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Abstract. The paper focuses on the solvability and computability of the parameterized
polynomial inverse eigenvalue problem (PPIEP). Employing multiparameter eigenvalue
problems, we establish a sufficient solvability condition for the PPIEP Three numerical
methods are used to solve PPIEPs. The first one is the Newton method based on locally
smooth QR-decomposition with the column pivoting and the second the Newton method
based on the smallest singular value. In order to reduce the computational cost of com-
puting the smallest singular values and the corresponding unit left and right singular
vectors in each iteration, we approximate these values by using one-step inverse itera-
tions. Subsequently, we introduce another method — viz. a Newton-like method based
on the smallest singular value. Each of three methods exhibits locally quadratic conver-
gence under appropriate conditions. Numerical examples demonstrate the effectiveness
of the methods proposed.
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1. Introduction

Over the years, there has been significant discourse surrounding inverse eigenvalue
problems, primarily driven by their wide-ranging applications. The applications encompass
various fields, including but not limited to dynamic behavior control of damped mass-spring
systems [22], structural design [27], finite element model updating [10,11], and circuit
theory [34]. Corresponding to a wide range of applications, there exist diverse categories
of inverse eigenvalue problems — e.g. parameterized, structured, partially described, and
others [9]. In this work, we study a particular inverse eigenvalue problem — viz. the
parameterized polynomial inverse eigenvalue problem (PPIEP), which is determined as
follows.

*Corresponding author. Email addresses:  xiangmeiling@nuaa.edu.cn (M.-L. Xiang), hdai@nuaa.
edu.cn (H. Dai)

http://www.global-sci.org/eajam 185 ©2025 Global-Science Press



186 M.-L. Xiang and H. Dai

Problem 1.1 (PPIEP). Let A,, € R™" be a non-singular matrix and {Ag.q)}T:”O e R™™,
g =0,1,...,m— 1. For any distinct complex numbers A;,A,, -, A,,, find a vector ¢ =

(c1,C9,"** ,Cmp)T € R™ or C™ such that the polynomial eigenvalue problem
[A™A, + A AL () + -+ AA1 () +Ag(c) ] x =0

with the matrices

mn
Ag)=AP +> AP, q=0,1,...,m—1 (1.1)
j=1

has the eigenvalues A, A5, -+, A -

The following notations will be used throughout the discussion. The sets of all real
and complex m X n matrices are respectively denoted by R™*" and C™*" and we write R™
for R™! and C™ for C™*!. Besides, %, and %, refer to the sets of all n x n unitary and
all n x n upper-triangular matrices, respectively. In addition, I is the identity matrix of
a suitable size, e; the j-th column vector of I, and || - || represents the Euclidean vector
norm or the induced matrix norm. Moreover, if A is an m x n matrix, then AT and o;,(A)
respectively denote the transpose and the smallest singular value of A.

The PPIEP is a class of problems. It contains the parameterized standard inverse eigen-
value problem (PSIEP) — i.e. if m = 1, A,,, = I, the parameterized generalized inverse
eigenvalue problem (PGIEP) —i.e. if m =1, A,, = A;(c), and the parameterized quadratic
inverse eigenvalue problem (PQIEP) — i.e. if m = 2. The theory and applications of these
problems have been extensively investigated in the past decades. The reader can con-
sult [6,7,9,24,41,42] for PSIEP studies, [1,12,15,16,18-20,27,31] for PGIEP studies,
and [21-23,38,39] for PQIEP studies. However, to the best of our knowledge, there is a lack
of pertinent information regarding high-order PPIEPs. Similar to all inverse eigenvalue
problems, there are two fundamental questions concerning the PPIEP associated problems
— viz. their solvability and computability.

The solvability analysis of PSIEE PGIER and PQIEP is believed to be beneficial in ana-
lyzing the solvability of the PPIEP due to the unique relationship that exists among these
four problems. Additionally, the numerical methods for solving PSIER PGIEP and PQIEP
can contribute to the development of numerical methods for solving the PPIEP Hence, we
take PQIEP as an illustrative example to analyze the solvability of PSIER PGIEP and PQIEPR
as well as the existing numerical techniques employed for solving these problems.

For the solvability issue, Xiang and Dai [38] presented a sufficient condition for the
existence of a solution of PQIEP by using the theory of multiparameter eigenvalue prob-
lem [3]. Using the same theory, Ji [26] and Dai et al. [15] proposed sufficient conditions
for the existence of solutions of PSIEP and PGIEP earlier.

For the computability issue, most of the numerical algorithms with locally quadratic
convergence (under appropriate conditions) are frequently constructed by formulating an
equivalent nonlinear system and then employing Newton method to solve it. Based on
the determinant evaluations proposed by Lancaster [29] and Biegler-Konig [6] and further
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analyzed by Friedland et al. [24], Elhay and Ram [22] constructed the following nonlinear
system equivalent to PQIEP:

det (A%AZ +A,4:(c) +A0(c))

det (A%AZ + AyA:(c) +A0(c))

d(c)= =0, (1.2)

det (A’%HAZ + A’ZHA].(C) +A0(C))

and applied Newton method to solve it. Biegler-Koénig [6] and Song and Dai [36] used
a nonlinear system similar to (1.2) to study numerical methods for PSIEP and PGIEB respec-
tively. The Newton method based on the determinant evaluation — i.e. on the nonlinear
system (1.2), is capable of handling both symmetric and asymmetric PQIEPs. However, this
method is not computationally attractive [39] and may suffer from ill-conditioning [24].

Suppose that c* is a solution of PQIEP and A,(c), A,(c), -, Ay,(c) are the eigenvalues
of the quadratic pencil Q(A,c) = A2A, + AA;(c) + Ay(c). It is natural to consider solving
PQIEP by its equivalent nonlinear system

Aq(c)— 24
Ao(0)— A

1(0) = 2(6): > | =o. (1.3)
AZn(C)_AZH

Since the given eigenvalues are distinct, the eigenvalues {Ai(c)}?gl of Q(A,c) are distinct
and differentiable around c* [2]. It allows to use the Newton method to solve the nonlinear
system (1.3). To ensure that the Newton method can solve (1.3), it is needed to reorder
the eigenvalues in a suitable way. Since the eigenvalues of the quadratic pencil Q(A,c) are
complex in general, the right ordering of the eigenvalues is not a trivial task. Elhay and Ram
[23] developed a Newton method based on (1.3) for solving the symmetric PQIEP under the
assumption that the number of real and complex eigenvalues in each iteration remains the
same as the number of real and complex eigenvalues prescribed. However, without such
an assumption, the ordering problem of the eigenvalues was not addressed. Datta and
Sokolov [21] solved the matching problem of the eigenvalues by Hungarian method [28],
and presented a Newton method for solving the symmetric PQIEP Based on the nonlinear
system similar to (1.3), Friedland et al. [24] developed a Newton method and two Newton-
like methods for solving the symmetric PSIEP Since then, considerable literatures have
been devoted to solve the symmetric PSIEP by various Newton-like methods [1], inexact
Newton methods [4] and inexact Newton-like methods [5,8,35]. Dai and Lancaster [16],
Aishima [1], and Dalvand et al. [19, 20] extended the Newton or Newton-like methods to
the symmetric PGIEP The Newton method based on the eigenvalues — i.e. on the nonlinear
system (1.3), is highly effective. However, it is only applicable to the symmetric PQIEP
Based on the locally smooth QR-decomposition with column pivoting for a matrix-
valued function depending on several parameters [17], Xiang and Dai [38] formulated
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another nonlinear system equivalent to PQIEP

r ()

(2)
r(c)= r””.(c) =0, (1.4)
)

where rr(lin)(c) is obtained by the QR-decomposition with the column pivoting of Q(A;,c) =
A?Az + AiA1(c) +Ap(c), i.e.

Q(A;, o) (c) =Q;(c)R;(c), i=1,2,...,2n,

where I1;(c) is a permutation matrix, Q;(c) € %, and

@ @
R(E) = ( R{)(0) R(ls(c) ) RO € .
0 ra(c)

Furthermore, they developed a Newton method for solving PQIEP. Based on the nonlinear
system similar to (1.4), Dai [12] proposed a Newton method for solving the symmetric
PGIEP. The Newton method based on the smooth QR-decomposition — i.e. on the non-
linear system (1.4), is applicable to both symmetric and asymmetric PQIEP However, it
is computationally expensive to compute mn QR-decompositions with column pivoting in
each iteration.

Since a matrix is singular if and only if its smallest singular value is equal to zero, Xiang
and Dai [39] reformulated the PQIEP as the following nonlinear system:

O min (A%Az + A144(c) +A0(C))

O min (A245 + 4241 (c) + Ag(c))

s(c) = =0, (1.5)

O min (A2,A2 + 42041 (€) +Ag(c))

and proposed a Newton and a Newton-like methods for PQIEP Using a nonlinear system
similar to (1.5), Xu [40] introduced a Newton and a Newton-like methods for PSIEP. Song
and Dai [36] further extended the Newton method to solve PGIEP A Newton and a Newton-
like methods based on the smallest singular values — i.e. on the nonlinear system (1.5),
demonstrate efficiency in solving both symmetric and asymmetric PQIEP [39].

Accordingly, we first transform the PPIEP into a multiparameter eigenvalue problem
and then apply the theorem on the multiparameter eigenvalue problem to analyze the
solvability of the PPIEP Taking into account the advantages and disadvantages of the nu-
merical methods mentioned above, we employ a Newton method based on the smooth
QR-decomposition with column pivoting and a Newton and a Newton-like methods based
on the smallest singular value to solve the PPIEP. These methods can handle both symmetric
and asymmetric cases.
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The remainder of the paper is organized as follows. In Section 2, we reduce the PPIEP
to an equivalent multiparameter eigenvalue problem, and provide a sufficient condition,
which guarantees the solvability of the PPIEP In Section 3, we present a Newton method
based on the smooth QR-decomposition with column pivoting for solving the PPIEP and its
locally quadratic convergence. In Section 4, we derive a Newton and a Newton-like meth-
ods based on smallest singular value for solving the PPIEP and show the locally quadratic
convergence of these methods. In Section 5, the performance of the methods is demon-
strated through numerical experiments. Finally, a few conclusions are drawn in Section 6.

Throughout this paper, we assume that the given eigenvalues A, A,,---, A, are dis-
tinct and the solution to the PPIEP is always denoted by c*. To ensure that the number of
free parameters does not degenerate, we also assume that the mn matrices [AS.O),AS.D, e

Ag.m_l)], j=1,2,...,mn are linearly independent in the space of n x mn matrices.

2. The Solvability of the PPIEP

In order to discuss the solvability of the PPIEPR we briefly recall the theory of the mul-
tiparameter eigenvalue problem [3]. Let H, denote the Hilbert space R™ or C"" and A,
be linear operators on H,, r = 1,2,...,1, s = 0,1,...,l. The multiparameter eigenvalue
problem is to find scalars ug, uq, -, u; that are not all zero and nonzero vectors x, € C'r,
r=1,2,...,1 such that

WUoA1,0X1 + U1AL 1X7 + -+ WA X =0,
PoAopX2 + 1Az 1 X5 + - -+ Ay X5 =0, 2.1)

UoAr0X1 + WA 1 + - + WA = 0.

The (I + 1)-tuple u = (ug, U1, ,¢4;) and the vector x = x; ® X, ® - -+ ® x; are called the
eigenvalue and the corresponding eigenvector, respectively. Obviously, u = (g, 1, "+ , 1)
is an eigenvalue of (2.1) if and only if ker(Zizo usA,s) # {0} or det(Zézo usA;s) =0,
r=1,2,...,1L

Let H=H; ® H, ® --- ® H; be the tensor product space. For a decomposable tensor
X=x189x,®---®x; €H, A";s denote the operators on H induced by A, ; and are defined as

A’;,s(x1®---®xl)
=X1Q ®X, 1 ®A X, ®X,11® - ®X;, r=12,....,1, s=0,1,...,1L (2.2)

These induced operators possess a significant property of commutativity, meaning that they
can be interchanged without affecting the outcome, i.e., Ai,sA;(,s = A,’(}sA';,s, r#k, rk=
1,2,...,l,s=0,1,...,L

Solving the multiparameter eigenvalue problem (2.1) requires the use of operator-

valued determinants defined as follows:

T N
Al,O e Al,s

A, = (=1 det| : : : |, s=0,1,...,1, (2.3)

T At T
AZ,O Al,s Al,l
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where the caret (j) indicates omission, which means that A, obtained by deleting the
(s +1)-th column. The right-hand side of (2.3) can be expanded in the usual manner for
determinants, in which the products of the entries are interpreted as the composites of the
operators concerned.

As shown in [3], assuming A = Z;n:o v, is nonsingular for some scalars v, 71, , Y1
the problem (2.1) is equivalent to the following joint eigenvalue problem:

A_lASXZ,usx, s=0,1,...,1L. 2.4)

Theorem 2.1 (cf. Atkinson [3]). If there are scalars yq, Y1, ,Y; Such that A = Z;n:() YA
is nonsingular, then for an eigenvalue u = (Ug, U1, - , ;) of the problem (2.1), we have

l
Z Ysks 7 O.
s=0

Up to a scaling factor, the eigenvalues of the problem (2.1) are the simultaneous eigenvalues
of the joint eigenvalue problem (2.4). Moreover, all operators A A, s = 1,2,...,1 mutually
commute — i.e.

AATIA =AATIA,, 1s=1,2,...,1

Now we discuss the solvability of the PPIEP. According to the definition of the PPIEB if
the PPIEP has a solution ¢ € C™", then there are nonzero vectors x; € C" such that

[APA, + AT AL 1 () + -+ AA(€) +Ag(c) ] x; =0, i=1,2,...,mn. (2.5)

Let
Ajo=AlMA, + AT Agn_n Lod AE)O),

_ _ i,j=1,2,...,mn. (2.6)
Ayy=AnTtAm D qm=2A D gy 4D

It is straightforward to verify that (2.5) is equivalent to the multiparameter eigenvalue
problem
Aqox1+ 1A X+ F CppAy e X1 =0,
AgoXg + 1Ay 1 X9+ + CppAo mnXe =0, 2.7)

Amn,Oxmn + ClAmn,lxmn +eeet CmnAmn,mnxmn =0,

where c € C™ and x = x; ®x,®: - -®X,,, are the eigenvalue and corresponding eigenvector
of (2.7). So, the following result is obtained.

Theorem 2.2. If the given eigenvalues Aq, Ay, -+ , Ay are distinct, then ¢ = (c1,¢,*++ , Cn)
is a solution of the PPIEP if and only if it is an eigenvalue of the multiparameter eigenvalue
problem (2.7).

Theorem 2.2 demonstrates that the analysis of the solvability of the PPIEP can be re-
duced to the analysis of the solvability of the multiparameter eigenvalue problem (2.7).
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According to the definition (2.2) and the properties of the Kronecker product [13], we
represent the operators A}Lj induced by A; ; in (2.6) as

Al =1®---®I8A;®I® -®I, i=12,..,mn, j=0,1,..,mn.

Lj

Besides, the operator-valued determinants of the system (2.7) are defined as follows:

T At T
Al,o ... Al,j ... Al,mn
T; = (—1) det : : : , j=0,1,...,mn,
i N e A
Amn,O Amn,j mn,mn

where A\l . means the omission ofA';']., i=1,2,...,mn.
Since the coefficients of A; 5, i = 1,2,...,mn in (2.7) are all equal to 1, the approach
of [3] and Theorem 2.1 lead to the following theorem.

Theorem 2.3. If the given eigenvalues Ay, Ay, -+, A, are distinct, then the solutions of the
PPIEP coincide with the simultaneous eigenvalues of the following joint eigenvalue problem:

(Ty—c1To)x =0, (Ty—cyTp)x =0, -, (Tpyp—CmpTo)x =0.

From Theorems 2.1 and 2.3, we can derive a sufficient condition for the solvability of
the PPIEPR

Theorem 2.4. If the given eigenvalues Ay, Ay, , Ay, are distinct and Ty is invertible, then
the PPIEP has at least one solution.

Proof. The proof of this result is quite similar to that of [ 15, Theorem 2.4] and is omitted
here. O

3. Newton Method Based on Smooth QR-Decomposition

We briefly recall some conclusions on the smooth QR-decomposition [17, 30], which
are helpful in our derivation. Let B(c) = (bs(c)) € C™" be a twice continuously dif-
ferentiable matrix-valued function defined on an open connected domain D € C!. The
twice differentiability of B(c) with respect to ¢ = (¢1,¢y, -+ ,¢;)" means that for any ¢(® =

(cgo),cgo), .o ,c(o))T € D the partial derivatives d b,,(c)/dc¢;, s,t =1,...,n,i=1,...,1 exist
and
©) = 9B(c©) ©) 0)}2
B(c) = B(c )+;3—ci(ci_ci )+ (lle—c@)2),
where

aB(c®) _ (8b5t(c) ) i
aCi aCi c=c(0)

The following results are related to the existence of a locally smooth QR-decomposition
of B(c).
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Theorem 3.1 (cf. Xiang and Dai [38]). Let B(c) € C™" be twice continuously differentiable
at ¢ e D C Cl. Assume that rank(B(c?))) > n—1, IT € C™" is a permutation matrix
such that the first n—1 columns of B(c(“)II are linearly independent, and B(c'?)II has a QR-
decomposition

B(c{)IT = QqR,,

_ [ Rix R
Ro = ( 0 ry )
and Ry; € R,_; is a nonsingular matrix. Then there exists a neighborhood A (c(®) c D of
¢ such that for all ¢ € N (c?), the matrix-valued function B(c)II has the QR-decomposition

where Qg € %,

B(c)IT = Q(c)R(c),

where Q(c) € %,

R =( @ e ),

and R,;(c) € &,,_;. Moreover, this QR-decomposition has the following properties:
(1) Q(c®)=Qq and R(c”) =R,
(2) All elements of Q(c) and R(c) are continuous in A (c(?).
(3) The diagonal elements of R(c) are continuously differentiable at ¢(?, and

l

T nH
() = Tnnte, Qo Z

i=1

9B(c)

e I1 (en — I(”_l)RilRlz) (ci — CEO))+0’ (||c —c© ||§) .
L

c=c(0)

Now we reformulate the PPIEPR. Since {A,(c)} q:_ol are the affine families (1.1) and all

A1, Ag,++ , Amy are distinct, the functions

m—1
P(A;,c)=ATA, + Z k?Aq(c), i=1,2,...,mn
q=0
are twice continuously differentiable in C™", and rank[P(A;,c*)]=n—1,i=1,2,...,mn.
It follows from Theorem 3.1 that there exists a neighborhood A (c¢*) € C™ of c* such that
for all ¢ € A(c*) the matrix-valued functions P(A;,c)IT have QR-decompositions with the
column pivoting — i.e.

P(A;, 0)(c) = Qi(c)Ri(c), i=1,2,...,mn,
where I1;(c) is a permutation matrix, Q;(c) € %,

R(O) =( CHONSHO!

(@
X R ()e R, ;.
> g n
0 rr(lln)(c) )
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Assume that A(c*) is sufficiently small, so that for each i the permutation matrices
I1;(c), i =1,2,...,mn are constant. If the column pivoting is performed such that R(lll)(c),
i=1,2,...,mn are nonsingular and

|elTRi(c)el| > |ezTRi(c)ez| =2 |e:Ri(c)en| = |r,(1ir3(c) , i=1,2,...,mn,

then the polynomial eigenvalue problem [A]"A,, + Z;nz_ol A?Aq(c)]x = 0 has distinct eigen-
values Aq, Ay, -+, A, if and only if

D) = -
ra(c)=0, i=1,2,...,mn.
Thus solving the PPIEP is equivalent to solving the nonlinear system (3.1) below.
Problem 3.1. Solve the nonlinear system
1
rr(m)(c)

ri(€)

fle)= =0. (3.1

o)

Let c® € 4(c*) represent the current iterate to the solution c* of the nonlinear sys-
tem (3.1). It follows from Theorem 3.1 that the functions rr(lg(c), i =1,2,...,mn are
continuously differentiable at ¢©) and

mn 3r(i)(c(k))

i i k k .
’”,(12(0) = r,(fn)(c(")) + Z —ngc_ (cj —c](. )) +0 (llcj —c](. )|I§), i=1,2,...,mn,
j=1 j
where
ar®(c®)

m—1
o =) (Z A?A?)) 1<)

j q:()

. -1 4.
X [en — 1D (R(lll)(c(k))) R(llz)(c(k))]. (3.2)

According to (3.2), the Newton method [33] can be applied to the nonlinear system (3.1).
Note that each iteration has the form

T (e)(®D — (B = —f (), (3.3)

ar(i)(c))
Jr(Q)=| ——
e ( da¢;

is the Jacobian matrix of the nonlinear system (3.1).

Summarizing, we obtain Algorithm 3.1 for solving the PPIEP. As is shown in [12, Lem-
ma 4.1], the iterates c(*) generated by Algorithm 3.1 remain unchanged with different QR-
decompositions of P(Ai,c(k))Hi(c(k)), i=1,2,...,mn. The convergence of Algorithm 3.1
can be described by Theorem 3.2.

where
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Algorithm 3.1 Newton Method Based on Smooth QR-Decomposition.

mn

1: Input: Matrices A,,, {Ag.q)}r.”” q=0,1,...,m—1, eigenvalues {A;}/"}, and an initial

j=0°
guess c(©),
2: Output: Computed solution c<+1).
3: for k=0,1,2,... until convergence do

4:  Compute
m—1

P, M) = ATA, + 3 AfA(Y), i=1,2,...mn.
q=0

5:  Compute QR-decomposition of P(A;, ¢y, i=1,2,...,mn with column pivoting
P(A’D C(k))nl(c(k)) = Ql(c(k))Rl(C(k)), i= 1, 25 ..., Mmn,
where IT;(c®®) is a permutation matrix, Q;(c®¥)) € %,

D¢ (k) D (k)
RY(c) Ry (YY)
Rl(C(k)) = ( 11 12

D¢ (k)
R(cM)eZ#,_4.
. k ), 11 n
0 rlgg(c( )

6:  Form the vector f(c) by Eq. (3.1).
7. if ||£ (c%)|| is small enough then
8: Stop;
9: else
10: Form the Jacobian matrix J¢ (c(k)) by Eq. (3.2).
11: endif
12:  Compute c**1) by solving Eq. (3.3).
13: end for

Theorem 3.2. Let c* be a solution of the PPIEP and Hi(c(k)) =1IL(c*), i = 1,2,...,mn
used in Algorithm 3.1 be independent of k for sufficiently small ||c* — c®||,. If the Jacobian
matrix Jg(c*) corresponding to the QR-decompositions of (A]"A, + ZZ:OI A?Aq(c(k)))l'[i(c*),
i=1,2,...,mn is nonsingular, then the sequence {c¥)} generated by Algorithm 3.1 converges
locally quadratically to c*.

Proof. It is similar to that of [12, Theorem 4.1] and is omitted here. O

4. Newton and Newton-like Methods Based on Smallest Singular Value

In light of the properties of the smallest singular value, we develop two additional
approaches for solving the PPIEP. Let GS)(C) = 0 nin(P(A;,c)) be the smallest singular value

of the polynomial pencil
m—1

P(Ai,) = AMAn + > AJA(C).
q=0
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Since {A,].!(c)}g":_o1 are affine families (1.1), P(4;,c) is an analytic matrix-valued function
of c € R™. If {A;}[""] are given distinct eigenvalues and c* is a solution of the PPIER the
smallest singular value GS)(C*) of P(A;,c*) is simple. Thus, the polynomial pencil P(4;,c)
has the eigenvalues {A;}™"] if and only if
ag)(c) =0, i=1,2,...,mn.
Accordingly, in some neighborhood of c*, we can reformulate the PPIEP as follows.
Problem 4.1. Solve the nonlinear system
1
)
(2)
o(c
so=| 79 |-o. (4.1
agm”)(c)
In order to apply the Newton method to the nonlinear system (4.1), we use Sun’s The-
orem [37] to calculate the partial derivatives of g(c) with respect to ¢;,¢5,* , Cn-

Theorem 4.1 (cf. Sun [37]). Let p = (p1,pa,--+,p;)" € Rl and E(p) € C™". Suppose that
Re[E(p)] and Im[E(p)] are real analytic matrix-valued functions of p in some neighborhood
N (P@) SR of p©. If o is a simple non-zero singular value of E(p®), u€ C™ and v € C"
are associated unit left and right singular vectors, respectively, then:

(1) There is a simple singular value o(p) of E(p) which is a real analytic function of p in
some neighborhood A, (p®) of p©, and

(0) (0)
o(p@) =0, 220 ):Re[uHaE(p )v],
op; Ip;
where
90(p) _ 9a(p) OE(p®) _ 9E(p)
Ip; op; p:p(O)’ Ip; P |p=p©

(2) The unit left singular vector u(p) and the unit right singular vector v(p) of E(p) corre-
sponding to o(p) may be defined so that Re[u(p)],Im[u(p)],Re[v(p)], and Im[v(p)]
are real analytic functions of p in A;(p®), and u(p®) = u, v(p @) =v.

Assume that the current iterate ¢®) € R™ is sufficiently close to the solution ¢* €
R™" of the nonlinear system (4.1). Theorem 4.1 states that if the smallest singular value
ag)(c(k)) # 0 of P(A;, c(k)), then there exists a neighborhood 4 (c)) € R™" of ¢* such that
GS)(C) is analytic and

00 0(c™)

dc:

. P(A;.cky
Re [ug)(c(k))H LC’_C)V’(;)(C(@)]
)

ac;

m—1
=Re |uQ(c®)" (ZAgqu)) v |, ij=1,2...,mn,  (42)
q=0
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where ug)(c(k)) and vrgi)(c(k)) are the unit left and right singular vectors associated with
ag)(c(k)), respectively. Thus the Jacobian matrix of g(c) is

809(c)
wo-(552)

and the step of the Newton method is defined as
T (N (D — Ry = —g (™). (4.3)

Consequently, the Newton method for solving the PPIEP has the form.

Algorithm 4.1 Newton Method Based on the Smallest Singular Value.

1: Input: Matrices A, {qu)};’:o, q=0,1,...,m—1, given eigenvalues {A;}!"",, and an
initial guess ¢,

2: Output: Computed solution

3: for k=0,1,2,... until convergence do

4.  Compute

C(k+1).

m—1
P(A;, )= 274, + > 29A,(cY), i=1,2,...,mn.
q=0
5:  Compute the smallest singular values ag)(c(k)) and the corresponding unit left and
right singular vectors ug)(c(k)) and v,(li)(c(k)) of P(A,, k), i=1,2,...,mn.

6:  Form the vector g(c®)) by Eq. (4.1).

7. if ||g(c¥))]|| is small enough then

8: Stop;

9: else
10: Form the Jacobian matrix J g(c(k)) by Eq. (4.2).
11:  endif
12:  Compute c**1 by solving linear system Eq. (4.3).
13: end for

It follows from Theorem 4.1 that the smallest singular values {GS)(C)}Q’;"I of {P(A;,c)}™M
near ¢ = ¢* are smooth dependent. Combined with the assumption that the Jacobian ma-
trix of g(c) at ¢ = ¢* is non-singular, the results of [33] can be employed to investigate the
convergence of Algorithm 4.1.

Theorem 4.2. Let the given eigenvalues {A;}!""} be distinct and c* be a solution of the PPIER If
the Jacobian matrix J,(c*) corresponding to g(c) is nonsingular, then there exists a neighbor-

hood A (c*) of ¢* such that for all ¢© € 4(c*), Algorithm 4.1 is locally quadratic convergent.

Proof. We can immediately obtain the result by applying the well-known theorem con-
cerning the convergence of Newton method in [33]. O
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In each iteration of Algorithm 4.1, Step 5 involves the computation of mn smallest
singular values and the corresponding unit left and right singular vectors by singular value
decomposition. This process is time-consuming, as it requires 21mn* flops [25]. In order
to reduce the computational cost, we propose the utilization of one step of inverse iteration
to approximate the smallest singular values and the associated unit left and right singular
vectors of P(A;, ¢,

(k) (k) l.(k) be approximations of the smallest singular value ag)(c(k)) and

Let o, and u;
the assoc1ated unit left, right singular vectors ug)(c(k)), vr(li)(c(k)) of P(A;, c(K)), respectively.

We update these approximations by one step of inverse iteration — i.e.

P(A;, ¢y =D, 4.4)
v =w/lwl, (4.5)
P(A;, Ay, = vi(k), (4.6)
c®=1/llyl, 4.7)
(") =oWy, (4.8)
where ugo) is an initial guess.

The approximate computational cost of (4.4)-(4.8) is (2/3)n® flops. This means that
the application of one step of inverse iteration can significantly reduce the computation
cost (21mn* flops) of Step 5 in Algorithm 4.1. In particular, each iteration can reduce
it by (61/3)mn* flops. Similar to [39], we choose the unit left singular vector ug)(c(o))
associated with the smallest singular value ag)(c(o)) of P(A,, ¢(©) as our initial guess uEO).
Let

T
8k _[ng)’agk), "’O-(k):l 5 (4.9)

mn

and
ey = ((k)) (ZAqA(q)) W 4.10)

In order to obtain a new estimate c**1) we solve the equation
Je(cHD — 0y = g, . (4.11)

Accordingly, the Newton-like method for solving the PPIEP has the form.

Algorithm 4.2 Newton-Like Method Based on the Smallest Singular Value.

1: Input: MatricesA,,, {A(q)}m" €R™",¢=0,1,...,m—1, given eigenvalues {1;}[""} € C,

and an initial guess c(O) ecm™,
2: Output: Computed solution ¢+,
3: if k =0 then
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4:  Implement Algorithm 4.1 once to obtain ¢(!), and set
OEO) = GS)(C(O)), ugo) = ug)(c(o)), vi(o) = vr(li)(c(o)), i=1,2,...,mn.

5: end if
6: for k =1,2,... until convergence do

7:  Compute approximate smallest singular values otk

1
and right singular vectors ugk) and vi(k) of P(A;, k), i=1,2,...,mn by the inverse
iteration (4.4)-(4.8).

8:  Form the vector g; by Eq. (4.9).

9:  if ||g«|| is small enough then

) and the corresponding unit left

10: Stop;

11: else

12: Form the Jacobian matrix J; by Eq. (4.10).
13: end if

14:  Compute c**1 by solving linear system (4.11).
15: end for

The convergence of Algorithm 4.2 is elucidated by the subsequent theorem.

Theorem 4.3. Let the given eigenvalues {A;}/2] be distinct and c* € R™ be a solution of the
PPIEP If the Jacobian matrix J(c*) is nonsingular, then Algorithm 4.2 generates a well-defined
sequence {c!} for which ¢(®) — ¢*, and the convergence is locally quadratic.

Proof. The proof is similar to [39, Theorem 3.2] and is omitted here. O

5. Numerical Experiments

We present several numerical experiments to illustrate the effectiveness of the proposed
methods for solving the PPIEP An initial guess ¢ € C™" can be randomly generated or
directly selected based on practical applications or desired solutions. To demonstrate the
locally quadratic convergence after a limited number of iterations, we select initial approx-
imations that are in close proximity to the exact solution c* of the PPIEP

The stop criteria of Algorithms 3.1, 4.1, 4.2 are

If (™) <1078, |lgtc®)I <1078, [Ig®] <1078,

where [|f ()], |g(c®)|| and ||g¥)|| are defined as in (3.1), (4.1) and (4.9). In the tables,
CPU denotes the CPU time (in seconds) for computing an approximate solution for the
PPIEP

We perform the tests in MATLAB R2016b with double precision arithmetic on an Intel
Core 2.9 GHz PC with 8GB memory under Windows 10 system.
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Example 5.1. The numerical solution of vibration problems by the dynamic element me-
thod leads to cubic eigenvalue problems [32]

A,SFB + AzFZ +A,F1 +F0 = 0,

where F iT =F;,i=0,1,2,3. Thus we construct a symmetric parameterized cubic inverse
eigenvalue problem
A,SA:; + AzAz(C) + Ml(c) +A0(C) = 0,

where Ay(c) = 2)9':1 chS.q), q=0,1,2 and A3, {Ag.q)})?:1 € R™" are symmetric matrices.

Letm=3,n=3,

5 2 1 4 25
As=| 27 5|, AV=| 2 8 3 |,
156 53 2
4 3 3 4 3 7
AV=13 24|, AP=|38 4|,
3 4 2 7 4 4

(0) _ (1) _ (@) _
A=A =AT =

(0) _ 40 _ 4@ _
AZ _AS _A8 -

(0) _ 4(1) _ 4@ _
AS _A6 _A9 -

OO O, O OO
OO0 RO O+rOo
ook OO - OO

and the remaining matrices be zero matrices. The given eigenvalues are —3.4,—1.4,1.3,
—0.2£0.6i,£1.0i,0.3 £ 1.0i, where i? = —1. With the starting value

¥ =(1,1,1,1,1,1,1,1,1,1)",
the sequences {c©¥)} generated by Algorithms 3.1, 4.1 and 4.2 converge to the exact solution
c* =(1.7631,0.2767,1.6279,0.3296,0.1041,0.2119,0.2843,0.3467,0.5191)".

The numerical results presented in Table 1 show that for symmetric PPIEB all three methods
are effective and locally quadratic convergent.

Example 5.2. Consider now a parameterized cubic inverse eigenvalue problem with non-
symmetric matrices. Let m =3, n =3,

0
Ay = , AY =

W = =
NN =
w o N
o onN
S = O
—= O O
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01 0
001 ]|, AV=
0 0 0
100
000 |, aAV=
00 2
100
010/, AP=
00 1

00 1
000 |,
100
010
002 |, aAl=
01 0
0 0 0
2 01|, AP=
02 0
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OO O MO Oo
OO O O OO0
oON OO

0

and remaining matrices be zero matrices. The target eigenvalues are 0.7643,—0.5370,
—1.2278,1.3867 £ 0.3248i,—0.0046 + 0.9147i,—0.5818 + 0.3594i. We choose the initial

guess as

®=(1.21.2,1.2,11,1.3,1.4,1.4,1.3,1.1)".

Applying Algorithms 3.1, 4.1 and 4.2, we obtain exact solution

c*=(1,1

,1,1,1,1,1,1,1)7.

Numerical results are displayed in Table 2. It is clear that the proposed methods exhibit
effectiveness in handling the asymmetric PPIER while also preserving the locally quadratic

convergence.
Table 1: Convergence of algorithms for symmetric PPIEP.

Iteration Algorithm 3.1 Algorithm 4.1 Algorithm 4.2
k 1™ =l [ F I Ne™ =] g™ | le®™ —cll | gl
0 2.13e-00 | 5.38e-00 | 2.13e-00 | 4.48e-00 | 2.13e-00 | 4.48e-00
1 7.06e-01 | 1.14e-00 | 8.38e-01 | 1.73e-00 | 8.38e-01 | 1.76e-00
2 5.09e-02 | 1.25e-01 | 9.17e-02 | 1.77e-01 [ 4.14e-02 | 9.63e-02
3 4.25e-04 | 7.47e-04 | 4.70e-04 | 9.81e-04 [ 9.86e-05 | 2.03e-04
4 2.33e-08 | 3.37e-08 | 3.93e-08 | 4.31e-08 | 1.83e-08 | 2.15e-09

CPU 0.0471 0.0363 0.0272
Table 2: Convergence of algorithms for non-symmetric PPIEP.

Iteration Algorithm 3.1 Algorithm 4.1 Algorithm 4.2
k e =11 [ IF N[ 1™ = | 1gC®DIE | 1e®™ =l | llgall
0 8.00e-01 | 1.76e-00 | 8.01e-00 | 1.39e-00 | 8.01e-00 | 1.39e-00
1 2.44e-01 | 2.33e-01 | 1.46e-01 | 1.19e-01 | 1.46e-01 | 1.19e-01
2 4.16e-02 | 4.02e-02 | 5.57e-03 | 6.89e-03 | 5.69e-03 | 7.08e-03
3 1.14e-03 | 1.06e-03 | 1.73e-05 | 1.41e-05 | 2.50e-05 | 1.63e-05
4 8.16e-07 | 7.64e-07 | 2.11e-10 | 8.61le-11 | 3.91e-10 | 1.80e-10

CPU(s) 0.0481 0.0319 0.0278
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Example 5.3. Consider various high-order PPIEPs. Matrices A, A; = (as(?)) eR™", q =
0,1,...,m —1 are randomly generated by the MATLAB function rand, whose elements
uniformly distributed over [—1.0,1.0]. Let

n
AW :a(.‘i)ejejT-i- Z (a(q)ejel.T +a((.1)e-eT),

qn+j J ji ijorj
i=j+1
(@ _ T _ . _
Aqn+n—a£31)enen, qg=0,1,....m—1, j=1,2,...,.n—1,

and remaining matrices be zero matrices. We first compute the eigenvalues A1, Ao, -+, A,
of the polynomial eigenvalue problem

m—1
A"Ap+ > AQAq(c)) x=0

q=0

atc*=(1,1,---,1) € R™, and then recompute the exact solution c* of the PPIEP by using
calculated eigenvalues A1, Ao, -+, A,,. The initial value ¢ is obtained by perturbing c*

¢ =c*+ur,

where u = 0.01 is the disturbance parameter, r, € R™ is a vector whose elements are
generated randomly and distributed uniformly within [—1.0,1.0].

We implement Algorithms 3.1, 4.1 and 4.2 and provide the numerical results in Table 3.
In the table, ‘Its’ represents the number of iterations, while [|c'*) — ¢*|| denotes the final
residual norm. Table 3 shows that Algorithm 3.1 requires the least iteration steps and CPU
time.

For the sake of brevity, we take n = 100, m = 4,5,6,7 as examples and use Fig. 1 to
show the locally quadratic convergence of the proposed methods for high-order PPIEPs.
From Fig. 1, it easy to see that Algorithms 3.1, 4.1 and 4.2 still have locally quadratic
convergence.

Table 3: Numerical results for high-order PPIEPs.

Order Algorithm 3.1 Algorithm 4.1 Algorithm 4.2

m| n |Its| CPU |[|lc") —c*|||1ts| CPU |||c") —c*|||1ts| CPU [||cU®) —c*||

4 50 [ 4| 22.04 | 1.63e-10 | 3| 11.32 | 5.91e-07 | 3| 10.49 | 5.91e-07
100| 5| 369.31 | 2.53e-10 [ 4 | 208.01 | 3.87e-08 | 4 | 198.79 | 3.87e-08

s 50| 5| 48.50 | 1.20e-08 | 4| 28.64 | 2.31e-06 |4 | 26.98 | 2.31e-06
100| 6 | 839.72 | 4.59e-12 [ 4| 421.63 | 1.10e-07 | 4 | 408.62 | 1.10e-07

6 50 (5| 76.15 | 3.51e-07 | 5| 59.01 | 4.04e-07 |5 | 55.43 | 4.01le-07
100| 6 [1368.86| 1.12e-07 [ 5| 901.42 | 2.22e-06 | 5| 869.01 | 2.16e-06

7 50 6| 15191 | 6.82e-12 | 5| 95.84 | 1.38e-08 | 5| 87.32 | 1.39e-08
100| 8 [3380.79| 1.43e-11 |5 |1638.90| 1.45e-11 |5 |1418.65| 1.35e-11
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m =4, n =100 m =5, n =100
10 10
oo B —4- Algorithm 1 4 A —4- Algorithm 1
e Algorithm 2 o T~ -+ Algorithm 2 1
10 ~ —=—Algorithm 3 —©—Algorithm 3

[le® — |

m =6, n =100
10° T T T T
—4= Algorithm 1 —A Algor?thm 1
107 - Algorithm 2 e Algorithm 2
—©—Algorithm 3 \# Algorithm 3

o 1 2 3 4 5 6 o 1 2 3 a 5 6 7 8

k k

Figure 1: Convergence of the proposed methods for high-order PPIEPs.

6. Conclusion

This study focuses on two key aspects of PPIEPs — viz. the solvability and computability.
Using the theory of multiparameter eigenvalue problem, we propose a sufficient condition
for the existence of a solution to the PPIEP In order to solve PPIEB we propose the Newton
method based on the smooth QR-decomposition with column pivoting, and the Newton and
Newton-like methods based on the smallest singular values. If the given eigenvalues are dis-
tinct, the PPIEP has a solution c*, the Jacobian matrix J(c*) is nonsingular, and all methods
are locally quadratic convergent. Numerical results demonstrate that our proposed numer-
ical methods work well for solving the PPIEP. In addition to the algorithms proposed in this
paper, the Newton method based on the smooth LU-decomposition with complete pivoting
proposed and analyzed in [15] can also be extended to solve both symmetric and asym-
metric PPIEP However, it is computationally expensive to compute mn LU-decompositions
with complete pivoting in each iteration, see [14] for more details. This leads to lower ef-
ficiency of the algorithm based on smooth LU-decomposition compared to the algorithms
proposed in this paper. Through a substantial number of experiments, we found that the
computational cost of these methods are dominated by the process of constructing the Ja-
cobian matrix during each iteration. The efficiency can be improved through the utilization
of the quasi-Newton method. Furthermore, our methods may be extended to solve the pa-
rameterized polynomial inverse eigenvalue problems of analytical matrix-valued functions
{Aq(c)};":0 that depend on the parameter c € R™ or ¢ € C"™".
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