0.5I,,) € R™" and d = (1/2)(P(x*+|x*|)+Q(x*—|x*|)), where Q =

Table 7: Numerical results for Example 5.3 with 6 = 1/6.

n
Method 60° 807 1002 1207
IT 5 5 5 5
GN CPU 6.4909 29.2790 95.4782 268.7339
RES | 3.7213 x107'2 | 4.9194 x 10712 | 5.8987 x 10712 | 6.7146 x 10712
IT 15 15 15 15
Picard | CPU 0.0671 0.1633 0.3192 0.5611
RES | 6.8355x1077 | 5.8115x 1077 | 5.2374x 1077 | 4.8741 x 10~/
IT 24 25 25 25
MN CPU 0.0775 0.1745 0.3539 0.5984
RES | 8.7387 x 1077 | 6.8298 x 1077 | 7.6271 x 1077 | 8.1961 x 1077
IT 24 25 25 25
NGS CPU 0.0313 0.0435 0.0589 0.0724
RES | 8.3724x1077 | 7.3617x1077 | 8.5909 x 107 | 9.4674 x 10~
Aexp 2.0 1.9 1.4 1.4
IT 15 15 13 14
NSOR CPU 0.0208 0.0279 0.0326 0.0426
RES | 8.2382x1077 | 9.1130x 1077 | 8.3775x 1077 | 7.1415x 1077/
Prexp 1.1 0.9 0.8 0.8
P2exp 0.4 0.4 0.5 0.4
RTNGS IT 6 7 6 6
CPU 0.0139 0.0226 0.0258 0.0342
RES | 8.8692x 1077 | 4.4225x1077 | 7.3338x 1077 | 4.5955 x 1077
Aexp 1.2 1.3 1.2 1.3
Prexp 1.1 1.0 0.9 0.9
Poex 0.6 0.7 0.5 0.8
RTNSOR | "2 P c c c c
CPU 0.0118 0.0173 0.0215 0.0295
RES | 7.2275x 1077 | 2.2092 x 1077 | 2.4798 x 1077 | 4.0209 x 10~/
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Table 8: Numerical results for Example 5.3 with 6 = 1/8.

n
Method 60 802 1002 1202
IT 4 4 4 4
GN CPU 4.6144 21.1618 75.2917 196.4198
RES | 2.2809 x 1077 | 2.8966 x 1077 | 3.3776 x 1077 | 3.7661 x 1077
IT 22 21 21 21
Picard | CPU 0.0722 0.1659 0.3335 0.6370
RES | 6.3344 x 1077 | 8.9509 x 10~/ | 7.6311 x 10~/ | 6.7575 x 10~
IT 21 19 22 23
MN CPU 0.0677 0.1535 0.3210 0.5827
RES | 7.4631 x 1077 | 9.9809 x 10~/ | 7.8363 x 10~/ | 7.5054 x 10~
IT 24 21 18 22
NGS CPU 0.0296 0.0400 0.0492 0.0732
RES | 7.6135x 1077 | 9.1681 x 10~/ | 7.0439 x 10~/ | 6.7360 x 10~/
Aexp 2.0 1.9 1.9 1.9
NSOR IT 16 16 16 16
CPU 0.0206 0.0307 0.0410 0.0524
RES | 6.9173 x1077 | 9.1798 x 107 | 8.5678 x 10~/ | 8.1202 x 10~
Prexp 1.5 1.2 1.1 1.1
P2exp 0.8 0.8 0.7 0.5
RTNGS IT 7 7 7 6
CPU 0.0150 0.0217 0.0320 0.0428
RES | 3.4363 x 1077 | 4.8120 x 1077 | 5.0508 x 1077 | 2.3280 x 1077
Aexp 2 1.8 1.1 1.8
Prexp 2.2 1.7 1.2 1.6
RTNSOR | P20 1.1 1.2 0.7 0.8
IT 6 6 6 5
CPU 0.0128 0.0198 0.0270 0.0327
RES | 7.6750 x 1077 | 7.1534 x 10~/ | 7.1383 x 10~/ | 7.2166 x 10~

I, ®W € R¥" W = tridiag(—1.5,5,—0.5) € R™™ and x* = (—1,1,—1,1,...,

e R".

-1,1,..
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For Example 5.3, we choose r = m and take two cases for the parameter 8 = 1t/6, /8.
In Tables 7-8, we report the numerical results of 6 = 7t/6 and 6 = 71/8, respectively. We can
find that all of the test methods can converge to the solution x* of CCGAVE (1.2). Further-
more, Tables 7-8 also show that the RTNGS and RTNSOR iteration methods are superior
to the GN, Picard, MN, NGS and NSOR iteration methods with respect to the elapsed CPU
time. In addition, the RTNGS and RTNSOR iteration methods have fewer iteration steps
than the Picard, MN, NGS and NSOR iteration methods. In addition, numerical results in
Table 9 indicate the convergence condition (4.1) in Theorem 4.1 and the convergence con-
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Table 9: Values of max{5,p} in (4.1) and & in (4.13) for Example 5.3.

n
Method 602 802 1007 1202
Picard 0.7130 | 0.7136 | 0.7138 | 0.7140
MN 0.8511 | 0.8514 | 0.8516 | 0.8517
NGS 0.8660 | 0.8663 | 0.8664 | 0.8665

NSOR; 0.7636 | 0.7732 | 0.8224 | 0.8226
NSOR, 0.7636 | 0.7732 | 0.7734 | 0.7736
RTNGS; 0.8684 | 0.8538 | 0.7105 | 0.8452
RTNGS, 0.7810 | 0.7675 | 0.7533 | 0.7309
RTNSOR; | 0.7860 | 0.6988 [ 0.7919 | 0.7009
RTNSOR, | 0.7678 | 0.7155 | 0.7421 | 0.7147

dition (4.13) in Theorem 4.3 are satisfied, where NSOR;, RTNGS;, RTNSOR; and NSOR,,
RTNGS,, RTNSOR, denote the corresponding iteration methods for 8 = n/6 and 6 = 7t/8,
respectively.

6. Conclusions

In this paper, a convergent and efficient relaxation two-step Newton-based matrix split-
ting iteration method for solving the CCGAVE is developed. Meanwhile, it seems to be
the first time that some sufficient conditions for the unique solvability of the CCGAVE are
explicitly given. However, the properties of the solution set of the CCGAVE need further
study.
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