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Abstract. A relaxation two-step Newton-based matrix splitting (RTNMS) iteration me-

thod is proposed to solve the generalized absolute value equations associated with cir-

cular cones (CCGAVE). The convergence of the RTNMS iteration method is investigated

under suitable conditions. Numerical results illustrate that the RTNMS iteration method

is feasible and effective for solving the CCGAVE. Moreover, some sufficient conditions

for the unique solvability of the CCGAVE are given.
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1. Introduction

The circular cone (CC) is a pointed closed convex cone having hyperspherical sections

orthogonal to its axis of revolution around which the cone is invariant with respect to

rotation [5, p. 102]. According to the definition, one can see that [31]

L n
θ =
�

x = (x1, x2) ∈ R×R
n−1 | ‖x2‖ ≤ x1 tanθ

	

(1.1)
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is a CC in Rn, where θ ∈ (0,π/2) is its half-aperture angle and ‖ · ‖ denotes the Euclidean

norm. If θ = π/4, then L n
θ

reduces to the well-known second-order cone (SOC)

K n =
�

x = (x1, x2) ∈ R×R
n−1 | ‖x2‖ ≤ x1

	

.

When θ = π/4 and n= 1, letL n
θ

be the set of nonnegative real. In general, we can consider

the following Cartesian product Lθ of circular cons L
ni

θ
in Rn:

Lθ =L
n1

θ
×L

n2

θ
× · · · ×L

nr

θ
,

where L
ni

θ
is defined as in (1.1) and n1 + n2 + · · ·+ nr = n with r, n1, n2, · · · , nr ≥ 1. In

addition, let us also recall — cf. [6, p. 4], that for any nonempty set C ⊆ Rn, its dual cone

is defined by

C ∗ := {y ∈ Rn | 〈y, x〉 ≥ 0 for all x ∈ C} .

A cone C with C = C ∗ is called a self-dual or symmetric cone. Note that unlike the SOC

K n, the CC L n
θ

is not a self-dual cone whenever θ ∈ (0,π/2)\{π/4}. Indeed, according

to [31], we have

�

L n
θ

�∗
=
�

y = (y1, y2) ∈ R×R
n−1 | ‖y2‖ ≤ y1 cotθ

	

.

Furthermore,

L ∗θ =
�

L
n1

θ

�∗
×
�

L
n2

θ

�∗
× · · · ×
�

L
nr

θ

�∗
.

With any CC we can associate generalized absolute value equations (CCGAVE) — viz.

Ax − B|x |= b, (1.2)

where A, B ∈ Rn×n, b ∈ Rn, x = (x
⊺

1
, · · · , x⊺r )

⊺ ∈ Rn1 × · · · ×Rnr , and |x | denotes the abso-

lute value of x corresponding to Lθ . To the best of our knowledge, CCGAVE (1.2) is first

introduced in [19] and it reduces to the generalized absolute value equations associated

with SOC (SOCGAVE) [9] when θ = π/4. More specifically, if θ = π/4 and r = n, CC-

GAVE (1.2) boils down to the generalized absolute value equations (GAVE) in Rn [23]. The

GAVE is relevant to many scientific problems, such as linear complementarity problems, in-

terval linear equations, quadratic programs and others — cf. [15,17,21,22] and references

therein. Any SOCGAVE is equivalent to a linear complementarity problem associated with

SOC, which has numerous applications in control, finance and robust optimization [1, 4].

We are mainly interested in CCGAVE (1.2) because it is not only present the extensions of

the GAVE and SOCGAVE but also gives an equivalent reformulation of linear complementar-

ity problems associated with CC (CCLCP). The later plays a crucial role in the optimization

community [2,13].

Over the past two decades, a lot of efforts have been made in developing numerical

methods and analyzing theoretical properties of the GAVE [3, 8, 14–17, 21, 25–30] and

SOCGAVE [9,10,18,20]. However, the study on CCGAVE (1.2) is still in its infancy, and to

our knowledge, there is no work except for the results in [19]. This motivates us to do the

job here.
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This paper presents a relaxation two-step Newton-based matrix splitting (RTNMS) it-

eration method for solving CCGAVE (1.2). As special cases, the RTNMS iteration method

can generate some well-known methods, such as the two-step Newton-based matrix split-

ting (TNMS) iteration method, the relaxation Newton-based matrix splitting (RNMS) iter-

ation method, the Newton-based matrix splitting (NMS) iteration method, the relaxation

modified Newton-type (RMN) iteration method, the modified Newton-type (MN) itera-

tion method, the Picard iteration method, the Douglas-Rachford splitting (DRs) iteration

method and the shift splitting (SS) iteration method. Moreover, the convergence analysis

of the proposed RTNMS iteration method is established. Numerical experiments are given

to demonstrate the efficiency of our method.

The rest of this paper is organized as follows. In Section 2, we review some basic

concepts and important properties associated with CC. Besides, the unique solvability of

CCGAVE (1.2) is studied. In Section 3, we develop the RTNMS iteration method for solving

CCGAVE (1.2). In Section 4, the convergence analysis of the RTNMS iteration method

is established. In Section 5, numerical results are reported to show the efficiency of the

proposed RTNMS iteration method. Finally, some conclusions are given in Section 6.

Notation. The set of all n× n real matrices is denoted by Rn×n and Rn = Rn×1. We use

I to denote the identity matrix with suitable dimension. The transposition of a matrix or

a vector a is denoted by a⊺. For any x , y ∈ Rn, the Euclidean inner product is defined as

〈x , y〉 = x⊺ y, while the Euclidean norm ‖x‖ =
p

〈x , x〉. The spectral norm of A ∈ Rn×n is

denoted by ‖A‖ and is defined by the formula ‖A‖=max{‖Ax‖ : x ∈ Rn,‖x‖ = 1}. We use

tridiag(a, b, c) to denote a tridiagonal matrix, which has a, b, c as the subdiagonal, main

diagonal and superdiagonal entries, respectively, and the same goes to the block tridiagonal

matrix blktridiag(A, B, C). The set of all eigenvalues of matrix A is defined by sp(A), and

the Kronecker product is defined as ⊗.

2. Preliminaries

In this section, we collect a few important results on CC which lay the foundation of

our theoretical analysis. In addition, a sufficient condition for the unique solvability of

CCGAVE (1.2) is provided. For the sake of simplicity, we concentrate on the case of r = 1,

since the results can be extended to the case of r > 1 according to the property of the

Cartesian product. Meanwhile, the theoretical analysis in this paper hold for any given

θ ∈ (0,π/2).

For any vector x ∈ Rn, here and in the sequel, let x+ denote the projection† of x ontoL n
θ

and x− be the projection of −x onto (L n
θ
)∗. According to the definition of the projection,

it is obvious that x+ ∈ L
n
θ

and x− ∈ (L
n
θ
)∗. Concretely, we have [31]

x+ =







x , if x ∈ L n
θ

,

0, if x ∈ −(L n
θ
)∗,

s, otherwise,

†The projection mapping from Rn onto Ω, denoted by PΩ, is defined as PΩ[x] = arg min{‖x − z‖|z ∈ Ω}.
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where

s =









x1 + ‖x2‖ tanθ

1+ tan2 θ
�

x1 + ‖x2‖ tanθ

1+ tan2 θ
tanθ

�

x2

‖x2‖








,

x− =









0, if x ∈ L n
θ

,

−x , if x ∈ −(L n
θ
)∗,

e, otherwise,

and

e =









−
x1 − ‖x2‖ cotθ

1+ cot2 θ
�

x1 − ‖x2‖ cotθ

1+ cot2 θ
cotθ

�

x2

‖x2‖








.

For any vector x ∈ Rn, it can be confirmed that

x = x+ − x− (2.1)

and 〈x+, x−〉 = 0. In addition, the absolute value of x ∈ Rn with respect to the CC L n
θ

is

defined as

|x |= x+ + x−. (2.2)

According to (2.1) and (2.2), we have the following lemma.

Lemma 2.1. For any two vectors x , y ∈ Rn, it holds that

‖ |x | − |y| ‖ ≤ ‖x − y‖.

Proof. It follows from (2.1) and (2.2) that

‖x − y‖2 − ‖ |x | − |y| ‖2

= 〈x − y, x − y〉 − 〈|x | − |y|, |x | − |y|〉

= x⊺x − x⊺ y − y⊺x + y⊺ y − |x |⊺|x |+ |x |⊺|y|+ |y|⊺|x | − |y|⊺|y|

= 2
�

〈|x |, |y|〉 − 〈x , y〉
�

= 2
�

〈x+ + x−, y+ + y−〉 − 〈x+ − x−, y+ − y−〉
�

= 4
�

〈x+, y−〉+ 〈x−, y+〉
�

≥ 0,

where the last inequality use the definition of the dual cone and the fact that x+, y+ ∈

L n
θ

and x−, y− ∈ (L
n
θ
)∗. Then the proof is completed by the fact that ‖x − y‖ ≥ 0 and

‖ |x | − |y| ‖ ≥ 0.

The proof of Lemma 2.1 is inspired by the proof of [18, Lemma 4.1], which seems to

be simpler than that of [12, Proposition 2.2].

In the following, we will explore the expression of |x | associate with CC L n
θ

. To this

end, the following spectral decomposition theorem is included.
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Theorem 2.1 (cf. Zhou & Chen [31, Theorem 3.1]). If x = (x1, x2) ∈ R×R
n−1, then x can

be represented in the form

x = λ
(x)

1
µ
(x)

1
+λ

(x)

2
µ
(x)

2
,

where λ
(x)

1
, λ
(x)

2
and µ

(x)

1
, µ
(x)

2
are the spectral values and associated spectral vectors of x, viz.

λ
(x)

1
= x1 − ‖x2‖ cotθ , λ

(x)

2
= x1 + ‖x2‖ tanθ ,

µ
(x)

1
=

1

1+ cot2 θ

�

1

−(cotθ)µ̃

�

, µ
(x)

2
=

1

1+ tan2 θ

�

1

(tanθ)µ̃

�

with µ̃ = x2/‖x2‖ if x2 6= 0, and any vector in Rn−1 satisfying ‖µ̃‖= 1 if x2 = 0.

According to the spectral decomposition of x , we have [31]

x+ =
�

λ
(x)
1

�

+
µ
(x)
1
+
�

λ
(x)
2

�

+
µ
(x)
2

and [19]

x− =
�

λ
(x)

1

�

−
µ
(x)

1
+
�

λ
(x)

2

�

−
µ
(x)

2
,

where λ+ =max{0,λ} and λ− =max{0,−λ} for λ ∈ R. Then

|x |=
��

λ
(x)

1

�

+
+
�

λ
(x)

1

�

−

�

µ
(x)

1
+
��

λ
(x)

2

�

+
+
�

λ
(x)

2

�

−

�

µ
(x)

2

=
�

�λ
(x)

1

�

�µ
(x)

1
+
�

�λ
(x)

2

�

�µ
(x)

2
.

More exactly,

|x |=





















�

|x1|

0

�

, if x2 = 0,









|x1 − ‖x2‖ cotθ |

1+ cot2 θ
+
|x1 + ‖x2‖ tanθ |

1+ tan2 θ
�

|x1 + ‖x2‖ tanθ |

1+ tan2 θ
tanθ −

|x1 − ‖x2‖ cotθ |

1+ cot2 θ
cotθ

�

x2

‖x2‖








, if x2 6= 0.

(2.3)

By some calculation, it can be shown that | · | defined as in (2.2) is equal to that defined as

in (2.3).

Before ending this section, we will give a sufficient condition for the unique solvability

of CCGAVE (1.2). In [19], the authors pointed out that CCGAVE (1.2) has at least one

solution for any b ∈ Rn provided that all singular values of A ∈ Rn×n exceed the maximal

singular value of B ∈ Rn×n (or equivalently, σmax(B) < σmin(A)). Note the same result is

obtained for SOCGAVE in [9, Corollary 3.2]. In the following, as a direct extension of the

result in [11, Proposition 2.3], we will prove that CCGAVE (1.2) has a unique solution for

any b ∈ Rn if σmax(B) < σmin(A).
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Theorem 2.2. If σmax(B) < σmin(A), then CCGAVE (1.2) has a unique solution for any

b ∈ Rn.

Proof. Since σmax(B) <σmin(A), the matrix A is nonsingular and we can define

H (x) = x − ǫA−1c(x),

where c(x) = Ax − B|x | − b and ǫ ∈ (0,1). Then for any b ∈ Rn, x∗ ∈ Rn is a solution of

CCGAVE (1.2) if and only if x∗ = H (x∗). Hence, the result holds if the mapping H has

a unique fixed-point in Rn for any b ∈ Rn. According to the Banach fixed-point theorem [6,

p. 144], for any b ∈ Rn, one only has to show that the mapping H is contractive in Rn.

Using the triangle inequality and Lemma 2.1 gives

‖H (x)−H (y)‖

=




x − ǫA−1(Ax − B|x | − b)− y + ǫA−1(Ay − B|y| − b)






=




(1− ǫ)(x − y) + ǫA−1B(|x | − |y|)






≤ (1− ǫ)‖x − y‖+ ǫ‖A−1B‖‖x − y‖

=
�

1− ǫ + ǫ‖A−1B‖
�

‖x − y‖

for all x , y ∈ Rn. Thus the mapping H is contractive in Rn if ‖A−1B‖ < 1, which is true

whenever σmax(B) < σmin(A).

3. RTNMS Iteration Method

In this section, the RTNMS iteration method for solving CCGAVE (1.2) is suggested. To

this end, inspired by [30], we split the matrix A as

A= M1 − N1 = M2 − N2,

and introduce two nonnegative relaxation parameters ϕ1 and ϕ2. Let

F(x) = Ax − B|x | − b,

then we have

F(x) = G1(x) + T1(x) = G2(x) + T2(x),

where

G1(x) = Ωx +ϕ1M1 x ,

G2(x) = Ωx +ϕ2M2 x

are differentiable,

T1(x) = −Ωx − N1 x − (ϕ1 − 1)M1 x − B|x | − b,

T2(x) = −Ωx − N2 x − (ϕ2 − 1)M2 x − B|x | − b

are non-differentiable, Ω ∈ Rn×n is a given matrix such that Ω+ϕ1M1 and Ω+ϕ2M2 are

nonsingular. It follows from F(x) = 0 that
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(ϕ1M1 +Ω)x =
�

N1 + (ϕ1 − 1)M1 +Ω
�

x + B|x |+ b,

(ϕ2M2 +Ω)x =
�

N2 + (ϕ2 − 1)M2 +Ω
�

x + B|x |+ b,

from which the following RTNMS iteration method for solving CCGAVE (1.2) is established.

Algorithm 3.1 RTNMS Iteration Method.

1: Let A= M1 −N1 = M2 −N2 be two splittings of the matrix A∈ Rn×n, B ∈ Rn×n, b ∈ Rn.

2: Assume that x (0) ∈ Rn is an arbitrary initial guess.

3: for k = 0,1,2, . . . until the iteration sequence {x (k)}∞
k=0

is convergent do

4: Compute x (k+1) ∈ Rn by

x (k+1/2) = (ϕ1M1 +Ω)
−1
��

N1 + (ϕ1 − 1)M1 +Ω
�

x (k)+ B|x (k)|+ b
�

,

x (k+1) = (ϕ2M2 +Ω)
−1
��

N2 + (ϕ2 − 1)M2 +Ω
�

x (k+1/2)+ B|x (k+1/2)|+ b
�

,
(3.1)

where ϕ1, ϕ2 ≥ 0 are nonnegative relaxation parameters, and Ω is a given matrix

such that ϕ1M1 +Ω and ϕ2M2 +Ω are nonsingular.

5: end for

To the best of our knowledge, the only method proposed in the literature for solving

CCGAVE (1.2) is the generalized Newton (GN) method [19]. In this sense, the RTNMS

iteration method gives a new general framework for solving CCGAVE (1.2), which contains

some extensions of the existing methods for solving the GAVE (see the following remarks

for more details). Particularly, if ϕ1 = ϕ2 = 1, the RTNMS iteration method will be called as

the TNMS iteration method. By suitably selecting the matrix splittings, it can also generate

some relaxation versions of the RTNMS iteration method, see Remarks 3.1-3.4.

Remark 3.1. Let A= D− L−U , where D is the diagonal part of A, and −L and −U are the

strictly lower-triangular and the strictly upper-triangular parts of A, respectively. If

M1 =
1

α
(D− β L), N1 =

1

α

�

(1−α)D + (α− β)L +αU
�

,

M2 =
1

α
(D− βU), N2 =

1

α

�

(1−α)D + (α− β)U +αL
�

,

then (3.1) leads to the relaxation two-step Newton-based accelerated overrelaxation (RT-

NAOR) iteration scheme

x (k+1/2) = (ϕ1D−ϕ1β L +αΩ)−1

×
�

(αΩ+ (ϕ1 −α)D − (ϕ1β −α)L +αU)x (k)+α(B|x (k)|+ b)
�

,

x (k+1) = (ϕ2D−ϕ2βU +αΩ)−1

×
�

(αΩ+ (ϕ2 −α)D − (ϕ2β −α)U +αL)x (k+1/2) +α(B|x (k+1/2)|+ b)
�

.

When α = β and α = β = 1, the RTNAOR iteration scheme reduces to the relaxation

two-step Newton-based successive overrelaxation (RTNSOR) iteration scheme and the re-

laxation two-step Newton-based Gauss-Seidel (RTNGS) iteration scheme, respectively.



A Newton-Based Matrix Splitting Iteration Method for CCGAVE 145

Remark 3.2. Let A= M −N . If M1 = M2 = M , N1 = N2 = N , ϕ1 = ϕ2 = ϕ ≥ 0, then (3.1)

reduces to the RNMS iteration scheme

x (k+1) = (ϕM +Ω)−1
�

(N + (ϕ − 1)M +Ω)x (k)+ B|x (k)|+ b
�

. (3.2)

The RNMS iteration scheme can be seen as an extension of the scheme proposed in [29], in

which the GAVE is concerned. In addition, in the context of the GAVE, the method proposed

in [29] includes the NMS iteration method [30], the Picard iteration method [24], the MN

iteration method [26], and the SS iteration method [14] as special cases. These methods

can also be extended to solve CCGAVE (1.2), which are special cases of the RTNMS iteration

method.

Remark 3.3. Let M1 = M2 = A, N1 = N2 = 0 and ϕ1 = ϕ2 = ϕ ≥ 0, then (3.1) reduces to

the RMN iteration scheme

x (k+1) = (ϕA+Ω)−1
��

(ϕ − 1)A+Ω
�

x (k)+ B|x (k)|+ b
�

,

which is an extension of the scheme proposed in [25].

Remark 3.4. Let M1 = M2 = A, N1 = N2 = 0, Ω = (2/γ − 1)A with γ ∈ (0,2) and ϕ1 =

ϕ2 = 1, then (3.1) with B = I translates into the DRs iteration scheme

x (k+1) =

�

1−
1

2
γ

�

x (k)+
1

2
γA−1
�

|x (k)|+ b
�

,

which is an extension of the scheme proposed in [3].

4. Convergence Analysis

In this section, we will establish the convergence analysis of the RTNMS iteration me-

thod for solving CCGAVE (1.2).

Theorem 4.1. Let A, B ∈ Rn×n and A = M1 − N1 = M2 − N2 be two splittings of the matrix

A. Assume that ϕ1, ϕ2 ≥ 0 and Ω ∈ Rn×n is such that the matrices ϕ1M1 +Ω, ϕ2M2+Ω and

ϕ1M1 +ϕ2M2 + 2Ω− A are nonsingular. Define

η1(Ω) =




(ϕ1M1 +Ω)
−1(N1 + (ϕ1 − 1)M1 +Ω)





 , ξ1(Ω) =




(ϕ1M1 +Ω)
−1B




 ,

η2(Ω) =




(ϕ2M2 +Ω)
−1(N2 + (ϕ2 − 1)M2 +Ω)





 , ξ2(Ω) =




(ϕ2M2 +Ω)
−1B




 ,

δ =
�

η1(Ω) + ξ1(Ω)
��

η2(Ω) + ξ2(Ω)
�

, ρ =




(ϕ1M1 +ϕ2M2 + 2Ω− A)−1B




 .

If

max{δ,ρ} < 1, (4.1)

then for any b ∈ Rn, CCGAVE (1.2) has a unique solution x∗ and the sequence generated by

Algorithm 3.1 converges to x∗ for any initial vector x (0) ∈ Rn.
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Proof. To begin with, we prove that {x (k)}∞
k=0

and {x (k+1/2)}∞
k=0

are Cauchy sequences.

It follows from (3.1) that

x (k−1/2) = (ϕ1M1 +Ω)
−1
�

(N1 + (ϕ1 − 1)M1 +Ω)x
(k−1)+ B|x (k−1)|+ b

�

,

x (k) = (ϕ2M2 +Ω)
−1
�

(N2 + (ϕ2 − 1)M2 +Ω)x
(k−1/2) + B|x (k−1/2)|+ b

�

.
(4.2)

Subtracting (4.2) from (3.1), we get

x (k+1/2) − x (k−1/2) (4.3a)

= (ϕ1M1 +Ω)
−1
��

N1 + (ϕ1 − 1)M1 +Ω
��

x (k)− x (k−1)
�

+ B
�

|x (k)| − |x (k−1)|
��

,

x (k+1)− x (k) (4.3b)

= (ϕ2M2 +Ω)
−1
��

N2 + (ϕ2 − 1)M2 +Ω
��

x (k+1/2) − x (k−1/2)
�

+ B
�

|x (k+1/2)| − |x (k−1/2)|
��

.

Taking the Euclidean norm on both sides of Eq. (4.3a) and using the triangle inequality and

Lemma 2.1, we can conclude that

‖x (k+1/2) − x (k−1/2)‖

=




(ϕ1M1 +Ω)
−1
��

N1 + (ϕ1 − 1)M1 +Ω
�

(x (k)− x (k−1)) + B
�

|x (k)| − |x (k−1)|
��





=




(ϕ1M1 +Ω)
−1
�

N1 + (ϕ1 − 1)M1 +Ω
�

(x (k)− x (k−1))

+(ϕ1M1 +Ω)
−1B
�

|x (k)| − |x (k−1)|
�





≤




(ϕ1M1 +Ω)
−1
�

N1 + (ϕ1 − 1)M1 +Ω
�

(x (k)− x (k−1))






+




(ϕ1M1 +Ω)
−1B
�

|x (k)| − |x (k−1)|
�





≤




(ϕ1M1 +Ω)
−1
�

N1 + (ϕ1 − 1)M1 +Ω
�



 · ‖x (k)− x (k−1)‖

+




(ϕ1M1 +Ω)
−1B




 ·




 |x (k)| − |x (k−1)|






≤




(ϕ1M1 +Ω)
−1
�

N1 + (ϕ1 − 1)M1 +Ω
�



 · ‖x (k)− x (k−1)‖

+ ‖(ϕ1M1 +Ω)
−1B‖ · ‖x (k)− x (k−1)‖

=
�

‖(ϕ1M1 +Ω)
−1
�

N1 + (ϕ1 − 1)M1 +Ω
�

‖+ ‖(ϕ1M1 +Ω)
−1B‖
�

· ‖x (k)− x (k−1)‖

=
�

η1(Ω) + ξ1(Ω)
�

‖x (k)− x (k−1)‖. (4.4)

Exploiting a similar strategy, we obtain from Eq. (4.3b) that

‖x (k+1)− x (k)‖ ≤
�



(ϕ2M2 +Ω)
−1
�

N2 + (ϕ2 − 1)M2 +Ω
�



+ ‖(ϕ2M2 +Ω)
−1B‖
�

× ‖x (k+1/2)− x (k−1/2)‖

=
�

η2(Ω) + ξ2(Ω)
�

‖x (k+1/2)− x (k−1/2)‖. (4.5)

As a result, we get

‖x (k+1)− x (k)‖ ≤ δ‖x (k)− x (k−1)‖.
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Then for each p ≥ 1, we can deduce that

‖x (k+p)− x (k)‖

≤

p
∑

i=1

‖x (k+i)− x (k+i−1)‖

≤ (δp−1 + · · ·+ 1)‖x (k+1)− x (k)‖

≤
δk(1−δp)

1−δ
‖x (1) − x (0)‖

≤
δk

1−δ
‖x (1) − x (0)‖.

Since δk/(1− δ) → 0 as k → ∞ due to (4.1), we obtain that {x (k)}∞
k=0

is a Cauchy se-

quence. Conversely, it follows from (4.5) that

‖x (k)− x (k−1)‖ ≤
�

η2(Ω) + ξ2(Ω)
�

‖x (k−1/2)− x (k−3/2)‖.

Combining it with (4.4) yields

‖x (k+1/2) − x (k−1/2)‖ ≤ δ‖x (k−1/2)− x (k−3/2)‖.

Similarly, for each p ≥ 1, we get

‖x (k+1/2+p)− x (k+1/2)‖

≤

p
∑

i=1

‖x (k+1/2+i)− x (k−1/2+i)‖

≤ (δp−1 + · · ·+ 1)‖x (k+3/2)− x (k+1/2)‖

≤
δk(1−δp)

1−δ
‖x3/2 − x1/2‖

≤
δk

1−δ
‖x3/2 − x1/2‖.

Since δk/(1−δ)→ 0 as k→∞ due to (4.1), this shows that {x (k+1/2)}∞
k=0

is also a Cauchy

sequence.

Let x (k)→ x∗ and x (k+1/2)→ x̃∗ as k→∞. We prove x∗ = x̃∗ by contradiction. Taking

into account (4.2) with k→∞, we have

(ϕ1M1 +Ω) x̃
∗ =
�

N1 + (ϕ1 − 1)M1 +Ω
�

x∗+ B|x∗|+ b, (4.6)

(ϕ2M2 +Ω)x
∗ =
�

N2 + (ϕ2 − 1)M2 +Ω
�

x̃∗+ B| x̃∗|+ b. (4.7)

Subtracting (4.7) from (4.6), and combining with A= M1 −N1 = M2 −N2, we deduce that

B(|x∗| − | x̃∗|)

= (ϕ1M1 +Ω) x̃
∗ − (ϕ2M2 +Ω)x

∗ −
�

N1 + (ϕ1 − 1)M1 +Ω
�

x∗ +
�

N2 + (ϕ2 − 1)M2 +Ω
�

x̃∗
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=
�

ϕ1M1 +Ω+ N2 + (ϕ2 − 1)M2 +Ω
�

x̃∗ −
�

ϕ2M2 +Ω+ N1 + (ϕ1 − 1)M1 +Ω
�

x∗

= (ϕ1M1 +ϕ2M2 + 2Ω− A) x̃∗− (ϕ1M1 +ϕ2M2 + 2Ω− A)x∗

= (ϕ1M1 +ϕ2M2 + 2Ω− A)( x̃∗− x∗).

Then based on the assumption, we have

x̃∗ − x∗ = (ϕ1M1 +ϕ2M2 + 2Ω− A)−1B(|x∗| − | x̃∗|). (4.8)

Taking the Euclidean norm on both sides of (4.8), by the condition (4.1) and Lemma 2.1,

it follows that

‖ x̃∗ − x∗‖ = ‖(ϕ1M1 +ϕ2M2 + 2Ω− A)−1B(|x∗| − | x̃∗|)‖

≤ ‖(ϕ1M1 +ϕ2M2 + 2Ω− A)−1B‖ · ‖ | x̃∗| − |x∗| ‖

≤ ‖(ϕ1M1 +ϕ2M2 + 2Ω− A)−1B‖ · ‖ x̃∗ − x∗‖

< ‖ x̃∗ − x∗‖,

which is a contradiction if x̃∗ 6= x∗. Therefore, the sequence generated by Algorithm 3.1

converges to x∗ and it follows from (4.6) and (4.7) that

Ax∗− B|x∗| − b = 0,

that is, x∗ is a solution of CCGAVE (1.2).

Next, we prove the uniqueness of the solution for CCGAVE (1.2). If y∗ is another solu-

tion of CCGAVE (1.2) and y∗ 6= x∗, we have

Ay∗ − B|y∗| − b = 0.

Furthermore, we obtain

y∗ = (ϕ1M1 +Ω)
−1
�

(N1 + (ϕ1 − 1)M1 +Ω)y
∗ + B|y∗|+ b
�

, (4.9)

y∗ = (ϕ2M2 +Ω)
−1
�

(N2 + (ϕ2 − 1)M2 +Ω)y
∗ + B|y∗|+ b
�

. (4.10)

Subtracting (4.9) from (4.6) and (4.10) from (4.7) (keep x∗ = x̃∗ in mind), then taking

the Euclidean norm on both sides of the first and second equations, we get

‖x∗ − y∗‖ ≤
�

‖(ϕ1M1 +Ω)
−1(N1 + (ϕ1 − 1)M1 +Ω)‖+ ‖(ϕ1M1 +Ω)

−1B‖
�

· ‖x∗ − y∗‖

=
�

η1(Ω) + ξ1(Ω)
�

‖x∗ − y∗‖,

‖x∗ − y∗‖ ≤
�

‖(ϕ2M2 +Ω)
−1(N2 + (ϕ2 − 1)M2 +Ω)‖+ ‖(ϕ2M2 +Ω)

−1B‖
�

· ‖x∗ − y∗‖

=
�

η2(Ω) + ξ2(Ω)
�

‖x∗ − y∗‖.

Under condition (4.1), we conclude that

‖x∗ − y∗‖ ≤
�

η1(Ω) + ξ1(Ω)
��

η2(Ω) + ξ2(Ω)
�

‖x∗ − y∗‖< ‖x∗ − y∗‖,

which contradicts to the assumption y∗ 6= x∗. This completes the proof.
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The next corollary follows from the estimates

‖(ϕ1M1 +Ω)
−1(N1 + (ϕ1 − 1)M1 +Ω)‖+ ‖(ϕ1M1 +Ω)

−1B‖

≤ ‖(ϕ1M1 +Ω)
−1‖(‖N1 + (ϕ1 − 1)M1 +Ω‖+ ‖B‖),

‖(ϕ2M2 +Ω)
−1(N2 + (ϕ2 − 1)M2 +Ω)‖+ ‖(ϕ2M2 +Ω)

−1B‖

≤ ‖(ϕ2M2 +Ω)
−1‖(‖N2 + (ϕ2 − 1)M2 +Ω‖+ ‖B‖).

Corollary 4.1. Let A, B ∈ Rn×n and A= M1 − N1 = M2 − N2 be two splittings of the matrix

A. Assume that ϕ1,ϕ2 ≥ 0 and Ω ∈ Rn×n is such that the matrices ϕ1M1 +Ω, ϕ2M2 +Ω and

ϕ1M1 +ϕ2M2 + 2Ω− A are nonsingular. Define

δ̃ = ‖(ϕ1M1 +Ω)
−1‖ · ‖(ϕ2M2 +Ω)

−1‖

×
�

‖N1 + (ϕ1 − 1)M1 +Ω‖+ ‖B‖
�

×
�

‖N2 + (ϕ2 − 1)M2 +Ω‖+ ‖B‖
�

.

If

max{δ̃,ρ} < 1,

then for any b ∈ Rn, CCGAVE (1.2) has a unique solution x∗ and the sequence generated

by Algorithm 3.1 converges to x∗ for any initial vector x (0) ∈ Rn. Here, ρ is defined as in

Theorem 4.1.

According to the Banach perturbation lemma [7, Lemma 2.3.3.], we have the following

corollary as well.

Corollary 4.2. Let A, B ∈ Rn×n and A= M1 − N1 = M2 − N2 be two splittings of the matrix

A, where M1 and M2 are nonsingular, ϕ1, ϕ2 > 0 are positive relaxation parameters. Assume

that the matrix Ω ∈ Rn×n is a positive semi-definite matrix such that ϕ1M1 + Ω, ϕ2M2 +Ω

and ϕ1M1 +ϕ2M2 + 2Ω− A are nonsingular. If

‖(ϕ1M1)
−1‖<

1

‖Ω‖+ ‖N1 + (ϕ1 − 1)M1 +Ω‖+ ‖B‖
,

‖(ϕ2M2)
−1‖<

1

‖Ω‖+ ‖N2 + (ϕ2 − 1)M2 +Ω‖+ ‖B‖
,

(4.11)

and ρ < 1, then for any b ∈ Rn, CCGAVE (1.2) has a unique solution x∗ and the sequence

generated by Algorithm 3.1 converges to x∗ for any initial vector x (0) ∈ Rn. Here, ρ is defined

as in Theorem 4.1.

Proof. In the light of the Banach perturbation lemma [7, Lemma 2.3.3.] and (4.11), we

have

‖(ϕ1M1 +Ω)
−1‖‖(ϕ2M2 +Ω)

−1‖

≤ ‖(ϕ1M1)
−1‖‖(ϕ2M2)

−1‖‖(I + (ϕ1M1)
−1
Ω)−1‖‖(I + (ϕ2M2)

−1
Ω)−1‖

≤
‖(ϕ1M1)

−1‖‖(ϕ2M2)
−1‖

(1− ‖(ϕ1M1)
−1‖‖Ω‖) (1− ‖(ϕ2M2)

−1‖‖Ω‖)

<
1

(‖N1 + (ϕ1 − 1)M1 +Ω‖+ ‖B‖)(‖N2 + (ϕ2 − 1)M2 +Ω‖+ ‖B‖)
.
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Therefore, the conclusion is drawn from Corollary 4.1. This completes the proof.

In particular, when M1, M2 ∈ R
n×n are symmetric positive definite matrices and Ω=ωI

is a positive scalar matrix, then the following theorem can be obtained.

Theorem 4.2. Let A, B ∈ Rn×n and A = M1 − N1 = M2 − N2 be two splittings of the matrix

A, where M1, M2 are symmetric positive definites. Assume that Ω = ωI with ω > 0 such

that ϕ1M1 + ϕ2M2 + 2Ω − A is nonsingular, ϕ1,ϕ2 > 0 are positive relaxation parameters.

Let ιmin, ιmax be the smallest and the largest eigenvalues of the matrix M1, and κmin,κmax be

the smallest and the largest eigenvalues of the matrix M2. Define ‖B‖ = ϑ, ψ1 = ‖M
−1
1 N1‖,

ψ2 = ‖M
−1
2 N2‖ and

δ̂ =

�

ιmax|ψ1 +ϕ1 − 1|+ω+ ϑ

ω+ϕ1ιmin

��

κmax|ψ2 +ϕ2 − 1|+ω+ ϑ

ω+ϕ2κmin

�

.

If

max{δ̂,ρ} < 1, (4.12)

then for any b ∈ Rn, CCGAVE (1.2) has a unique solution x∗ and the sequence generated

by Algorithm 3.1 converges to x∗ for any initial vector x (0) ∈ Rn. Here, ρ is defined as in

Theorem 4.1.

Proof. According to Theorem 4.1, we just need to verify the sufficient condition (4.1).

Since

‖(ϕ1M1 +Ω)
−1(N1 + (ϕ1 − 1)M1 +Ω)‖

≤ ‖(ϕ1M1 +Ω)
−1(N1 + (ϕ1 − 1)M1)‖+ ‖(ϕ1M1 +Ω)

−1
Ω‖,

‖(ϕ2M2 +Ω)
−1(N2 + (ϕ2 − 1)M2 +Ω)‖

≤ ‖(ϕ2M2 +Ω)
−1(N2 + (ϕ2 − 1)M2)‖+ ‖(ϕ2M2 +Ω)

−1
Ω‖,

one has to show that

�

‖(ϕ1M1 +Ω)
−1(N1 + (ϕ1 − 1)M1)‖+ ‖(ϕ1M1 +Ω)

−1
Ω‖+ ‖(ϕ1M1 +Ω)

−1B‖
�

×
�

‖(ϕ2M2 +Ω)
−1(N2 + (ϕ2 − 1)M2)‖+ ‖(ϕ2M2 +Ω)

−1
Ω‖+ ‖(ϕ2M2 +Ω)

−1B‖
�

< 1.

Since M1 is a symmetric positive definite matrix andΩ=ωI a positive scalar matrix, simple

calculations give

‖(ϕ1M1 +Ω)
−1(N1 + (ϕ1 − 1)M1)‖

= ‖(ϕ1M1 +Ω)
−1M1M−1

1 (N1 + (ϕ1 − 1)M1)‖

≤ ‖(ϕ1M1 +Ω)
−1M1‖‖M

−1
1 (N1 + (ϕ1 − 1)M1)‖

= ‖(ϕ1M1 +ωI)−1M1‖‖M
−1
1 N1 +ϕ1 − 1‖

= max
ι∈sp(M1)

ι|ψ1 +ϕ1 − 1|

ω+ϕ1ι
≤
ιmax|ψ1 +ϕ1 − 1|

ω+ϕ1ιmin

,
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‖(ϕ1M1 +Ω)
−1
Ω‖+ ‖(ϕ1M1 +Ω)

−1B‖

≤ ‖(ϕ1M1 +Ω)
−1‖(‖Ω‖+ ‖B‖)

= (ω+ ϑ)‖(ϕ1M1 +ωI)−1‖

= max
ι∈sp(M1)

ω+ ϑ

ω+ϕ1ι
=

ω+ ϑ

ω+ϕ1ιmin

.

Similarly, since M2 is a symmetric positive definite matrix, we have

‖(ϕ2M2 +Ω)
−1(N2 + (ϕ2 − 1)M2)‖ ≤

κmax|ψ2 +ϕ2 − 1|

ω+ϕ2κmin

,

‖(ϕ2M2 +Ω)
−1
Ω‖+ ‖(ϕ2M2 +Ω)

−1B‖ ≤
ω+ ϑ

ω+ϕ2κmin

.

Hence, we just require that

�

ιmax|ψ1 +ϕ1 − 1|

ω+ϕ1ιmin

+
ω+ ϑ

ω+ϕ1ιmin

��

κmax|ψ2 +ϕ2 − 1|

ω+ϕ2κmin

+
ω+ ϑ

ω+ϕ2κmin

�

< 1.

Under condition (4.12), we can obtain the condition (4.1). The proof is complete.

Remark 4.1. Since some spectral norms or eigenvalues need to be computed, the conver-

gence conditions provided in the above theorems and corollaries are generally not easy to

check in practice, especially for large-scale problems. The following example demonstrates

that the conditions of Theorem 4.1 can be satisfied. Let

A=

�

6 −2

2 6

�

, B =

�

1 1

−1 2

�

,

then consider two methods reported in Remark 3.1. We have

D =

�

6 0

0 6

�

, L =

�

0 0

−2 0

�

, U =

�

0 2

0 0

�

.

In addition, let ϕ1 = 1.2, ϕ2 = 0.8 and

Ω=

�

2 1

1 2

�

.

(1) We take A= M1 − N1 = M2 − N2 with

M1 = D− L =

�

6 0

2 6

�

, N1 = U =

�

0 2

0 0

�

,

M2 = D− U =

�

6 −2

0 6

�

, N2 = L =

�

0 0

−2 0

�

.

Then it can be checked that ϕ1M1 + Ω, ϕ2M2 + Ω and ϕ1M1 + ϕ2M2 + 2Ω − A are

nonsingular. Furthermore, we obtain max{δ,ρ} =max{0.4174,0.2317}< 1. Hence,

the conditions of Theorem 4.1 are satisfied.
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(2) We take A= M1 − N1 = M2 − N2 with α = β = 1.3 and

M1 =
1

α
(D− β L) =

�

4.6145 0

2 4.6145

�

,

M2 =
1

α
(D− βU) =

�

4.6154 −2

0 4.6154

�

,

N1 =
1

α
[(1−α)D + (α− β)L +αU] =

�

−1.3846 2

0 −1.3846

�

,

N2 =
1

α
[(1−α)D + (α− β)U +αL] =

�

−1.3846 0

−2 −1.3846

�

.

Then it can be checked that ϕ1M1 + Ω, ϕ2M2 + Ω and ϕ1M1 + ϕ2M2 + 2Ω − A are

nonsingular. In addition, we obtain max{δ,ρ} = max{0.4825,0.3484}< 1. Hence,

the conditions of Theorem 4.1 are also satisfied.

Before ending this section, we present a convergence theorem for the RNMS iteration

method (see Remark 3.2 for the details). The proof is similar to that of Theorem 4.1 and is

omitted.

Theorem 4.3. Let A, B ∈ Rn×n and A = M − N be a splitting of the matrix A. Assume that

ϕ ≥ 0 and Ω ∈ Rn×n is such that the matrix ϕM +Ω is nonsingular. Define

η(Ω) = ‖(ϕM +Ω)−1(N + (ϕ − 1)M +Ω)‖, ξ(Ω) = ‖(ϕM +Ω)−1B‖.

If

δ′ = η(Ω) + ξ(Ω)< 1, (4.13)

then for any b ∈ Rn, CCGAVE (1.2) has a unique solution x∗ and the sequence generated by

RNMS iteration scheme (3.2) converges to x∗ for any initial vector x (0) ∈ Rn.

Remark 4.2. In the proof of [29, Theorem 3.1], under the solvable assumption, the RNMS

iteration method is proved to converge to a solution of the GAVE if

‖(ϕM +Ω)−1‖(‖N + (ϕ − 1)M +Ω‖+ ‖B‖) < 1. (4.14)

However, the unique solvability of the GAVE is not explored in [29]. It can be checked that

(4.14) implies (4.13) but the converse is generally not true. Hence, comparing with [29,

Theorem 3.1], we get a stronger conclusion under a weaker condition here. Moreover, by

recalling Remark 3.2, the convergence theorem is available for the NMS iteration method,

the Picard iteration method, the MN iteration method and the SS iteration method.

5. Numerical Experiments

In this section, we present three numerical examples to demonstrate the effectiveness of

the RTNMS iteration method for solving CCGAVE (1.2). In our computations, all runs are
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implemented in MATLAB R2014b with a machine precision 2.22×10−16 on a personal com-

puter with 1.60 GHz central processing unit (Intel(R) Core(TM) i5− 8265), 8 GB memory

and Windows 10 operating system.

As special cases, the Picard iteration method [24], the MN iteration method [26] and the

NMS iteration method [30] are extended to solve CCGAVE (1.2). Among which, the NGS

and NSOR iteration methods are tested as representatives of the NMS iteration method.

At the same time, the RTNGS and RTNSOR iteration methods are tested as representatives

of the RTNMS iteration method. We compare the above mentioned methods with the GN

method [19]. In the numerical results, we report the number of iteration steps (denoted

by ‘IT’), the elapsed CPU time in seconds (denoted by ‘CPU’) and the relative residual error

(denoted by ‘RES’). Here, RES is set to be

RES=
‖Ax (k)− B|x (k)| − b‖

‖b‖
,

where x (k) is the k-th approximate solution to CCGAVE (1.2). The initial vector is chosen

to be

x (0) = (1,0,1,0, . . . , 1,0, . . .)⊺ ∈ Rn,

and all iterations are terminated once RES< 10−6 or the number of the prescribed iteration

steps kmax = 500 is exceeded.

For the sake of fairness, we use the same matrix Ω = (1/2)D in the MN, NGS, NSOR,

RTNGS and RTNSOR iteration methods, where D is the diagonal part of A. For the NSOR,

RTNGS and RTNSOR iteration methods, the experimentally optimal parameters are se-

lected, which leads to the smallest iteration step. For the GN method, the generalized

Jacobian matrix of |x | is specialized by t [19], and we choose t = 0. The LU factorization

is utilized to solve all the linear systems. We choose Lθ = L
n1

θ
× L

n2

θ
× · · · × L

nr

θ
and

set n1 = · · · = nr = n/r. Note that σmax(B) < σmin(A) is satisfied in the following three

numerical examples, CCGAVE (1.2) has a unique solution for any b ∈ Rn.

Example 5.1. Consider CCGAVE (1.2) with

A=

















8 −1 −1

8 −1
...

8
. .. −1
... −1

8

















∈ Rn×n, B =













4

4

4
.. .

4













∈ Rn×n,

and b = Ax∗− B|x∗|, where x∗ = (−1,1,−1,1, . . . ,−1,1, . . .)⊺ ∈ Rn.

For this example, we take r = 1, θ = π/16 and r = 4, θ = π/12, respectively.

Tables 1-2 list the numerical results. According to Tables 1-2, we can observe that the

elapsed CPU time of all these test methods increase when the problem size n increases. In

addition, we find that all methods are convergent, but the six test methods proposed in this
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Table 1: Numerical results for Example 5.1 with r = 1, θ = π/16.

Method
n

602 802 1002 1202

GN

IT 3 3 3 3

CPU 2.3811 9.6990 33.4310 122.9172

RES 5.0929× 10−7 3.9990× 10−7 3.2869× 10−7 2.7883× 10−7

Picard

IT 27 27 27 27

CPU 0.0068 0.0105 0.0252 0.0442

RES 9.2806× 10−7 8.9308× 10−7 8.7256× 10−7 8.5908× 10−7

MN

IT 24 24 24 25

CPU 0.0057 0.0094 0.0213 0.0384

RES 6.9032× 10−7 8.5012× 10−7 9.4612× 10−7 6.7344× 10−7

NGS

IT 23 24 24 24

CPU 0.0047 0.0079 0.0176 0.0299

RES 9.0751× 10−7 7.7916× 10−7 8.8375× 10−7 9.5352× 10−7

NSOR

αexp 1.2 1.2 1.2 1.2

IT 18 16 15 15

CPU 0.0042 0.0063 0.0103 0.0142

RES 9.9203× 10−7 9.6722× 10−7 6.4599× 10−7 9.7145× 10−7

RTNGS

ϕ1exp 0.9 0.9 0.9 0.9

ϕ2exp 0.3 0.3 0.3 0.3

IT 6 6 7 7

CPU 0.0033 0.0054 0.0098 0.0133

RES 3.6382× 10−7 8.6086× 10−7 2.8110× 10−7 3.3520× 10−7

RTNSOR

αexp 2.0 2.0 0.6 1.7

ϕ1exp 1.8 1.7 0.5 1.4

ϕ2exp 0.7 1.0 0.4 1.0

IT 6 5 5 5

CPU 0.0029 0.0049 0.0092 0.0122

RES 8.2383× 10−7 7.6161× 10−7 1.3230× 10−7 5.8776× 10−7

paper are better than the GN method in terms of the elapsed CPU time. For the test me-

thods proposed in this paper, the number of iteration steps and the elapsed CPU time of the

RTNGS and RTNSOR iteration methods are more efficient than the Picard, MN, NGS and

NSOR iteration methods. Furthermore, we check the convergence condition (4.1) in The-

orem 4.1 (for RTNGS and RTNSOR) and the convergence condition (4.13) in Theorem 4.3

(for Picard, MN, NGS and NSOR)‡. Numerical results in Table 3 demonstrate the conver-

gence condition (4.1) in Theorem 4.1 and the convergence condition (4.13) in Theorem 4.3

are satisfied, where RTNSOR1 and RTNSOR2 represent the RTNSOR iteration method for

r = 1, θ = π/16 and r = 4, θ = π/12, respectively.

‡The same goes to the following two examples.
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Table 2: Numerical results for Example 5.1 with r = 4, θ = π/12.

Method
n

602 802 1002 1202

GN

IT 4 4 4 4

CPU 2.7461 11.3115 38.3681 136.7964

RES 2.2218× 10−8 2.5530× 10−8 2.7686× 10−8 2.9197× 10−8

Picard

IT 25 24 24 24

CPU 0.0089 0.0102 0.0163 0.0378

RES 6.1412× 10−7 9.5237× 10−7 9.0013× 10−7 8.6667× 10−7

MN

IT 24 25 25 25

CPU 0.0080 0.0117 0.0182 0.0409

RES 7.2114× 10−7 6.8807× 10−7 8.1281× 10−7 8.9612× 10−7

NGS

IT 23 24 25 25

CPU 0.0071 0.0093 0.0138 0.0269

RES 8.5061× 10−7 9.1274× 10−7 7.4707× 10−7 8.3960× 10−7

NSOR

αexp 1.2 1.2 1.2 1.2

IT 20 18 14 16

CPU 0.0048 0.0080 0.0109 0.0185

RES 8.0920× 10−7 8.6258× 10−7 8.8741× 10−7 8.9638× 10−7

RTNGS

ϕ1exp 0.9 0.9 0.9 0.9

ϕ2exp 0.3 0.3 0.3 0.3

IT 6 6 7 7

CPU 0.0042 0.0072 0.0103 0.0172

RES 5.8215× 10−7 8.0411× 10−7 3.2845× 10−7 4.3465× 10−7

RTNSOR

αexp 2.0 2.0 2.0 1.8

ϕ1exp 1.8 1.7 1.7 1.5

ϕ2exp 2.0 0.8 0.8 0.7

IT 4 6 6 6

CPU 0.0033 0.0059 0.0096 0.0143

RES 7.4587× 10−7 9.3362× 10−7 8.0629× 10−7 7.8458× 10−7

Table 3: Values of max{δ,ρ} in (4.1) and δ′ in (4.13) for Example 5.1.

Method
n

602 802 1002 1202

Picard 0.6667 0.6667 0.6667 0.6667

MN 0.8000 0.8000 0.8000 0.8000

NGS 0.8333 0.8333 0.8333 0.8333

NSOR 0.8125 0.8125 0.8125 0.8125

RTNGS 0.8621 0.8621 0.8621 0.8621

RTNSOR1 0.7758 0.5432 0.6221 0.5692

RTNSOR2 0.7071 0.6856 0.6856 0.6964
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The CCLCP is to find two vectors µ,ν ∈ Rn such that

Pµ−Qν = d , (5.1)

µ ∈ Lθ , ν ∈ L ∗θ , 〈µ,ν〉 = 0,

where P,Q ∈ Rn×n and d ∈ Rn. According to [19, Theorem 2.1], if we let A = P + Q,

B = Q − P, b = 2d , then CCLCP (5.1) converts to CCGAVE (1.2). Based on this fact, we

give the following two examples.

Example 5.2. Consider CCLCP (5.1), let m be a positive integer, n = m2, Q = Q̂ + 2In,

P = blktridiag(−Im,W,−Im) ∈ R
n×n, and d = (1/2)(P(x∗+ |x∗|)+Q(x∗−|x∗|)), where Q̂ =

Im⊗W ∈ Rn×n, W = tridiag(−1,5,−1) ∈ Rm×m and x∗ = (−1,1,−1,1, . . . ,−1,1, . . .)⊺ ∈ Rn.

Table 4: Numerical results for Example 5.2 with r = 1.

Method
n

602 802 1002 1202

GN

IT 4 4 4 4

CPU 3.3993 18.2178 53.3196 149.8582

RES 5.2394× 10−12 5.2502× 10−12 5.2572× 10−12 5.2609× 10−12

Picard

IT 17 17 17 17

CPU 0.0443 0.1543 0.3086 0.5395

RES 8.1387× 10−7 7.9178× 10−7 7.7834× 10−7 7.6932× 10−7

MN

IT 15 15 15 15

CPU 0.0417 0.1385 0.2896 0.4916

RES 7.1650× 10−7 7.4849× 10−7 7.6784× 10−7 7.8080× 10−7

NGS

IT 15 15 15 15

CPU 0.0045 0.0081 0.0167 0.0256

RES 8.3969× 10−7 9.0838× 10−7 9.5006× 10−7 9.7804× 10−7

NSOR

αexp 1.3 1.3 1.3 1.3

IT 10 10 10 10

CPU 0.0036 0.0069 0.0129 0.0204

RES 6.3585× 10−7 7.4418× 10−7 8.3740× 10−7 9.0772× 10−7

RTNGS

ϕ1exp 0.9 0.9 0.9 0.9

ϕ2exp 0.4 0.4 0.4 0.4

IT 4 4 4 4

CPU 0.0030 0.0062 0.0110 0.0181

RES 7.9232× 10−7 7.7208× 10−7 7.6633× 10−7 7.6529× 10−7

RTNSOR

αexp 1.4 1.4 1.4 1.4

ϕ1exp 1.1 1.1 1.1 1.1

ϕ2exp 0.6 0.6 0.6 0.6

IT 4 4 4 4

CPU 0.0027 0.0058 0.0105 0.0167

RES 5.4835× 10−7 6.2186× 10−7 6.6973× 10−7 7.0294× 10−7
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Table 5: Numerical results for Example 5.2 with r = m.

Method
n

602 802 1002 1202

GN

IT 4 4 4 4

CPU 4.8509 21.4432 68.5549 205.6763

RES 7.5635× 10−8 9.5964× 10−8 1.1182× 10−7 1.2460× 10−7

Picard

IT 19 19 19 19

CPU 0.0638 0.1581 0.3206 0.6366

RES 9.1765× 10−7 7.4831× 10−7 6.4714× 10−7 5.7957× 10−7

MN

IT 17 19 21 21

CPU 0.0606 0.1530 0.3182 0.6226

RES 9.6039× 10−7 9.6874× 10−7 7.2883× 10−7 9.8270× 10−7

NGS

IT 24 23 22 19

CPU 0.0320 0.0422 0.0535 0.0662

RES 8.7011× 10−7 7.9381× 10−7 6.6987× 10−7 9.9007× 10−7

NSOR

αexp 1.9 2.0 2.0 2.0

IT 16 15 15 15

CPU 0.0219 0.0281 0.0386 0.0544

RES 6.4907× 10−7 9.3739× 10−7 8.9013× 10−7 8.5596× 10−7

RTNGS

ϕ1exp 1.9 1.4 1.2 1.1

ϕ2exp 0.7 0.6 0.6 0.6

IT 7 6 6 6

CPU 0.0158 0.0197 0.0277 0.0406

RES 9.0094× 10−7 8.6502× 10−7 7.6970× 10−7 9.1843× 10−7

RTNSOR

αexp 1.5 2.0 1.7 1.7

ϕ1exp 1.9 1.9 1.7 1.6

ϕ2exp 1.0 1.1 0.8 0.8

IT 6 5 5 5

CPU 0.0136 0.0172 0.0230 0.0353

RES 7.7104× 10−7 8.1813× 10−7 5.1160× 10−7 7.1089× 10−7

Table 6: Values of max{δ,ρ} in (4.1) and δ′ in (4.13) for Example 5.2.

Method
n

602 802 1002 1202

Picard 0.6653 0.6659 0.6662 0.6663

MN 0.8326 0.8329 0.8331 0.8332

NGS 0.8660 0.8663 0.8664 0.8665

NSOR1 0.8357 0.8360 0.8362 0.8363

NSOR2 0.7844 0.7773 0.7774 0.7775

RTNGS1 0.7853 0.7859 0.7862 0.7863

RTNGS2 0.7638 0.7352 0.7529 0.7205

RTNSOR1 0.6826 0.6831 0.6834 0.6835

RTNSOR2 0.7115 0.6573 0.6617 0.6579
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In Example 5.2, we choose θ = π/8 and pick two scenarios for the parameter r = 1, m.

Numerical results are listed in Tables 4-5, which indicate that each test method converges

to the solution x∗ of CCGAVE (1.2), and the elapsed CPU time also increases with the in-

crease of the dimension n of the coefficient matrix. Furthermore, we can find that the

RTNGS and RTNSOR iteration methods outperform the Picard, MN, NGS and NSOR itera-

tion methods in terms of the number of iteration steps and the elapsed CPU time. Although

the GN method requires fewer iteration steps, our methods take less the elapsed CPU time.

In addition, numerical results in Table 6 illustrate the convergence condition (4.1) in Theo-

rem 4.1 and the convergence condition (4.13) in Theorem 4.3 are satisfied, where NSOR1,

RTNGS1, RTNSOR1 and NSOR2, RTNGS2, RTNSOR2 represent the corresponding iteration

methods for r = 1 and r = m, respectively.

Example 5.3. Consider CCLCP (5.1), let m be a positive integer, n= m2, Q = Q̂+3In, P =

blktridiag(−1.5Im,W,−0.5Im) ∈ R
n×n and d = (1/2)(P(x∗+|x∗|)+Q(x∗−|x∗|)), where Q̂ =

Table 7: Numerical results for Example 5.3 with θ = π/6.

Method
n

602 802 1002 1202

GN

IT 5 5 5 5

CPU 6.4909 29.2790 95.4782 268.7339

RES 3.7213× 10−12 4.9194× 10−12 5.8987× 10−12 6.7146× 10−12

Picard

IT 15 15 15 15

CPU 0.0671 0.1633 0.3192 0.5611

RES 6.8355× 10−7 5.8115× 10−7 5.2374× 10−7 4.8741× 10−7

MN

IT 24 25 25 25

CPU 0.0775 0.1745 0.3539 0.5984

RES 8.7387× 10−7 6.8298× 10−7 7.6271× 10−7 8.1961× 10−7

NGS

IT 24 25 25 25

CPU 0.0313 0.0435 0.0589 0.0724

RES 8.3724× 10−7 7.3617× 10−7 8.5909× 10−7 9.4674× 10−7

NSOR

αexp 2.0 1.9 1.4 1.4

IT 15 15 13 14

CPU 0.0208 0.0279 0.0326 0.0426

RES 8.2382× 10−7 9.1130× 10−7 8.3775× 10−7 7.1415× 10−7

RTNGS

ϕ1exp 1.1 0.9 0.8 0.8

ϕ2exp 0.4 0.4 0.5 0.4

IT 6 7 6 6

CPU 0.0139 0.0226 0.0258 0.0342

RES 8.8692× 10−7 4.4225× 10−7 7.3338× 10−7 4.5955× 10−7

RTNSOR

αexp 1.2 1.3 1.2 1.3

ϕ1exp 1.1 1.0 0.9 0.9

ϕ2exp 0.6 0.7 0.5 0.8

IT 5 5 5 5

CPU 0.0118 0.0173 0.0215 0.0295

RES 7.2275× 10−7 2.2092× 10−7 2.4798× 10−7 4.0209× 10−7
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Table 8: Numerical results for Example 5.3 with θ = π/8.

Method
n

602 802 1002 1202

GN

IT 4 4 4 4

CPU 4.6144 21.1618 75.2917 196.4198

RES 2.2809× 10−7 2.8966× 10−7 3.3776× 10−7 3.7661× 10−7

Picard

IT 22 21 21 21

CPU 0.0722 0.1659 0.3335 0.6370

RES 6.3344× 10−7 8.9509× 10−7 7.6311× 10−7 6.7575× 10−7

MN

IT 21 19 22 23

CPU 0.0677 0.1535 0.3210 0.5827

RES 7.4631× 10−7 9.9809× 10−7 7.8363× 10−7 7.5054× 10−7

NGS

IT 24 21 18 22

CPU 0.0296 0.0400 0.0492 0.0732

RES 7.6135× 10−7 9.1681× 10−7 7.0439× 10−7 6.7360× 10−7

NSOR

αexp 2.0 1.9 1.9 1.9

IT 16 16 16 16

CPU 0.0206 0.0307 0.0410 0.0524

RES 6.9173× 10−7 9.1798× 10−7 8.5678× 10−7 8.1202× 10−7

RTNGS

ϕ1exp 1.5 1.2 1.1 1.1

ϕ2exp 0.8 0.8 0.7 0.5

IT 7 7 7 6

CPU 0.0150 0.0217 0.0320 0.0428

RES 3.4363× 10−7 4.8120× 10−7 5.0508× 10−7 2.3280× 10−7

RTNSOR

αexp 2 1.8 1.1 1.8

ϕ1exp 2.2 1.7 1.2 1.6

ϕ2exp 1.1 1.2 0.7 0.8

IT 6 6 6 5

CPU 0.0128 0.0198 0.0270 0.0327

RES 7.6750× 10−7 7.1534× 10−7 7.1383× 10−7 7.2166× 10−7

Im ⊗W ∈ Rn×n, W = tridiag(−1.5,5,−0.5) ∈ Rm×m and x∗ = (−1,1,−1,1, . . . ,−1,1, . . .)⊺

∈ Rn.

For Example 5.3, we choose r = m and take two cases for the parameter θ = π/6, π/8.

In Tables 7-8, we report the numerical results of θ = π/6 and θ = π/8, respectively. We can

find that all of the test methods can converge to the solution x∗ of CCGAVE (1.2). Further-

more, Tables 7-8 also show that the RTNGS and RTNSOR iteration methods are superior

to the GN, Picard, MN, NGS and NSOR iteration methods with respect to the elapsed CPU

time. In addition, the RTNGS and RTNSOR iteration methods have fewer iteration steps

than the Picard, MN, NGS and NSOR iteration methods. In addition, numerical results in

Table 9 indicate the convergence condition (4.1) in Theorem 4.1 and the convergence con-
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Table 9: Values of max{δ,ρ} in (4.1) and δ′ in (4.13) for Example 5.3.

Method
n

602 802 1002 1202

Picard 0.7130 0.7136 0.7138 0.7140

MN 0.8511 0.8514 0.8516 0.8517

NGS 0.8660 0.8663 0.8664 0.8665

NSOR1 0.7636 0.7732 0.8224 0.8226

NSOR2 0.7636 0.7732 0.7734 0.7736

RTNGS1 0.8684 0.8538 0.7105 0.8452

RTNGS2 0.7810 0.7675 0.7533 0.7309

RTNSOR1 0.7860 0.6988 0.7919 0.7009

RTNSOR2 0.7678 0.7155 0.7421 0.7147

dition (4.13) in Theorem 4.3 are satisfied, where NSOR1, RTNGS1, RTNSOR1 and NSOR2,

RTNGS2, RTNSOR2 denote the corresponding iteration methods for θ = π/6 and θ = π/8,

respectively.

6. Conclusions

In this paper, a convergent and efficient relaxation two-step Newton-based matrix split-

ting iteration method for solving the CCGAVE is developed. Meanwhile, it seems to be

the first time that some sufficient conditions for the unique solvability of the CCGAVE are

explicitly given. However, the properties of the solution set of the CCGAVE need further

study.
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