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Abstract. In this paper, the combined nonlinear Schrödinger and Gerdjikov-Ivanov

(NLS-GI) equation with the Schwartz initial data is investigated. It is shown that the

solution of NLS-GI equation can be expressed in terms of the solution associated with a

Riemann-Hilbert (RH) problem. The long-time asymptotics is further obtained via the

Deift-Zhou nonlinear steepest descent method.
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1. Introduction

In 1974, Manakov [28] first studied the long-time behavior of nonlinear wave equa-

tions by using the inverse scattering transform (IST) method. After that, Zakharov and

Manakov [42] employed IST method in order to investigate the large-time asymptotics

of the solutions of the nonlinear Schrödinger (NLS) equation with decaying initial value.

The method also works for long-time behavior of integrable systems such as KdV, Landau-

Lifshitz and the reduced Maxwell-Bloch system [3, 14, 33]. In 1993, Deift and Zhou de-

veloped a nonlinear steepest descent method to rigorously obtain the long-time asymp-

totic behavior of the solution for the mKdV equation by deforming contours to reduce the

original RH problem to a model whose solution can be determined via parabolic cylinder

functions [8]. Since then, this method has been widely used in the focusing nonlinear

Schrödinger equation, KdV equation, Boussinesq equation, Camassa-Holm (CH) equation,

Degasperis-Procesi (DP) equation, Fokas-Lenells equation, Sasa-Satsuma equation, short-

pulse equation, and Toda lattice [4–6,9,10,19,23,26,35,37–39].
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The NLS equation

iut + ux x + |u|2u= 0 (1.1)

has important applications in a wide variety of fields, including nonlinear optics, theory of

deep water waves, plasma physics, quantum field theory, etc [1,30,32]. The Eq. (1.1) has

been studied by the inverse scattering method, Bäcklund transformation, Darboux transfor-

mation [40], which revealed its infinite conservation laws, and presented N -soliton solu-

tions, rational solutions, quasi-periodic solutions — cf. Refs. [1,11,27,29,30,32]. In addi-

tion, new progress on the nonlinear Schrödinger equation has been made such as long-time

asymptotics [7], initial-boundary value problems on a half-line or a finite interval [15,16]

and other related studies [17,36].

The Gerdjikov-Ivanov (GI) equation [18] has the form

iut + ux x − iu2ūx +
1

2
u3ū2 = 0,

where u is a complex valued function and ū denotes the complex conjugation of u. It is

well known that GI equation is one of the three types of derivative nonlinear Schrödinger

equations. Many aspects of this equation, including bilinearization [22], gauge transfor-

mation [24], Darboux transformation [12], bi-Hamiltonian structure [13], hierarchy struc-

ture [20], Wronskian solution [21] and decomposition of the GI equation [41] have been

studied.

Our research mainly focuses on the combined nonlinear Schrödinger and Gerdjikov-

Ivanov equation

ut = iux x − 2i|u|2u+ u2ūx +
i

2
|u|4u (1.2)

with the Schwartz decaying initial value

u (t = 0, x) = u0(x) ∈ S (R). (1.3)

The NLS-GI equation integrates the nonlinearities of NLS and GI equations. It is important

to highlight the fact that the former maintains the integrability. However, related work

has been less carried out. In recent years, only the soliton solutions [31] and the initial-

boundary value problem [25] of the Eq. (1.2) have been studied via Riemann-Hilbert ap-

proach. Noting that the long-time asymptotics of NLS-GI equation remains unknown, we

apply Deift-Zhou nonlinear steepest descent method to fill the gap in this area of work.

The structure of this manuscript is as follows. In Section 2, starting from the Lax pair

of the Eq. (1.2), we construct Jost solutions and spectral matrix, and their analyticity and

symmetries are further analyzed. Using the results of Section 2, we establish a RH problem

on the jump contour Σ(1) in Section 3. In Section 4, we use the decomposition of the jump

matrix, rational approximation of scattering data, and scaling transformation in order to

change the RH problem into a model RH problem which can be solved via the Weber equa-

tion. In Section 5, based on the reconstruction formula between solution of the Eq. (1.2)

and the RH problem, we derive the long-time asymptotics required. Section 6 contains

a remark about the future work.
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2. Spectral Analysis

In this section, we introduce direct and inverse scattering transforms, which are the

foundation of the Riemann-Hilbert problem.

2.1. Lax pair

The combined nonlinear Schrödinger and Gerdjikov-Ivanov equation (1.2) admits the

following Lax pair:

Yx = UY,

Yt = V Y,
(2.1)

where Y = Y (x , t,λ) is a matrix function called an eigenfunction and

U =







i

�

λ+
1

2
uū

�

(1+λ)u

ū −i

�

λ+
1

2
uū

�





 ,

V =

�

A (1+λ)(−2uλ+ iux )

−2ūλ− iūx −A

�

.

Here, λ is an eigenvalue and

A= −2iλ2 − iλuū− 1

2
(ux ū− ūx) +

i

4
u2ū2.

In order to obtain a more symmetrical Lax matrix, we introduce a gauge transformation —

viz.

Ŷ = T Y, T =

�

1 0

0 1− ik

�

, k 6= −i,

where λ= k2, cf. [31]. Subsequently, the Eq. (2.1) takes the form

Ŷx = Û Ŷ , Ŷt = V̂ Ŷ , (2.2)

where

Û =







i

�

k2 +
1

2
uū

�

(1+ ik)u

(1− ik)ū −i

�

k2 +
1

2
uū

�





 ,

V̂ =

�

B −2iuk3 − 2uk2 − ux k + iux

2iūk3 − 2ūk2 − ūx k− iūx −B

�

,

and

B = −2ik4 − iuūk2 − 1

2
(ux ū− uūx) +

i

4
u2ū2 − iuū.
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For the sake of normalization, we introduce a matrix function J = J(x , t,λ) defined by

Ŷ = J E, (2.3)

where E = ei t(2λ2−(x/t)λ)σ3 and denote the phase function by

φ (λ) ¬ i

�

2λ2 − x

t
λ
�

.

Using the transformation (2.3), we write the Lax pair (2.2) as

Jx = iλ[σ3, J] + ŨJ ,

Jt = −2iλ2[σ3, J] + Ṽ J .
(2.4)

Here, [σ3, J] = σ3J − Jσ3 is the commutator and

σ3 =

�

1 0

0 −1

�

,

Ũ =





i

2
uū (1+ ik)u

(1− ik)ū − i

2
uū



 ,

Ṽ =





−iuūk2 − 1

2
(ux ū− uūx ) +

i

4
u2ū2 − iuū −2iuk3 − 2uk2 − ux k+ iux

2iūk3 − 2ūk2 − ūx k− iūx iuūk2 +
1

2
(ux ū− ūx )−

i

4
u2ū2 + iuū



 .

2.2. Analyticity and symmetry

We introduce matrix Jost solutions

J± =
�

J1
±, J2
±
�

(2.5)

for the space part of the Lax pair (2.4) which admits the asymptotic conditions

J±→ I , x →±∞, (2.6)

where J l
±, l = 1,2 denotes the l-th column of J± and I is the 2× 2 identity matrix. Using

the large-x asymptotic condition (2.6), we can turn the space part of (2.4) into the Volterra

integral equations

J± = I +

∫ x

±∞
e−iλ(y−x)σ̂3 Ũ(y)J±d y, (2.7)

where eσ̂3 acts on a 2× 2 matrix X as eσ̂3 X = eσ3 X e−σ3 .

Under the condition (1.3), we are able to prove the existence and uniqueness of the Jost

solutions J± by performing the standard procedures on the Volterra integral equations (2.7).

Moreover, we can also prove that J1
+

and J2
− can be analytically extended into the upper

half-plane C+, and J2
+

, J1
− into the lower half-plane C−.
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Now, we investigate the properties of J±. Since the potential matrix Ũ is zero-trace, it

implies that det J± are independent of the variable x and t. In particular, evaluating det J+
at x = +∞ and det J− at x = −∞, we have

det J± = 1.

Because the Lax pair (2.2) is a first-order linear homogeneous equation system, the func-

tions (2.5) are linearly dependent. Consequently, we can represent the linear relation as

J− = J+e−tφ(λ)σ3S(λ)etφ(λ)σ3 , (2.8)

where S(λ) is preset to the form below

S (λ)¬

�

s11 s12

s21 s22

�

and

det S(λ) = 1.

Assembling the analyticity of Jost solutions and their inverse matrices, we note that the

scattering relation the analyticity of s11 in C+ and the analyticity of s22 in C−.
Straightforward matrix calculation immediately lead to the following proposition.

Proposition 2.1. The above constructed Jost solutions J± and the scattering matrix S (λ)

enjoy the following symmetry relations:

σ1J±
�

x , t,λ
�

σ1 = J± (x , t,λ) ,

σ3J
†
±
�

x , t,λ
�

σ3 = J−1
± (x , t,λ) ,

σ1S
�

λ
�

σ1 = S (λ) ,

σ3S†
�

λ
�

σ3 = S−1 (λ) ,

where A† denotes the conjugate transposition of matrix A.

We consider an asymptotic expansion

J = J0 +
J1

λ
+

J2

λ2
+O

�

1

λ3

�

, λ→∞, (2.9)

where J0, J1, J2 are independent of λ. Substituting (2.9) into (2.4) and comparing the

coefficients at λ, we obtain that J0 is the unit matrix. Combining (2.9) and (2.4) implies

that the potential is reconstructed by

u(x , t) = 2i lim
λ→∞

(λJ)12.

3. Initial RH Problem

The scattering relation (2.8) can be deformed to
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�

J2
−

s22

, J1
+

�

=

�

J2
+

,
J1
−

s11

�

etφ(λ)σ̂3







1

s11s22

− s21

s11

s12

s22

1





 .

Note that the above equation is similar to the jump condition of a RH problem. We set

V (x , t,λ) = etφ(λ)σ̂3







1

s11s22

− s21

s11

s12

s22

1







and subsequently define

m(x , t,λ) =











�

J2
−

s22

, J1
+

�

, λ ∈ C+,

�

J2
+,

J1
−

s11

�

, λ ∈ C−.

It is easy to check m(x , t,λ) satisfies the following RH problem.

Riemann-Hilbert Problem 0.

(1) m(x , t,λ) is analytic in C\Σ.

(2) On Σ, the boundary functions m±(x , t,λ) satisfy the jump condition

m+(x , t,λ) = m−(x , t,λ)V (x , t,λ), λ ∈ Σ,

where

V (x , t,λ) = etφ(λ)σ̂3

 

1− |r(λ)|2 −r(λ)

r(λ) 1

!

, r(λ)¬
s21

s11

.

(3) Asymptotic condition: m(x , t,λ)→ I ,λ→∞.

Remark 3.1. In this paper, we consider the case where s11 has no zeros — i.e. there are

no solitons. Under this assumption, one can easily derive

|r(λ)| < 1. (3.1)

4. Deformation of RH Problem

4.1. Stationary point and steepest descent lines

The phase function

φ (λ) = i

�

2λ2 − x

t
λ
�
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λ0

LL̄

Figure 1: Steepest descent lines.

admits the first order point of stationary phase

λ0 =
x

4t
.

Correspondingly, there are two steepest descent lines

L =
�

λ= λ0 +αeπ/4i , α ≥ 0
	

∪
�

λ= λ0 +αe5π/4i , α ≥ 0
	

,

L̄ =
�

λ= λ0 +αe3π/4i , α≥ 0
	

∪
�

λ= λ0 +αe7π/4i , α≥ 0
	

as shown in Fig. 1.

4.2. Decomposition of jump matrix

We deform the RH problem with one jump matrix to the one with two matrices on Σ(1)

by triangulating the jump matrix up and down where the jump contour Σ(1) is given by

Fig. 2.

λ0
R

Figure 2: The oriented contour Σ(1).

Indeed, the jump matrix V enjoys the following triangular factorizations:

V =















�

1 −e2tφ r

0 1

��

1 0

e−2tφ r̄ 1

�

, λ < λ0,

etφσ̂3

 

1 0
r̄

1− r2
1

! 

1− r2 0

0
1

1− r2

! 

1
−r

1− r2

0 1

!

, λ > λ0.

(4.1)
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The importance of these factorizations is that they provide an algebraic separation of the

oscillatory exponential factors e±2tφ . Firstly, we need to deal with the central diagonal

factor in the factorization (4.1) to be used for λ > λ0. We introduce a scalar RH problem

as follows.

Scalar Riemann-Hilbert Problem.

(1) δ(λ) is analytic in C\Σ(1).

(2) Jump conditions

δ+(λ) = δ−(λ), λ < λ0,

δ+(λ) = δ−(λ)(1− r2), λ > λ0.

(3) Asymptotic condition: δ(λ)→ 1,λ→∞.

This RH problem has been carefully studied — cf. [34]. Consider the complex scalar

function defined by the formula

δ(λ) = e(1/2πi)
∫ λ0
−∞ ln(1−|r|2)/(ξ−λ)dξ.

According to the Plemelj formula, this function provides the unique solution the scalar RH

problem. Therefore, the diagonal matrix δ(λ)σ3 is typically used in steepest descent theory

to deal with the diagonal factor in (4.1). Note that direct calculations lead the following

proposition.

Proposition 4.1. δ(λ) is uniformly bounded in complex plane with
�

1− ‖r‖2L∞
�1/2
¶ |δ(λ)| ¶

�

1− ‖r‖2L∞
�−1/2

.

Therefore, we can apply δ(λ) to modify the solution of RH Problem 0. More exactly,

let us define the transformation

m(1) = mδ(λ)−σ3 .

Then m(1) satisfies a new RH problem.

Riemann-Hilbert Problem 1.

(1) m(1)(x , t,λ) is analytic in C\Σ(1).

(2) m(1)(x , t,λ) satisfies the jump condition

m
(1)
+ = m

(1)
− V (1)(λ), λ ∈ Σ(1),

where the jump matrix V (1)(λ) is defined by

V (1) =















etφσ̂3

�

1 −δ2
+r

0 1

��

1 0

δ−2
− r 1

�

, λ < λ0,

etφσ̂3

  

1 0

δ−2
−

r̄

1− r2
1

! 

1 δ2
+

−r

1− r2

0 1

!!

, λ > λ0.

(3) Asymptotic condition: m(1)(x , t,λ)→ I ,λ→∞.
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4.3. Rational approximation of scattering data

The coefficients

r(λ), r̄(λ),
r(λ)

1− |r(λ)|2 ,
r̄(λ)

1− |r(λ)|2 ,

which appear in the jump matrix V (1) do not have analytic continuations. To overcome this

technical difficulty, we approximate the coefficients by rational functions

[r(λ)], [r̄(λ)],

�

r(λ)

1− |r(λ)|2
�

,

�

r̄(λ)

1− |r(λ)|2
�

.

The following estimates are obtained similar to [8].

Proposition 4.2. Let

ρ(λ) =







r(λ), λ < λ0,

−r(λ)

1− |r(λ)|2 , λ > λ0.

We decompose ρ(λ) into three parts — viz.

ρ = hI + hI I + [ρ(λ)],

where the piecewise rational functions [ρ(λ)] and hI I have analytic continuations to the steep-

est descent lines L and L̄, but hI does not. Moreover, we have

‖e−2tφδ−2[ρ]‖L1∩L2∩L∞ ¶ ce−εt , λ ∈ L,

‖e−2tφδ−2hI I‖L1∩L2∩L∞ ¶ ct−1, λ ∈ L,

‖e−2tφδ−2hI‖L1∩L2∩L∞ ¶ ct−1, λ ∈ R,

where ε is a positive number.

4.4. Analytic extension of jump matrix

The purpose of this section is to deform the RH problem on Σ(1) = R to the one on

Σ
(2) = R ∪ L ∪ L̄, see Fig. 3. We extend the jump matrix to the steepest descent lines L

and L̄. Thus we decompose the jump matrix as

V (1) =















�

1 δ2
+ρe2tφ

0 1

�−1�

1 0

δ−2
− ρ̄e−2tφ 1

�

, λ < λ0,

�

1 δ2
+
ρe2tφ

0 1

�−1�

1 0

δ−2
− ρ̄e−2tφ 1

�

, λ > λ0

=: b−1
− b+,
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λ0

LL̄

R

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Figure 3: The oriented contour Σ(2).

where b± can be further represented in the form

b+ = I +ω+

=

�

1 0

δ−2
− ρ̄e−2tφ 1

�

=

�

1 0

δ−2
− hI ,ρ̄e−2tφ 1

��

1 0

δ−2
−
�

hI I ,ρ̄ + [ρ̄]
�

e−2tφ 1

�

= b0
+

ba
+

,

b− = I −ω−

=

�

1 δ2
+
ρe2tφ

0 1

�

=

�

1 δ2
+hI ,ρe2tφ

0 1

��

1 δ2
+

�

hI I ,ρ + [ρ]
�

e2tφ

0 1

�

= b0
−ba
−.

Consequently, V (1) takes the form

V (1) = b−1
− b+ =

�

ba
−
�−1 �

b0
−
�−1

b0
+ba
+.

In the above formulas, (ba
−)
−1 and ba

+ can be analytically extended to L and L̄, respectively.

(b0
−)
−1 b0

+
does not have an analytic continuation but decays fast in time. Therefore, we

consider the following transformation:

m(2) = m(1)ψ,



Asymptotics for NLS-GI Equation 173

where

ψ=









I , λ ∈ Ω2 ∩Ω5,
�

ba
−
�−1

, λ ∈ Ω1 ∩Ω4,
�

ba
+

�−1
, λ ∈ Ω3 ∩Ω6,

and the corresponding regions are shown in Fig. 3.

The RH problem on Σ(2) is given by

Riemann-Hilbert Problem 2.

(1) m(2) is analytic in C \Σ(2).

(2) m(2) satisfies the jump condition

m
(2)
+ = m

(2)
− V (2), λ ∈ Σ(2),

where the jump matrix is

V (2)(x , t,λ) =









�

b0
−
�−1

b0
+, λ ∈ R,

�

ba
−
�−1

, λ ∈ L,

ba
+

, λ ∈ L̄.

(3) Asymptotic condition: m(2)(x , t,λ)→ I ,λ→∞.

Consequently, the solution of the combined nonlinear Schrödinger and Gerdjikov-Ivanov

equation takes the form

u(x , t) = 2i lim
λ→∞

�

λm(2)
�

12
. (4.2)

Changing Σ(2) into

Σ
(3) ¬ L ∩ L̄ = Σ(2) \R,

we use it in evaluating the contribution of hI (λ) and hI I(λ) to the solution of the RH prob-

lem. Taking into account results in [2], we represent the jump matrix in the form

V (2) =
�

b
(2)
−
�−1

b
(2)
+

and define

w
(2)
± = ±

�

b
(2)
± − I

�

,

w(2) = w
(2)
+ +w

(2)
− .

The Cauchy operators C± are defined as

(C± f )(λ) = lim
λ′→λ

λ′∈± side ofΣ(2)

1

2πi

∫

Σ(2)

f (ξ)

ξ−λ′ dξ,
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and

Cw(2) f = C+

�

f w
(2)
−
�

+ C−
�

f w
(2)
+

�

.

According to Beals-Coifman theorem [2], we have

µ(2) ¬ (id − Cw(2))
−1 I

= I + (id − Cw(2))
−1Cw(2) I , (4.3)

and the solution of the RH problem yields

m(2)(λ) = I +
1

2πi

∫

Σ(2)

µ(2)(ξ)w(2)(ξ)

ξ−λ dξ. (4.4)

Taking into account (4.2)-(4.4), we write

u(x , t) = 2i lim
λ→∞

�

λm(2)
�

12

= − 1

π

�∫

Σ(2)

µ(2)(ξ)w(2)(ξ)dξ

�

12

= − 1

π

�∫

Σ(2)

�

(id − Cw(2))
−1 I
�

w(2)(ξ)dξ

�

12

.

Using the method similar to the one exploited in rational approximation of the scattering

data, we can show that the contributions to RH problem are mainly coming from the ra-

tional part of the scattering data. Therefore, the contribution of hI(λ) and hI I(λ) is an

infinitely small quantity of t. Consequently,

u(x , t) = 2i
�

m
(3)

1

�

12
+ O (t−1)

= 2i lim
λ→∞

�

λm(3)
�

12
+ O (t−1),

where

m(3) = I +
m
(3)

1

λ
+ · · ·

is the solution of following RH problem.

Riemann-Hilbert Problem 3.

(1) m(3) is analytic in C \Σ(3).

(2) The boundary value of m(3) satisfies the jump condition

m
(3)
+ = m

(3)

1
V (3), λ ∈ Σ(3).

(3) Asymptotic condition: m(3)→ I ,λ→∞.

The jump matrix is shown in Fig. 4.
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λ0

LL̄

etφσ̂3

�

1 δ2
+
[ρ]

0 1

�

etφσ̂3

�

1 0

δ−2
− [ρ̄] 1

�

etφσ̂3

�

1 δ2
+
[ρ]

0 1

�

etφσ̂3

�

1 0

δ−2
− [ρ̄] 1

�

Figure 4: Oriented contour Σ(3) and jump matrix V (3).

4.5. Scaling transformation

First of all, we transform Σ(3) into the contourΣ(4), shown in Fig. 5, and take the scaling

transformation

λ= (8t)−1/2λ̃+λ0.

Next, we define a scaling operator N : Lp(Σ(3))→ Lp(Σ(4)) by

f (λ) 7→ N f (λ) = f
�

(8t)−1/2λ̃+λ0

�

.

O

LL̄

Figure 5: The oriented contour Σ(4).
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The RH problem 3 yields

Riemann-Hilbert Problem 4.

(1) m(4)(x , t,λ) is analytic in C \Σ(4).

(2) The boundary value of m(4) satisfies the jump condition

m
(4)
+ = m

(4)

1
V (4), λ ∈ Σ(4).

(3) Asymptotic condition: m(4)→ I ,λ→∞,

where

m(4) = N m(3) = m(3)
�

(8t)−1/2λ+λ0

�

,

V (4) = N V (3) = V (3)
�

(8t)−1/2λ+λ0

�

.

The solution of NLS-GI equation can be represented in the form

u(x , t) =
ip
2t

�

m
(4)
1

�

12
+ O (t−1),

where m
(4)

1
is defined by

m(4) = m(3)
�

(8t)−1/2λ+λ0

�

= I +
m
(3)
1

(8t)−1/2λ+λ0

+ · · ·

= I +
m
(4)

1

λ
+ · · · .

For the sake of convenience, we isolate oscillations in the jump matrix V (3), viz.

V (4) = N V (3)

= N
�

δσ̂3 etφσ̂3 V
(3)

0

�

=
�

N
�

δetφ
��σ̂3

N V
(3)

0
.

By δ0δ1, we mean the result of the N operation on δetφ , where

δ0 = (8t)−iν/2eχ(λ0)e−2i tλ0 ,

δ1 = λiνeχ(λ/
p

8t+λ0)−χ(λ0)eiλ2/4,

ν = ν(λ0) = −
1

2π
log

�

1− |r (λ0) |2
�

> 0,

χ(λ) = − 1

2πi

∫ λ0

−∞
log |λ− ξ|d log

�

1− |r(ξ)|2
�

.
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Removing the oscillating factor from the RH problem, we denote a new matrix function by

m(N) = (δ0)−σ̂3 N (4).

A new jump matrix V (N) can be determined by the following jump condition:

m
(N)
+ =

�

δ0
�−σ3

m
(4)
−
�

δ0
�σ3

�

δ0
�−σ3

V (4)
�

δ0
�σ3
= m

(N)
− V (N).

This gives

u(x , t) =
ip
2t

�

δ0
�2
�

m
(N)
1

�

12
+ O

�

t−1
�

,

where m(N) is the solution of the following RH problem.

Riemann-Hilbert Problem 5.

(1) m(N)(x , t,λ) is analytic in C \Σ(N).

(2) The boundary value of m(N) at Σ(N) ¬ Σ(4) satisfies the jump condition

m
(N)
+ = m

(N)

1
V (N), λ ∈ Σ(N).

(3) Asymptotic condition: m(N)→ I ,λ→∞.

Note that V (N) is shown in Fig. 6.

O

LL̄

(δ1)σ̂3

�

1 −[ρ]
0 1

�

�

δ1
�σ̂3

�

1 0

[ρ̄] 1

�

(δ1)σ̂3

�

1 −[ρ]
0 1

�

(δ1)σ̂3

�

1 0

[ρ̄] 1

�

Figure 6: Oriented contour Σ(N ) and jump matrix V (N ).
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Now, we transform the jump curve Σ(N) into Σ∞ by taking the limit to attribute RH

problem on the phase point λ0. If t →∞, then

λp
8t
+λ0→ λ0,

δ1→ λiνeiλ2/4,

V (N)(x , t,λ)→ V∞(x , t,λ),

[ρ]

�

λp
8t
+ λ0

�

→ ρ(λ0) ¬ [ρ(λ0)],

where V∞(x , t,λ) is shown in Fig. 7.

O

Σ
∞
2

Σ
∞
1

Σ
∞
3

Σ
∞
4

V∞
2
¬ λiνσ̂3 eiλ2/4σ̂3

�

1 −ρ(λ0)

0 1

�

V∞
4
¬ λiνσ̂3 eiλ2/4σ̂3

�

1 0

ρ̄(λ0) 1

�

V∞
3
¬ λiνσ̂3 eiλ2/4σ̂3

�

1 −ρ(λ0)

0 1

�

V∞
1
¬ λiνσ̂3 eiλ2/4σ̂3

�

1 0

ρ̄(λ0) 1

�

Figure 7: Oriented contour Σ∞ and jump matrix V∞.

Moreover, we can prove that

‖V (N)− V∞‖L1∩L∞ ¶ ct−1/2 log t,

and obtain the RH problem of (V∞,Σ∞).

Riemann-Hilbert Problem 6.

(1) m∞(x , t,λ) is analytic in C \Σ∞.

(2) The boundary value of m∞ at Σ∞ ¬ Σ(N) satisfies the jump condition

m∞+ = m∞1 V∞, λ ∈ Σ∞.

(3) Asymptotic condition: m∞→ I ,λ→∞.
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Subsequently, the solution of the original equation is represented as

u(x , t) =
ip
2t

�

δ0
�2 �

m∞
1

�

12
+ O

�

t−1 log t
�

, (4.5)

where m∞1 is defined by

m∞ = I +
m∞1
λ
+ · · · .

We set Σe ¬ Σ∞ ∪R with modified contour direction and

V e =









V∞, λ ∈ Σe
1 ∪Σe

3,

(V∞)−1, λ ∈ Σe
3
∪Σe

4,

I , λ ∈ Σe
5 ∪Σe

6
.

Now we divide the complex plain by Σe into six domains Ω̂ j, cf. Fig. 8.

O

Σ
e
2

Σ
e
1

Σ
e
5

Σ
e
3

Σ
e
4

Σ
e
6

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Figure 8: The oriented contour Σe and the domains.

It is clear that m∞ satisfies the RH problem (Σe, V e). Defining the function γ by

γ(λ) =









λ−iνσ3 , λ ∈ Ω̂2 ∪ Ω̂5,

λ−iνσ3(V e)−1, λ ∈ Ω̂1 ∪ Ω̂3,

λ−iνσ3 V e, λ ∈ Ω̂4 ∪ Ω̂6

and considering the transformation

m̂= m∞γ−1,
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we obtain the following result:

m̂+ = m̂−V̂ , λ ∈ R,

m̂λ−iνσ3 → I , λ→∞,

where V̂ = γ−V∞γ−1
+ . In other words, V̂ takes the form

V̂ =

¨

I , λ ∈ Σe
1
∪Σe

2
∪Σe

3
∪Σe

4
,

eiλ2/4σ̂3 V (λ0), λ ∈ Σe
5 ∪Σe

6
= R.

Under the transformation Φ= m̂e(iλ
2/4)σ3 , a standard RH problem can be defined as

Riemann-Hilbert Problem 7.

(1) Φ is analytic in C \R.

(2) Φ+ = Φ−V (λ0), λ ∈ R.

(3) Φe−(iλ
2)/4σ3λ−iνσ3 → I ,λ→∞.

This kind of RH problems can be solved by using the Weber equation and parabolic-

cylinder function.

5. Long-Time Asymptotics

In terms of the jump condition of the last RH problem and the Liouville theorem, we

can derive that (dΦ/dλ+ (1/2)iλσ3Φ)Φ
−1 is a constant matrix with respect to λ. Hence,

there exist constants βi j, i, j = 1,2 such that

�

dΦ

dλ
+

1

2
iλσ3Φ

�

Φ
−1 =

1

2
i
�

σ3, m∞1
�

¬

�

β11 β12

β21 β22

�

. (5.1)

Comparing two sides of (5.1) yields

�

m∞1
�

12
= −iβ12. (5.2)

Substituting (5.2) into (4.5) gives

u(x , t) =
1p
2t

�

δ0
�2
β12 + O

�

t−1 log t
�

. (5.3)

Parabolic-cylinder functions can be used for calculating β12. Let

Φ=

�

Φ11 Φ12

Φ21 Φ22

�

.
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Starting with (5.1), we note that if Imλ > 0, then

Φ
+
11 = e−3πν/4Da

�

λe−3πi/4
�

,

Φ
+
12 = e3πν/4β−1

21

�

∂λD−a

�

λe−πi/4
�

− iλ

2
D−a

�

λe−πi/4
�

�

,

Φ
+
21
= e−3πν/4β−1

12

�

∂λDa

�

λe−3πi/4
�

+
iλ

2
Da

�

λe−3πi/4
�

�

,

Φ
+
22 = eπν/4D−a

�

λe−3πi/4
�

,

(5.4)

and if Imλ > 0, then

Φ
−
11 = eπν/4Da

�

λeπi/4
�

,

Φ
−
12 = e−3πν/4β−1

21

�

∂λD−a

�

λe3πi/4
�

− iλ

2
D−a

�

λe3πi/4
�

�

,

Φ
−
21
= eπν/4β−1

12

�

∂λDa

�

λeπi/4
�

+
iλ

2
Da

�

λeπi/4
�

�

,

Φ
−
22 = e−3πν/4Da

�

λe3πi/4
�

,

(5.5)

where a = −iν(λ0) and Da(ζ) = Da(e
−(3/4)πiλ) is the standard parabolic cylinder function

satisfying the Weber equation

∂ 2
ζ Da (ζ) +

�

1

2
− ζ

2

4
+ β12β21

�

Da (ζ) = 0.

We rewrite the jump condition in the following form:

Φ
−1
− Φ+ = V (λ0) =

�

1− |r(λ0)|2 −r(λ0)

r(λ0) 1

�

.

Assembling (5.4)-(5.5) and the above formula, we arrive at the relation

r(λ0) = Φ
−
11
Φ
+
21
−Φ−

21
Φ
+
11
=
(2π)1/2eπi/4e−πν/2

β12Γ (−a)
,

where Γ (a) is Gamma function. Thus

β12 =
(2π)1/2eπi/4e−πν/2

r(λ0)Γ (−a)
. (5.6)

Substituting (5.6) into (5.3), we immediately extract the following asymptotics.

Theorem 5.1. As t →∞, such that |λ0| = |x/4t| < M,

u(x , t) =
τ(λ0)p

t
e−i x2/4t−iν(λ0) log8t + O

�

t−1 log t
�

,
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where

τ(λ0) =
π1/2eπi/4e−πν/2e2χ(λ0)

r(λ0)Γ (−a)
.

Its modulus and angle are

|τ(λ0)|2 = −
1

4π
ln
�

1− |r(λ0)|2
�

,

argτ(λ0) =
π

4
+ arg Γ

�

iν(λ0)
�

− arg r(λ0)

+
1

π

∫ λ0

−∞
ln |λ−λ0|d ln

�

1− |r(λ)|2
�

,

respectively.

Combining the above results leads to the main theorem.

Theorem 5.2. Suppose that the initial value u0 belongs to the Schwartz space, λ0 = x/4t

is a stationary phase point, and |λ0| < M with a fixed constant M > 1. Then the long-time

asymptotics for the NLS-GI equation (1.2) is given by

u(x , t) =
τ(λ0)p

t
e−i x2/4t−iν(λ0) log8t + O

�

t−1 log t
�

. (5.7)

6. Conclusion

The crucial technique for obtaining the asymptotics (5.7) is the classical Deift-Zhou

steepest decent method. This method has been widely used in the study of the long-time

behavior of numerous differential equations. We see that the result is determined not by

the equation itself but the spectral problem corresponding to the equation. This inspires

us to consider a new concept, which we tentatively call the asymptotic invariant. The

purpose of this concept is to investigate the relationship between different spectral problems

and their associated asymptotic behavior. As a corollary, the NLS equation and the GI

equation give an example of producing integrable system by combination. In terms of the

asymptotic invariant, we may be able to skip the procedures and get to the conclusion about

the produced equation directly.
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