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Abstract. In this paper, the combined nonlinear Schrédinger and Gerdjikov-Ivanov
(NLS-GI) equation with the Schwartz initial data is investigated. It is shown that the
solution of NLS-GI equation can be expressed in terms of the solution associated with a
Riemann-Hilbert (RH) problem. The long-time asymptotics is further obtained via the
Deift-Zhou nonlinear steepest descent method.
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1. Introduction

In 1974, Manakov [28] first studied the long-time behavior of nonlinear wave equa-
tions by using the inverse scattering transform (IST) method. After that, Zakharov and
Manakov [42] employed IST method in order to investigate the large-time asymptotics
of the solutions of the nonlinear Schrodinger (NLS) equation with decaying initial value.
The method also works for long-time behavior of integrable systems such as KdV, Landau-
Lifshitz and the reduced Maxwell-Bloch system [3, 14,33]. In 1993, Deift and Zhou de-
veloped a nonlinear steepest descent method to rigorously obtain the long-time asymp-
totic behavior of the solution for the mKdV equation by deforming contours to reduce the
original RH problem to a model whose solution can be determined via parabolic cylinder
functions [8]. Since then, this method has been widely used in the focusing nonlinear
Schrodinger equation, KdV equation, Boussinesq equation, Camassa-Holm (CH) equation,
Degasperis-Procesi (DP) equation, Fokas-Lenells equation, Sasa-Satsuma equation, short-
pulse equation, and Toda lattice [4-6,9,10,19, 23,26, 35,37-39].
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The NLS equation
iU, +uy, +uPu=0 1.1

has important applications in a wide variety of fields, including nonlinear optics, theory of
deep water waves, plasma physics, quantum field theory, etc [1,30,32]. The Eq. (1.1) has
been studied by the inverse scattering method, Backlund transformation, Darboux transfor-
mation [40], which revealed its infinite conservation laws, and presented N-soliton solu-
tions, rational solutions, quasi-periodic solutions — cf. Refs. [1,11,27,29,30,32]. In addi-
tion, new progress on the nonlinear Schrodinger equation has been made such as long-time
asymptotics [ 7], initial-boundary value problems on a half-line or a finite interval [15,16]
and other related studies [17,36].
The Gerdjikov-Ivanov (GI) equation [18] has the form

. .o 1 5
U + Uy — 1u2ux + Eugu2 =0,

where u is a complex valued function and @ denotes the complex conjugation of u. It is
well known that GI equation is one of the three types of derivative nonlinear Schrédinger
equations. Many aspects of this equation, including bilinearization [22], gauge transfor-
mation [24], Darboux transformation [12], bi-Hamiltonian structure [13], hierarchy struc-
ture [20], Wronskian solution [21] and decomposition of the GI equation [41] have been
studied.

Our research mainly focuses on the combined nonlinear Schrédinger and Gerdjikov-
Ivanov equation

u, = iuxx—2i|u|2u+u2ﬂx+§|u|4u (1.2)
with the Schwartz decaying initial value
u(t=0,x)=uy(x) € Z(R). (1.3)

The NLS-GI equation integrates the nonlinearities of NLS and GI equations. It is important
to highlight the fact that the former maintains the integrability. However, related work
has been less carried out. In recent years, only the soliton solutions [31] and the initial-
boundary value problem [25] of the Eq. (1.2) have been studied via Riemann-Hilbert ap-
proach. Noting that the long-time asymptotics of NLS-GI equation remains unknown, we
apply Deift-Zhou nonlinear steepest descent method to fill the gap in this area of work.

The structure of this manuscript is as follows. In Section 2, starting from the Lax pair
of the Eq. (1.2), we construct Jost solutions and spectral matrix, and their analyticity and
symmetries are further analyzed. Using the results of Section 2, we establish a RH problem
on the jump contour £V in Section 3. In Section 4, we use the decomposition of the jump
matrix, rational approximation of scattering data, and scaling transformation in order to
change the RH problem into a model RH problem which can be solved via the Weber equa-
tion. In Section 5, based on the reconstruction formula between solution of the Eq. (1.2)
and the RH problem, we derive the long-time asymptotics required. Section 6 contains
a remark about the future work.
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2. Spectral Analysis

In this section, we introduce direct and inverse scattering transforms, which are the
foundation of the Riemann-Hilbert problem.

2.1. Lax pair

The combined nonlinear Schrodinger and Gerdjikov-Ivanov equation (1.2) admits the
following Lax pair:
Y, =UY,
2.1)
Y, =VY,

where Y =Y (x, t, A) is a matrix function called an eigenfunction and

i(k+luﬁ) (1+Au
U= 2

7} —i (A + 1uft) ,
2
V= A (1+A)(—2uA +iu,)
~\—2aA—id, —A :

Here, A is an eigenvalue and
92 aa- Lo L 9 9
A=—=2iA"—idlui — E(uxu—ux)-i- Zu us.

In order to obtain a more symmetrical Lax matrix, we introduce a gauge transformation —
viz.

\ 1 0 .
Y =Ty, T—(O 1_ik), k # —i,

where A = k2, cf. [31]. Subsequently, the Eq. (2.1) takes the form

v, =07, ¥,=07, 2.2)
where
(2, 1 .
i| ke + —ui (1+ik)u
ﬁ = 2 1 >
(1—ik)a  —i (kz + Eua)
N B —2iuk® — 2uk?® —u, k +iu,
—\ 2iak® — 2ik? — i, k — iii,, —B ’
and

1 i
B = —2ik* — iuiik* — 3 (u, i —uil,) + ZuZaZ — iuil.
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For the sake of normalization, we introduce a matrix function J = J(x, t, A) defined by

Y =JE, (2.3)

it(2A2

where E =e ~(x/O2)93 and denote the phase function by

b ()= i(Z)LZ— %A)
Using the transformation (2.3), we write the Lax pair (2.2) as

J, =iAos,J]+0J,
* o . (2.4)
J; =—2iA*[03,J ]+ VJ.

Here, [05,J] = 03J —J 04 is the commutator and

(1 o0
03_0_1,

y L ui (1+ik)u

U= 2 l N
1—ik)a ——ui
(1—ik)u 2uu

1 i
—iuiik® — E(uxﬂ —uii, ) + Zuzﬁz —iuil —2iuk® — 2uk® —u, k +iu,

<t
Il

1 i
2iiik® — 2itk? — i, k — iil,, iuiik? + E(uxa —ily)— Zuzaz + iuil

2.2. Analyticity and symmetry

We introduce matrix Jost solutions
Je=(J1,J2) (2.5)
for the space part of the Lax pair (2.4) which admits the asymptotic conditions
Jp—I, x— +oo, (2.6)

where Ji, [ = 1,2 denotes the [-th column of J; and I is the 2 x 2 identity matrix. Using
the large-x asymptotic condition (2.6), we can turn the space part of (2.4) into the Volterra
integral equations

X
Jo=1+ J e M3 (y) I, dy, 2.7)
+o0

where €93 acts on a 2 x 2 matrix X as e?3X = e%3Xe 93,

Under the condition (1.3), we are able to prove the existence and uniqueness of the Jost
solutions J.. by performing the standard procedures on the Volterra integral equations (2.7).
Moreover, we can also prove that Ji and J2 can be analytically extended into the upper
half-plane C*, and J2, J! into the lower half-plane C".
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Now, we investigate the properties of J,.. Since the potential matrix U is zero-trace, it
implies that detJ., are independent of the variable x and t. In particular, evaluating detJ
at x = +00 and detJ_ at x = —00, we have

det;]i =1.

Because the Lax pair (2.2) is a first-order linear homogeneous equation system, the func-
tions (2.5) are linearly dependent. Consequently, we can represent the linear relation as

J_=J, e t*MIsg(Q)et#(Mos (2.8)

where S(A) is preset to the form below
s [S11 S12
S(A) =
) (521 522)

detS(A)=1.

Assembling the analyticity of Jost solutions and their inverse matrices, we note that the
scattering relation the analyticity of s;; in C* and the analyticity of 54, in C™.
Straightforward matrix calculation immediately lead to the following proposition.

and

Proposition 2.1. The above constructed Jost solutions J. and the scattering matrix S (A)
enjoy the following symmetry relations:

o1Jy (x, t,z)al =J.(x,t,A),

GSJl(x’t)X)O-S =J;1(x)t)2'))

0-18(1)0-1 =S(A),
O-SST (Z) O3 = S_l (A),
where AT denotes the conjugate transposition of matrix A.

We consider an asymptotic expansion

_ Ji o Jy 1
J—J0+7+ﬁ+0(ﬁ), A — 00, (2.9)

where J,, J;, Jo are independent of A. Substituting (2.9) into (2.4) and comparing the
coefficients at A, we obtain that J; is the unit matrix. Combining (2.9) and (2.4) implies
that the potential is reconstructed by

u(x, t) =2i lim (A,J)lz.
A—00

3. Initial RH Problem

The scattering relation (2.8) can be deformed to
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1 S91
2 1 — T
(J_— Jl):(ﬂ J_—)euﬁ(k)ffs Sus2  Su
) + +, S
S22 S11 212 1
S22

Note that the above equation is similar to the jump condition of a RH problem. We set

1 So1

V(X t A,) = etd’(l)@'g $11522 S11

and subsequently define

It is easy to check m(x, t, A) satisfies the following RH problem.

Riemann-Hilbert Problem 0.
(1) m(x,t,A) is analytic in C\X.
(2) On %, the boundary functions m.(x, t, 1) satisfy the jump condition
mo(x,t,A)=m_(x,t, )V (x,t,A), A€,
where

r) 2 2L,

C(1=1IrP =)
V(x,t,A) = et ®R)5s ( ,
S11

r(A) 1
(3) Asymptotic condition: m(x,t,A) = I,A — 0.

Remark 3.1. In this paper, we consider the case where s;; has no zeros — i.e. there are
no solitons. Under this assumption, one can easily derive

Ir(M)] < 1. (3.1

4. Deformation of RH Problem

4.1. Stationary point and steepest descent lines

The phase function

»(V)=i(222-22)
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Ao

Figure 1: Steepest descent lines.

admits the first order point of stationary phase
X
4t

Correspondingly, there are two steepest descent lines

Ao

L={7L=7Lo+ae”/4i, aZO}U{)Lz)LO+ae5”/4i, aZO},
L={A=2%+ae®™* a>0}u{r=2;+ae’™*, a>0}

as shown in Fig. 1.

4.2. Decomposition of jump matrix

We deform the RH problem with one jump matrix to the one with two matrices on ()
by triangulating the jump matrix up and down where the jump contour =V is given by
Fig. 2.

Ao R

Figure 2: The oriented contour %,

Indeed, the jump matrix V enjoys the following triangular factorizations:

1 —e2tor 1 0
(o 1 ) (e—z“i’f 1)’ A <o,
V= 1 0\(1-r> 0 T @1
etd’@s( F )( 1 )( 1—1’2), A> A
1—r2 ! 0 1—r2/\0 1




170 E Zheng, Z. Qin, G. Mu and T. Wang

The importance of these factorizations is that they provide an algebraic separation of the
oscillatory exponential factors e=2(?. Firstly, we need to deal with the central diagonal
factor in the factorization (4.1) to be used for A > A4,. We introduce a scalar RH problem
as follows.

Scalar Riemann-Hilbert Problem.
(1) &(A) is analytic in C\xM.
(2) Jump conditions
6,(A)=6_(1), A < 2o,
5,(A)=6_(NA—r2), A>A,.
(3) Asymptotic condition: §(A) — 1,A — oo.

This RH problem has been carefully studied — cf. [34]. Consider the complex scalar
function defined by the formula

5(1) = e(1/2m) [7%, m(-Ir)/(E-A)dE
According to the Plemelj formula, this function provides the unique solution the scalar RH
problem. Therefore, the diagonal matrix 6(A)73 is typically used in steepest descent theory
to deal with the diagonal factor in (4.1). Note that direct calculations lead the following
proposition.
Proposition 4.1. 6(A) is uniformly bounded in complex plane with
1/2 —1/2
(1=1IrlPe) " <16 < (1=1Irli2e)

Therefore, we can apply 6 (A) to modify the solution of RH Problem 0. More exactly,
let us define the transformation

m® = ms (1) .
Then m satisfies a new RH problem.
Riemann-Hilbert Problem 1.
(1) mW(x,t,A) is analytic in C\£D,
(2) mW(x, ¢, ) satisfies the jump condition
mi” = m(_l)V(l)(A), Aex®)
where the jump matrix VV(Q) is defined by

. (1 =82 1 0
et¢0‘3 +r e , A, < A’O)
0 1 o0 °r 1
. 1 0\(1 s2—"_
el$0s F F1-r2 ||, A> A
5:21 5 1/\o 1
—Tr

(3) Asymptotic condition: m™M(x,t,1) — I,1 — oco.

v =
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4.3. Rational approximation of scattering data

The coefficients
r(A) r(A)

AT TR TSR

which appear in the jump matrix V(! do not have analytic continuations. To overcome this
technical difficulty, we approximate the coefficients by rational functions

] r(\) r(A)
[r(A)], [F(A)], [1—|r(k)|2:|’ [1—|r(k)|2:|'

The following estimates are obtained similar to [8].

Proposition 4.2. Let

r(A), A< A,
P(M)=1 —r)
—1—|r(/1)|2’ A > Ag.

We decompose p(A) into three parts — viz.

p=h;+h+[pA)],

where the piecewise rational functions [ p(A)] and h;; have analytic continuations to the steep-
est descent lines L and L, but h; does not. Moreover, we have

le™2?62[p1llarenre <ce, A€L,
le™?6 2yl apenpee <ct™,  AE€L,
<

e 5 2h [l p1npznge <ct™h, AER,
where € is a positive number.

4.4. Analytic extension of jump matrix

The purpose of this section is to deform the RH problem on £(!) = R to the one on
»® = RULUL, see Fig. 3. We extend the jump matrix to the steepest descent lines L
and L. Thus we decompose the jump matrix as

-1
1 52pe*? 1 0, _,
O A §2pe ¢ 1) ”

- -1
1 §%2pet? 1 0
+ , A>A
(o 1 52pe X 1 °

=:p! b,,
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L L

s 0

Figure 3: The oriented contour .

where b, can be further represented in the form

by=T+w,

B 1 0
T\ 6%pe 2P 1

B 1 0 1 0
T\8 2y pe 1 J\ 672 (hyyp+[p1)e e 1
— bO pa

+742

b_=I—cw_

2,2
_[1 oipe t¢
0 1

_ 1 63_h1,p€2t¢ 1 53_ (hII,p+[p]) 62“1’
0 1 0 1

=b2bC.
Consequently, VD takes the form
v =b1p, = (b2) 7 (6°) 7 BYbC.
In the above formulas, (b%)~! and b? can be analytically extended to L and L, respectively.
(b9)1 bg does not have an analytic continuation but decays fast in time. Therefore, we

consider the following transformation:

m® = mMy,
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where
I, AE€Q,NQ,

v={(b)", reqnq,
(b)", AeynQ,
and the corresponding regions are shown in Fig. 3.
The RH problem on ©® is given by

Riemann-Hilbert Problem 2.
(1) m® is analytic in C \ =,
(2) m® satisfies the jump condition
m® =m@v®, 2ez®,
where the jump matrix is
(b9)7'b°, A€R,
V@(x,t,1) = (bﬁ)_1 , AeL,
be, AeL.
(3) Asymptotic condition: m®(x,t,1) = I,1 — oo.

Consequently, the solution of the combined nonlinear Schrédinger and Gerdjikov-Ivanov
equation takes the form

4.2)

u(x,t) =2i )nggo (km(z))u .

Changing £® into
@210l =x@\R,

we use it in evaluating the contribution of h;(A) and h;;(A) to the solution of the RH prob-
lem. Taking into account results in [2], we represent the jump matrix in the form

v = (p@)7 @

and define

W@ =2 (50 -1),
(2)

w® = W&Z) +w

The Cauchy operators C,. are defined as

1
CHM= tm [ L&
A=A 27 )5 E—N
Ve side of (@

dg,
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and
2 2
Cunf = Cs (fw®) +c_(Fn?).
According to Beals-Coifman theorem [2], we have
,u(z) = (id — Cw(z))_ll
=T+ (id — Cw(z))_l Cyl, 4.3)

and the solution of the RH problem yields

(2) (2)
@2 — 1 u=(E)w = (&)
mP() =1+~ Lm e 4.4)

Taking into account (4.2)-(4.4), we write

u(x,t)=2i Allr(r:o ()»m(z))l2

-1 (J UOEWA(E)d a)
T n(2) 12

- (J [(id — Cp) 1] W(Z)(g)dg)
=

n 12

Using the method similar to the one exploited in rational approximation of the scattering
data, we can show that the contributions to RH problem are mainly coming from the ra-
tional part of the scattering data. Therefore, the contribution of h;(A) and h;;(A) is an
infinitely small quantity of t. Consequently,

u(x,t) = 2i (m(f))12 +ot™)

EEPYIR 3 -1
_21lli)ngo(lm( ))12+ﬁ(t ),

where

m®

m(3)=1+71+...
is the solution of following RH problem.
Riemann-Hilbert Problem 3.
(1) m® is analytic in C \ »®),
(2) The boundary value of m® satisfies the jump condition

m® =mPv®, 21ex®.

(3) Asymptotic condition: m® —I,1 — oo.

The jump matrix is shown in Fig. 4.
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ol493 1 Si[P]
0 1

6:21[f3] (1))

Figure 4: Oriented contour £ and jump matrix V®,

4.5. Scaling transformation

First of all, we transform 23 into the contour 2(4), shown in Fig. 5, and take the scaling
transformation

A =82+ 2.

Next, we define a scaling operator N : LP(£(3)) — LP (=) by

fFA) >N =f((B)V2A+2).

Figure 5: The oriented contour (¥,
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The RH problem 3 yields
Riemann-Hilbert Problem 4.
(1) m¥W(x,t,A) is analytic in C \ =*.
(2) The boundary value of m™® satisfies the jump condition

mgf') = m(14)V(4), Lex®,

(3) Asymptotic condition: m* —I,1 — oo,
where
m® = Nm® =m® ((8t)_1/27t + AO) ,
v =NV = v ((8t) 2+ ).

The solution of NLS-GI equation can be represented in the form

u(x,t) = E (m(14))12 + o™,

where m(14) is defined by
m® =m® ((St)_l/zk +20)
I+ ) +
(8124 + A
=1+ m? +
= . .
For the sake of convenience, we isolate oscillations in the jump matrix V®, viz.
vd = nyy®
_ N (50000 ®)
=[N (5¢%)] " NV®.
By 5951, we mean the result of the N operation on §e!®, where
50 = (St)—iv/Zex(lo)e—Zitlo,

51 — Aivex(l/\/§+ko)—x(10)eik2/4,

1
v=1v(Ay) = = log(l —|r(Ap) |2) >0,

Ao
) =—ﬁj log| — £ldlog (1= Ir ().
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Removing the oscillating factor from the RH problem, we denote a new matrix function by
m) = (50)_63N(4).
A new jump matrix V) can be determined by the following jump condition:
m" = (5°)77° m® (5°)7* (6°) 7 v (6°)7 = mMv ),
This gives

u(x,t)= ‘/% (60)2 (m(lN))12 +o(t),

where m™) is the solution of the following RH problem.

Riemann-Hilbert Problem 5.
(1) mMN)(x,t,7) is analytic in C \ &™),
(2) The boundary value of m™) at (V) = 54 satisfies the jump condition

m® = My e 5,

(3) Asymptotic condition: m™) — 1,1 — co.

Note that V) is shown in Fig. 6.

[l

7 (159 (o 7))

(o~ N

Figure 6: Oriented contour =) and jump matrix V™,
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Now, we transform the jump curve ™) into £°° by taking the limit to attribute RH
problem on the phase point Ay. If t — oo, then

A
_+A,0—>A,0,

V8t

sl kiveik2/4

V™ (x,t,A) = V®(x,t,A),
A

[pJ(E +Ao) L p(o) = [P

where V°°(x, t,A) is shown in Fig. 7.

r

Vloo A Aiv63eilz/463 (_ 1 0)

0o & 4ivds id2/acs [ L —p(2o)
plg) 1 Vym = AT 3(0

Vgoo A 7 iv03,iA7/403 ((1) -pP (Ao))

1 V4oo 2 Aivagenz/wg ( _ 1 0)

p(Ae) 1

£ £

Figure 7: Oriented contour ©°° and jump matrix V°.

Moreover, we can prove that
IV =Vl < ct™2logt,
and obtain the RH problem of (V °°, %°°).
Riemann-Hilbert Problem 6.
(1) m*°(x,t,A) is analytic in C\ X°°.
(2) The boundary value of m® at £°° = £(V) satisfies the jump condition

m° =mV>?, Aexn™.

(3) Asymptotic condition: m* — [,A — oco.
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Subsequently, the solution of the original equation is represented as

_ i 0)2 -1
u(x,t) = Wori (5 ) (m‘fO)12 +0 (t log t) , (4.5)
where m7* is defined by
oo
m°° =J+ m_1 + ..
N .

We set X¢ = 2°° U R with modified contour direction and

Ve, AETIULS,
e __ oo\—1
ve={ (Vo) Aemiuss,
1, AETLUDE,

Now we divide the complex plain by %¢ into six domains 5, cf. Fig. 8.

Figure 8: The oriented contour ¢ and the domains.

It is clear that m®® satisfies the RH problem (¢, V¢). Defining the function y by

A3, Ae,uQs,
y(A) =1 A7V, A€ u;,
Avosye, AeQ, U

and considering the transformation
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we obtain the following result:
hm,=m_V, A€R,
MAT93 51, A — oo,
where V = y_Voo}ff. In other words, V takes the form

(1, AEREUTEUTE U,
MV (), AeTLUust =R

Under the transformation & = rie(*"/ 493 a3 standard RH problem can be defined as
Riemann-Hilbert Problem 7.
(1) @ is analytic in C \ R.
(2) &, =3_V(Ay), A€R.
(3) @ (A/4033-1v0s T 3 s oo,
This kind of RH problems can be solved by using the Weber equation and parabolic-

cylinder function.

5. Long-Time Asymptotics

In terms of the jump condition of the last RH problem and the Liouville theorem, we
can derive that (d®/dA + (1/2)iAo3®)® ! is a constant matrix with respect to A. Hence,
there exist constants f3;;, i, j = 1,2 such that

de 1. 4 1. s (B B
— +=iAC <I>)d> L= Zilos,m® =( 1 12). 5.1
(dk 2 3 2[3 1] Ba1  PBao -1
Comparing two sides of (5.1) yields
(m<1>o)12 = —if312. (5.2)
Substituting (5.2) into (4.5) gives
1 2
u(x,t) = —=(8° +0(t 'logt). (5.3)
( \/Z_t( ) B2 ( 8 )

Parabolic-cylinder functions can be used for calculating 3,,. Let

@14 <I’12)
¢ = .
(‘1’21 ®y
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Starting with (5.1), we note that if Im A > 0, then

@1’1 — 6_37”/4Da (Ae—Bm‘M),

o | 5.4
‘I);l — e—37w/4[51—21 I:a)LDa (ke—3n1/4) + ?Da (ke—3n1/4)i| ,
q,é—z — env/4D_a (Ae—Bm‘/4)’

and if Im A > 0, then
‘1’11 — e1'rv/4D(1 (Aem‘/4),
. A .
‘I)IZ — e—37w/4[52—11 I:akD—a (keSm/é}) _ %D—a (163n1/4):| ,
(5.5)

& =™/ [EADQ (Re™/%) + %Da (Aem’/“)],
q,;z — e—31‘rv/4Da (AeSﬂSi/4) ,

where a = —iv(1y) and D,({) = Da(e_(S/ 472 is the standard parabolic cylinder function
satisfying the Weber equation

CZ
-t ﬁlzﬁﬂ) D,(¢)=0.

1
2 -
3gDa(C)+(2 4

We rewrite the jump condition in the following form:

1—[r(R)I? —r(zo))
r(Ao) 1)

¢:1‘1’+ =V(4) = (

Assembling (5.4)-(5.5) and the above formula, we arrive at the relation

3 3 (2n)1/26ni/4e—nv/2
r(Ay) =&, 05 — & &1 = ,
0 11°21 21711 ﬁlzr(—a)

where I'(a) is Gamma function. Thus

1/2 mi/4 ,—mv/2
B2 = (Zn)_e ‘ . (5.6)
r(A)T(—a)

Substituting (5.6) into (5.3), we immediately extract the following asymptotics.

Theorem 5.1. As t — 00, such that |Aqy| = |x/4t| < M,

u(x, t) = T(AO)e—ix2/4t—iv(k0)log8t +o(tlogt),

Vi
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where
nl/Zeni/4e—nv/262)((AO)

r(Ag)T(—a)

T(Ao) =

Its modulus and angle are

T (o) = —4%[ In(1—|r(A)?),

arg t(Ay) = g + arg F(iv(ko)) —argr(iy)
1 (P
+—J In|A—2AgldIn(1—|r(M)?),
T J) oo

respectively.
Combining the above results leads to the main theorem.

Theorem 5.2. Suppose that the initial value u, belongs to the Schwartz space, Ay = x /4t
is a stationary phase point, and |Ay| < M with a fixed constant M > 1. Then the long-time
asymptotics for the NLS-GI equation (1.2) is given by

A . .
u(x,t) = L‘/?O)e—lxz/“—w(lo)logsr +0 (t_1 log t) . (5.7)

6. Conclusion

The crucial technique for obtaining the asymptotics (5.7) is the classical Deift-Zhou
steepest decent method. This method has been widely used in the study of the long-time
behavior of numerous differential equations. We see that the result is determined not by
the equation itself but the spectral problem corresponding to the equation. This inspires
us to consider a new concept, which we tentatively call the asymptotic invariant. The
purpose of this concept is to investigate the relationship between different spectral problems
and their associated asymptotic behavior. As a corollary, the NLS equation and the GI
equation give an example of producing integrable system by combination. In terms of the
asymptotic invariant, we may be able to skip the procedures and get to the conclusion about
the produced equation directly.
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