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Abstract. The paper focuses on the solvability and computability of the parameterized

polynomial inverse eigenvalue problem (PPIEP). Employing multiparameter eigenvalue

problems, we establish a sufficient solvability condition for the PPIEP. Three numerical

methods are used to solve PPIEPs. The first one is the Newton method based on locally

smooth QR-decomposition with the column pivoting and the second the Newton method

based on the smallest singular value. In order to reduce the computational cost of com-

puting the smallest singular values and the corresponding unit left and right singular

vectors in each iteration, we approximate these values by using one-step inverse itera-

tions. Subsequently, we introduce another method — viz. a Newton-like method based

on the smallest singular value. Each of three methods exhibits locally quadratic conver-

gence under appropriate conditions. Numerical examples demonstrate the effectiveness

of the methods proposed.
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1. Introduction

Over the years, there has been significant discourse surrounding inverse eigenvalue

problems, primarily driven by their wide-ranging applications. The applications encompass

various fields, including but not limited to dynamic behavior control of damped mass-spring

systems [22], structural design [27], finite element model updating [10, 11], and circuit

theory [34]. Corresponding to a wide range of applications, there exist diverse categories

of inverse eigenvalue problems — e.g. parameterized, structured, partially described, and

others [9]. In this work, we study a particular inverse eigenvalue problem — viz. the

parameterized polynomial inverse eigenvalue problem (PPIEP), which is determined as

follows.
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Problem 1.1 (PPIEP). Let Am ∈ Rn×n be a non-singular matrix and {A
(q)

j
}mn

j=0
∈ Rn×n,

q = 0,1, . . . , m − 1. For any distinct complex numbers λ1,λ2, · · · ,λmn, find a vector c =

(c1, c2, · · · , cmn)
T ∈ Rmn or Cmn such that the polynomial eigenvalue problem

�
λmAm +λ

m−1Am−1(c) + · · ·+λA1(c) + A0(c)
�

x = 0

with the matrices

Aq(c) = A
(q)

0
+

mn∑

j=1

c jA
(q)

j
, q = 0,1, . . . , m− 1 (1.1)

has the eigenvalues λ1,λ2, · · · ,λmn.

The following notations will be used throughout the discussion. The sets of all real

and complex m× n matrices are respectively denoted by Rm×n and Cm×n and we write Rm

for Rm×1 and Cm for Cm×1. Besides, Un and Rn refer to the sets of all n × n unitary and

all n × n upper-triangular matrices, respectively. In addition, I is the identity matrix of

a suitable size, e j the j-th column vector of I , and ‖ · ‖ represents the Euclidean vector

norm or the induced matrix norm. Moreover, if A is an m× n matrix, then AT and σmin(A)

respectively denote the transpose and the smallest singular value of A.

The PPIEP is a class of problems. It contains the parameterized standard inverse eigen-

value problem (PSIEP) — i.e. if m = 1, Am = I , the parameterized generalized inverse

eigenvalue problem (PGIEP) — i.e. if m = 1, Am = A1(c), and the parameterized quadratic

inverse eigenvalue problem (PQIEP) — i.e. if m = 2. The theory and applications of these

problems have been extensively investigated in the past decades. The reader can con-

sult [6, 7, 9, 24, 41, 42] for PSIEP studies, [1, 12, 15, 16, 18–20, 27, 31] for PGIEP studies,

and [21–23,38,39] for PQIEP studies. However, to the best of our knowledge, there is a lack

of pertinent information regarding high-order PPIEPs. Similar to all inverse eigenvalue

problems, there are two fundamental questions concerning the PPIEP associated problems

— viz. their solvability and computability.

The solvability analysis of PSIEP, PGIEP, and PQIEP is believed to be beneficial in ana-

lyzing the solvability of the PPIEP, due to the unique relationship that exists among these

four problems. Additionally, the numerical methods for solving PSIEP, PGIEP and PQIEP

can contribute to the development of numerical methods for solving the PPIEP. Hence, we

take PQIEP as an illustrative example to analyze the solvability of PSIEP, PGIEP and PQIEP,

as well as the existing numerical techniques employed for solving these problems.

For the solvability issue, Xiang and Dai [38] presented a sufficient condition for the

existence of a solution of PQIEP by using the theory of multiparameter eigenvalue prob-

lem [3]. Using the same theory, Ji [26] and Dai et al. [15] proposed sufficient conditions

for the existence of solutions of PSIEP and PGIEP earlier.

For the computability issue, most of the numerical algorithms with locally quadratic

convergence (under appropriate conditions) are frequently constructed by formulating an

equivalent nonlinear system and then employing Newton method to solve it. Based on

the determinant evaluations proposed by Lancaster [29] and Biegler-König [6] and further
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analyzed by Friedland et al. [24], Elhay and Ram [22] constructed the following nonlinear

system equivalent to PQIEP:

d(c) =





det
�
λ2

1A2 +λ1A1(c) + A0(c)
�

det
�
λ2

2A2 +λ2A1(c) + A0(c)
�

...

det
�
λ2

2n
A2 +λ2nA1(c) + A0(c)

�



 = 0, (1.2)

and applied Newton method to solve it. Biegler-König [6] and Song and Dai [36] used

a nonlinear system similar to (1.2) to study numerical methods for PSIEP and PGIEP, respec-

tively. The Newton method based on the determinant evaluation — i.e. on the nonlinear

system (1.2), is capable of handling both symmetric and asymmetric PQIEPs. However, this

method is not computationally attractive [39] and may suffer from ill-conditioning [24].

Suppose that c∗ is a solution of PQIEP and λ1(c),λ2(c), · · · ,λ2n(c) are the eigenvalues

of the quadratic pencil Q(λ, c) = λ2A2 + λA1(c) + A0(c). It is natural to consider solving

PQIEP by its equivalent nonlinear system

l(c) =





λ1(c)−λ1

λ2(c)−λ2
...

λ2n(c)−λ2n



 = 0. (1.3)

Since the given eigenvalues are distinct, the eigenvalues {λi(c)}
2n
i=1

of Q(λ, c) are distinct

and differentiable around c∗ [2]. It allows to use the Newton method to solve the nonlinear

system (1.3). To ensure that the Newton method can solve (1.3), it is needed to reorder

the eigenvalues in a suitable way. Since the eigenvalues of the quadratic pencil Q(λ, c) are

complex in general, the right ordering of the eigenvalues is not a trivial task. Elhay and Ram

[23] developed a Newton method based on (1.3) for solving the symmetric PQIEP under the

assumption that the number of real and complex eigenvalues in each iteration remains the

same as the number of real and complex eigenvalues prescribed. However, without such

an assumption, the ordering problem of the eigenvalues was not addressed. Datta and

Sokolov [21] solved the matching problem of the eigenvalues by Hungarian method [28],

and presented a Newton method for solving the symmetric PQIEP. Based on the nonlinear

system similar to (1.3), Friedland et al. [24] developed a Newton method and two Newton-

like methods for solving the symmetric PSIEP. Since then, considerable literatures have

been devoted to solve the symmetric PSIEP by various Newton-like methods [1], inexact

Newton methods [4] and inexact Newton-like methods [5,8,35]. Dai and Lancaster [16],

Aishima [1], and Dalvand et al. [19, 20] extended the Newton or Newton-like methods to

the symmetric PGIEP. The Newton method based on the eigenvalues — i.e. on the nonlinear

system (1.3), is highly effective. However, it is only applicable to the symmetric PQIEP.

Based on the locally smooth QR-decomposition with column pivoting for a matrix-

valued function depending on several parameters [17], Xiang and Dai [38] formulated
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another nonlinear system equivalent to PQIEP

r(c) =





r(1)nn (c)

r(2)nn (c)
...

r(2n)
nn (c)



 = 0, (1.4)

where r(i)nn(c) is obtained by the QR-decomposition with the column pivoting of Q(λi, c) =

λ2
i
A2 +λiA1(c) + A0(c), i.e.

Q(λi, c)Πi(c) = Q i(c)Ri(c), i = 1,2, . . . , 2n,

where Πi(c) is a permutation matrix, Q i(c) ∈ Un, and

Ri(c) =

�
R
(i)

11
(c) R

(i)

12
(c)

0 r(i)
nn
(c)

�
, R

(i)
11
(c) ∈ Rn−1.

Furthermore, they developed a Newton method for solving PQIEP. Based on the nonlinear

system similar to (1.4), Dai [12] proposed a Newton method for solving the symmetric

PGIEP. The Newton method based on the smooth QR-decomposition — i.e. on the non-

linear system (1.4), is applicable to both symmetric and asymmetric PQIEP. However, it

is computationally expensive to compute mn QR-decompositions with column pivoting in

each iteration.

Since a matrix is singular if and only if its smallest singular value is equal to zero, Xiang

and Dai [39] reformulated the PQIEP as the following nonlinear system:

s(c) =





σmin

�
λ2

1A2 +λ1A1(c) + A0(c)
�

σmin

�
λ2

2A2 +λ2A1(c) + A0(c)
�

...

σmin

�
λ2

2nA2 +λ2nA1(c) + A0(c)
�



 = 0, (1.5)

and proposed a Newton and a Newton-like methods for PQIEP. Using a nonlinear system

similar to (1.5), Xu [40] introduced a Newton and a Newton-like methods for PSIEP. Song

and Dai [36] further extended the Newton method to solve PGIEP. A Newton and a Newton-

like methods based on the smallest singular values — i.e. on the nonlinear system (1.5),

demonstrate efficiency in solving both symmetric and asymmetric PQIEP [39].

Accordingly, we first transform the PPIEP into a multiparameter eigenvalue problem

and then apply the theorem on the multiparameter eigenvalue problem to analyze the

solvability of the PPIEP. Taking into account the advantages and disadvantages of the nu-

merical methods mentioned above, we employ a Newton method based on the smooth

QR-decomposition with column pivoting and a Newton and a Newton-like methods based

on the smallest singular value to solve the PPIEP. These methods can handle both symmetric

and asymmetric cases.
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The remainder of the paper is organized as follows. In Section 2, we reduce the PPIEP

to an equivalent multiparameter eigenvalue problem, and provide a sufficient condition,

which guarantees the solvability of the PPIEP. In Section 3, we present a Newton method

based on the smooth QR-decomposition with column pivoting for solving the PPIEP and its

locally quadratic convergence. In Section 4, we derive a Newton and a Newton-like meth-

ods based on smallest singular value for solving the PPIEP and show the locally quadratic

convergence of these methods. In Section 5, the performance of the methods is demon-

strated through numerical experiments. Finally, a few conclusions are drawn in Section 6.

Throughout this paper, we assume that the given eigenvalues λ1,λ2, · · · ,λmn are dis-

tinct and the solution to the PPIEP is always denoted by c∗. To ensure that the number of

free parameters does not degenerate, we also assume that the mn matrices [A
(0)

j
,A
(1)

j
, · · · ,

A
(m−1)

j
], j = 1,2, . . . , mn are linearly independent in the space of n×mn matrices.

2. The Solvability of the PPIEP

In order to discuss the solvability of the PPIEP, we briefly recall the theory of the mul-

tiparameter eigenvalue problem [3]. Let Hr denote the Hilbert space Rnr or Cnr and Ar,s

be linear operators on Hr , r = 1,2, . . . , l, s = 0,1, . . . , l. The multiparameter eigenvalue

problem is to find scalars µ0,µ1, · · · ,µl that are not all zero and nonzero vectors xr ∈ Cnr ,

r = 1,2, . . . , l such that

µ0A1,0 x1 +µ1A1,1 x1 + · · ·+µlA1,l x1 = 0,

µ0A2,0 x2 +µ1A2,1 x2 + · · ·+µlA2,l x2 = 0,

· · · · · ·
µ0Al ,0x l +µ1Al ,1x l + · · ·+µlAl ,l x l = 0.

(2.1)

The (l + 1)-tuple µ = (µ0,µ1, · · · ,µl) and the vector x = x1 ⊗ x2 ⊗ · · · ⊗ x l are called the

eigenvalue and the corresponding eigenvector, respectively. Obviously, µ = (µ0,µ1, · · · ,µl)

is an eigenvalue of (2.1) if and only if ker(
∑l

s=0µsAr,s) 6= {0} or det(
∑l

j=0µsAr,s) = 0,

r = 1,2, . . . , l.

Let H = H1 ⊗ H2 ⊗ · · · ⊗ Hl be the tensor product space. For a decomposable tensor

x = x1⊗ x2⊗· · ·⊗ x l ∈ H, A†
r,s denote the operators on H induced by Ar,s and are defined as

A†
r,s(x1 ⊗ · · · ⊗ x l)

= x1 ⊗ · · · ⊗ xr−1 ⊗ Ar,s xr ⊗ xr+1 ⊗ · · · ⊗ x l , r = 1,2, . . . , l, s = 0,1, . . . , l. (2.2)

These induced operators possess a significant property of commutativity, meaning that they

can be interchanged without affecting the outcome, i.e., A†
r,s

A
†
k,s
= A

†
k,s

A†
r,s

, r 6= k, r, k =

1,2, . . . , l, s = 0,1, . . . , l.

Solving the multiparameter eigenvalue problem (2.1) requires the use of operator-

valued determinants defined as follows:

∆s = (−1)s det




A

†
1,0
· · · bA†

1,s
· · · A

†
1,l

...
...

...

A
†
l ,0
· · · bA†

l ,s
· · · A

†
l ,l



 , s = 0,1, . . . , l, (2.3)
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where the caret (†) indicates omission, which means that ∆s obtained by deleting the

(s+ 1)-th column. The right-hand side of (2.3) can be expanded in the usual manner for

determinants, in which the products of the entries are interpreted as the composites of the

operators concerned.

As shown in [3], assuming∆ =
∑m

s=0 γs∆s is nonsingular for some scalars γ0,γ1, · · · ,γl ,

the problem (2.1) is equivalent to the following joint eigenvalue problem:

∆
−1
∆s x = µs x , s = 0,1, . . . , l. (2.4)

Theorem 2.1 (cf. Atkinson [3]). If there are scalars γ0,γ1, · · · ,γl such that ∆ =
∑m

s=0
γs∆s

is nonsingular, then for an eigenvalue µ = (µ0,µ1, · · · ,µl) of the problem (2.1), we have

l∑

s=0

γsµs 6= 0.

Up to a scaling factor, the eigenvalues of the problem (2.1) are the simultaneous eigenvalues

of the joint eigenvalue problem (2.4). Moreover, all operators∆−1
∆s, s = 1,2, . . . , l mutually

commute — i.e.

∆r∆
−1
∆s =∆s∆

−1
∆r , r, s = 1,2, . . . , l.

Now we discuss the solvability of the PPIEP. According to the definition of the PPIEP, if

the PPIEP has a solution c ∈ Cmn, then there are nonzero vectors x i ∈ Cn such that

�
λm

i Am +λ
m−1
i Am−1(c) + · · ·+λiA1(c) + A0(c)

�
x i = 0, i = 1,2, . . . , mn. (2.5)

Let

Ai,0 = λ
m
i Am +λ

m−1
i A

(m−1)

0
+ · · ·+ A

(0)

0
,

Ai, j = λ
m−1
i A

(m−1)

j
+λm−2

i A
(m−2)

j
+ · · ·+ A

(0)

j
,

i, j = 1,2, . . . , mn. (2.6)

It is straightforward to verify that (2.5) is equivalent to the multiparameter eigenvalue

problem

A1,0 x1 + c1A1,1 x1 + · · ·+ cmnA1,mnx1 = 0,

A2,0 x2 + c1A2,1 x2 + · · ·+ cmnA2,mnx2 = 0,

· · · · · ·
Amn,0 xmn+ c1Amn,1 xmn + · · ·+ cmnAmn,mnxmn = 0,

(2.7)

where c ∈ Cmn and x = x1⊗x2⊗· · ·⊗xmn are the eigenvalue and corresponding eigenvector

of (2.7). So, the following result is obtained.

Theorem 2.2. If the given eigenvalues λ1,λ2, · · · ,λmn are distinct, then c = (c1, c2, · · · , cmn)
T

is a solution of the PPIEP if and only if it is an eigenvalue of the multiparameter eigenvalue

problem (2.7).

Theorem 2.2 demonstrates that the analysis of the solvability of the PPIEP can be re-

duced to the analysis of the solvability of the multiparameter eigenvalue problem (2.7).
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According to the definition (2.2) and the properties of the Kronecker product [13], we

represent the operators A
†
i, j

induced by Ai, j in (2.6) as

A
†
i, j
= I ⊗ · · · ⊗ I ⊗ Ai, j ⊗ I ⊗ · · · ⊗ I , i = 1,2, . . . , mn, j = 0,1, . . . , mn.

Besides, the operator-valued determinants of the system (2.7) are defined as follows:

T j = (−1) j det




A

†
1,0
· · · bA†

1, j
· · · A

†
1,mn

...
...

...

A
†
mn,0

· · · bA†
mn, j

· · · A†
mn,mn



 , j = 0,1, . . . , mn,

where bA†
i, j

means the omission of A
†
i, j

, i = 1,2, . . . , mn.

Since the coefficients of Ai,0, i = 1,2, . . . , mn in (2.7) are all equal to 1, the approach

of [3] and Theorem 2.1 lead to the following theorem.

Theorem 2.3. If the given eigenvalues λ1,λ2, · · · ,λmn are distinct, then the solutions of the

PPIEP coincide with the simultaneous eigenvalues of the following joint eigenvalue problem:

(T1 − c1T0)x = 0, (T2 − c2T0)x = 0, · · · , (Tmn − cmnT0)x = 0.

From Theorems 2.1 and 2.3, we can derive a sufficient condition for the solvability of

the PPIEP.

Theorem 2.4. If the given eigenvalues λ1,λ2, · · · ,λmn are distinct and T0 is invertible, then

the PPIEP has at least one solution.

Proof. The proof of this result is quite similar to that of [15, Theorem 2.4] and is omitted

here.

3. Newton Method Based on Smooth QR-Decomposition

We briefly recall some conclusions on the smooth QR-decomposition [17, 30], which

are helpful in our derivation. Let B(c) = (bst(c)) ∈ Cn×n be a twice continuously dif-

ferentiable matrix-valued function defined on an open connected domain D ⊆ Cl . The

twice differentiability of B(c) with respect to c = (c1, c2, · · · , cl)
T means that for any c(0) =

(c
(0)

1
, c
(0)

2
, · · · , c

(0)

l
)T ∈ D the partial derivatives ∂ bst(c)/∂ ci, s, t = 1, . . . , n, i = 1, . . . , l exist

and

B(c) = B(c(0)) +

l∑

i=1

∂ B(c(0))

∂ ci

�
ci − c

(0)

i

�
+ O

�
‖c − c(0)‖2

2

�
,

where
∂ B(c(0))

∂ ci

=

�
∂ bst(c)

∂ ci

����
c=c(0)

�
∈ Cn×n.

The following results are related to the existence of a locally smooth QR-decomposition

of B(c).
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Theorem 3.1 (cf. Xiang and Dai [38]). Let B(c) ∈ Cn×n be twice continuously differentiable

at c(0) ∈ D ⊆ Cl . Assume that rank(B(c(0))) ≥ n − 1, Π ∈ Cn×n is a permutation matrix

such that the first n−1 columns of B(c(0))Π are linearly independent, and B(c(0))Π has a QR-

decomposition

B(c(0))Π= Q0R0,

where Q0 ∈ Un,

R0 =

�
R11 R12

0 rnn

�
,

and R11 ∈ Rn−1 is a nonsingular matrix. Then there exists a neighborhood N (c(0)) ⊂ D of

c(0) such that for all c ∈ N (c(0)), the matrix-valued function B(c)Π has the QR-decomposition

B(c)Π = Q(c)R(c),

where Q(c) ∈ Un,

R(c) =

�
R11(c) R12(c)

0 rnn(c)

�
,

and R11(c) ∈ Rn−1. Moreover, this QR-decomposition has the following properties:

(1) Q(c(0)) = Q0 and R(c(0)) = R0.

(2) All elements of Q(c) and R(c) are continuous in N (c(0)).

(3) The diagonal elements of R(c) are continuously differentiable at c(0), and

rnn(c) = rnn+eT
n QH

0

l∑

i=1

∂ B(c)

∂ ci

����
c=c(0)

Π

�
en − I (n−1)R−1

11 R12

� �
ci − c

(0)

i

�
+O

�
‖c − c(0)‖22

�
.

Now we reformulate the PPIEP. Since {Aq(c)}
m−1
q=0 are the affine families (1.1) and all

λ1,λ2, · · · ,λmn are distinct, the functions

P(λi , c) = λm
i Am +

m−1∑

q=0

λ
q

i
Aq(c), i = 1,2, . . . , mn

are twice continuously differentiable in Cmn, and rank[P(λi, c
∗)] = n− 1, i = 1,2, . . . , mn.

It follows from Theorem 3.1 that there exists a neighborhood N (c∗) ⊂ Cmn of c∗ such that

for all c ∈ N (c∗) the matrix-valued functions P(λi, c)Π have QR-decompositions with the

column pivoting — i.e.

P(λi , c)Πi(c) = Q i(c)Ri(c), i = 1,2, . . . , mn,

where Πi(c) is a permutation matrix, Q i(c) ∈ Un,

Ri(c) =

�
R
(i)

11
(c) R

(i)

12
(c)

0 r(i)nn(c)

�
, R

(i)

11
(c) ∈ Rn−1.
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Assume that N (c∗) is sufficiently small, so that for each i the permutation matrices

Πi(c), i = 1,2, . . . , mn are constant. If the column pivoting is performed such that R
(i)
11
(c),

i = 1,2, . . . , mn are nonsingular and
��eT

1
Ri(c)e1

�� ≥
��eT

2
Ri(c)e2

�� ≥ · · · ≥
��eT

n
Ri(c)en

�� =
��r(i)

nn
(c)
�� , i = 1,2, . . . , mn,

then the polynomial eigenvalue problem [λm
i

Am +
∑m−1

q=0 λ
q

i
Aq(c)]x = 0 has distinct eigen-

values λ1,λ2, · · · ,λmn if and only if

r(i)nn(c) = 0, i = 1,2, . . . , mn.

Thus solving the PPIEP is equivalent to solving the nonlinear system (3.1) below.

Problem 3.1. Solve the nonlinear system

f (c) =





r(1)
nn
(c)

r(2)nn (c)
...

r(mn)
nn
(c)



= 0. (3.1)

Let c(k) ∈ N (c∗) represent the current iterate to the solution c∗ of the nonlinear sys-

tem (3.1). It follows from Theorem 3.1 that the functions r(i)
nn
(c), i = 1,2, . . . , mn are

continuously differentiable at c(k) and

r(i)
nn
(c) = r(i)

nn
(c(k)) +

mn∑

j=1

∂ r(i)nn(c
(k))

∂ c j

�
c j − c

(k)

j

�
+ O

�
‖c j − c

(k)

j
‖2

2

�
, j = 1,2, . . . , mn,

where

∂ r(i)nn(c
(k))

∂ c j

= eT
n Q i(c

(k))H

 
m−1∑

q=0

λ
q

i
A
(q)

j

!
Πi(c

(k))

×
h
en − I (n−1)

�
R
(i)

11
(c(k))

�−1
R
(i)

12
(c(k))

i
. (3.2)

According to (3.2), the Newton method [33] can be applied to the nonlinear system (3.1).

Note that each iteration has the form

J f (c
(k))(c(k+1) − c(k)) = − f (c(k)), (3.3)

where

J f (c) =

�
∂ r(i)nn(c)

∂ c j

�

is the Jacobian matrix of the nonlinear system (3.1).

Summarizing, we obtain Algorithm 3.1 for solving the PPIEP. As is shown in [12, Lem-

ma 4.1], the iterates c(k) generated by Algorithm 3.1 remain unchanged with different QR-

decompositions of P(λi , c(k))Πi(c
(k)), i = 1,2, . . . , mn. The convergence of Algorithm 3.1

can be described by Theorem 3.2.
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Algorithm 3.1 Newton Method Based on Smooth QR-Decomposition.

1: Input: Matrices Am, {A
(q)

j
}mn

j=0
, q = 0,1, . . . , m − 1, eigenvalues {λi}

mn
i=1

, and an initial

guess c(0).

2: Output: Computed solution c(k+1).

3: for k = 0,1,2, . . . until convergence do

4: Compute

P(λi, c(k)) = λm
i Am +

m−1∑

q=0

λ
q

i
Aq(c

(k)), i = 1,2, . . . , mn.

5: Compute QR-decomposition of P(λi, c(k)), i = 1,2, . . . , mn with column pivoting

P(λi , c(k))Πi(c
(k)) = Q i(c

(k))Ri(c
(k)), i = 1,2, . . . , mn,

where Πi(c
(k)) is a permutation matrix, Q i(c

(k)) ∈ Un,

Ri(c
(k)) =

�
R
(i)

11
(c(k)) R

(i)

12
(c(k))

0 r(i)nn(c
(k))

�
, R

(i)

11
(c(k)) ∈ Rn−1.

6: Form the vector f (c(k)) by Eq. (3.1).

7: if ‖ f (c(k))‖ is small enough then

8: Stop;

9: else

10: Form the Jacobian matrix J f (c
(k)) by Eq. (3.2).

11: end if

12: Compute c(k+1) by solving Eq. (3.3).

13: end for

Theorem 3.2. Let c∗ be a solution of the PPIEP and Πi(c
(k)) = Πi(c

∗), i = 1,2, . . . , mn

used in Algorithm 3.1 be independent of k for sufficiently small ‖c∗ − c(k)‖2. If the Jacobian

matrix J f (c
∗) corresponding to the QR-decompositions of (λm

i
Am +

∑m−1

q=0 λ
q

i
Aq(c

(k)))Πi(c
∗),

i = 1,2, . . . , mn is nonsingular, then the sequence {c(k)} generated by Algorithm 3.1 converges

locally quadratically to c∗.

Proof. It is similar to that of [12, Theorem 4.1] and is omitted here.

4. Newton and Newton-like Methods Based on Smallest Singular Value

In light of the properties of the smallest singular value, we develop two additional

approaches for solving the PPIEP. Let σ(i)n (c) = σmin(P(λi , c)) be the smallest singular value

of the polynomial pencil

P(λi , c) = λm
i Am +

m−1∑

q=0

λ
q

i
Aq(c).
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Since {Aq(c)}
m−1
q=0

are affine families (1.1), P(λi , c) is an analytic matrix-valued function

of c ∈ Rmn. If {λi}
mn
i=1

are given distinct eigenvalues and c∗ is a solution of the PPIEP, the

smallest singular value σ(i)
n
(c∗) of P(λi , c∗) is simple. Thus, the polynomial pencil P(λi , c)

has the eigenvalues {λi}
mn
i=1

if and only if

σ(i)n (c) = 0, i = 1,2, . . . , mn.

Accordingly, in some neighborhood of c∗, we can reformulate the PPIEP as follows.

Problem 4.1. Solve the nonlinear system

g(c) =





σ(1)n (c)

σ(2)n (c)
...

σ(mn)
n (c)



 = 0. (4.1)

In order to apply the Newton method to the nonlinear system (4.1), we use Sun’s The-

orem [37] to calculate the partial derivatives of g(c) with respect to c1, c2, · · · , cmn.

Theorem 4.1 (cf. Sun [37]). Let p = (p1, p2, · · · , pl)
T ∈ Rl and E(p) ∈ Cm×n. Suppose that

Re[E(p)] and Im[E(p)] are real analytic matrix-valued functions of p in some neighborhood

N (p(0)) ⊆ Rl of p(0). If σ is a simple non-zero singular value of E(p(0)), u ∈ Cm and v ∈ Cn

are associated unit left and right singular vectors, respectively, then:

(1) There is a simple singular value σ(p) of E(p) which is a real analytic function of p in

some neighborhood N1(p
(0)) of p(0), and

σ(p(0)) = σ,
∂ σ(p(0))

∂ p j

= Re

�
uH ∂ E(p(0))

∂ p j

v

�
,

where
∂ σ(p(0))

∂ p j

=
∂ σ(p)

∂ p j

����
p=p(0)

,
∂ E(p(0))

∂ p j

=
∂ E(p)

∂ p j

����
p=p(0)

.

(2) The unit left singular vector u(p) and the unit right singular vector v(p) of E(p) corre-

sponding to σ(p) may be defined so that Re[u(p)], Im[u(p)],Re[v(p)], and Im[v(p)]

are real analytic functions of p in N1(p
(0)), and u(p(0)) = u, v(p(0)) = v.

Assume that the current iterate c(k) ∈ Rmn is sufficiently close to the solution c∗ ∈

Rmn of the nonlinear system (4.1). Theorem 4.1 states that if the smallest singular value

σ(i)n (c
(k)) 6= 0 of P(λi , c(k)), then there exists a neighborhoodN (c(k)) ⊆ Rmn of c∗ such that

σ(i)n (c) is analytic and

∂ σ(i)n (c
(k))

∂ c j

= Re

�
u(i)

n
(c(k))H

∂ P(λi , c(k))

∂ c j

v(i)
n
(c(k))

�

= Re



u(i)
n
(c(k))H

 
m−1∑

q=0

λ
q

i
A
(q)

j

!
v(i)

n
(c(k))



 , i, j = 1,2, . . . , mn, (4.2)
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where u(i)n (c
(k)) and v(i)n (c

(k)) are the unit left and right singular vectors associated with

σ(i)
n
(c(k)), respectively. Thus the Jacobian matrix of g(c) is

Jg(c) =

�
∂ σ(i)n (c)

∂ c j

�
,

and the step of the Newton method is defined as

Jg(c
(k))(c(k+1) − c(k)) = −g(c(k)). (4.3)

Consequently, the Newton method for solving the PPIEP has the form.

Algorithm 4.1 Newton Method Based on the Smallest Singular Value.

1: Input: Matrices Am, {A
(q)

j
}mn

q=0
, q = 0,1, . . . , m − 1, given eigenvalues {λi}

mn
i=1

, and an

initial guess c(0).

2: Output: Computed solution c(k+1).

3: for k = 0,1,2, . . . until convergence do

4: Compute

P(λi, c(k)) = λm
i Am +

m−1∑

q=0

λ
q

i
Aq(c

(k)), i = 1,2, . . . , mn.

5: Compute the smallest singular values σ(i)n (c
(k)) and the corresponding unit left and

right singular vectors u(i)n (c
(k)) and v(i)n (c

(k)) of P(λi, c(k)), i = 1,2, . . . , mn.

6: Form the vector g(c(k)) by Eq. (4.1).

7: if ‖g(c(k))‖ is small enough then

8: Stop;

9: else

10: Form the Jacobian matrix Jg(c
(k)) by Eq. (4.2).

11: end if

12: Compute c(k+1) by solving linear system Eq. (4.3).

13: end for

It follows from Theorem 4.1 that the smallest singular values {σ(i)n (c)}
mn
i=1

of {P(λi , c)}mn
i=1

near c = c∗ are smooth dependent. Combined with the assumption that the Jacobian ma-

trix of g(c) at c = c∗ is non-singular, the results of [33] can be employed to investigate the

convergence of Algorithm 4.1.

Theorem 4.2. Let the given eigenvalues {λi}
mn
i=1

be distinct and c∗ be a solution of the PPIEP. If

the Jacobian matrix Jg(c
∗) corresponding to g(c) is nonsingular, then there exists a neighbor-

hoodN (c∗) of c∗ such that for all c(0) ∈ N (c∗), Algorithm 4.1 is locally quadratic convergent.

Proof. We can immediately obtain the result by applying the well-known theorem con-

cerning the convergence of Newton method in [33].



On the Parameterized Polynomial Inverse Eigenvalue Problem 197

In each iteration of Algorithm 4.1, Step 5 involves the computation of mn smallest

singular values and the corresponding unit left and right singular vectors by singular value

decomposition. This process is time-consuming, as it requires 21mn4 flops [25]. In order

to reduce the computational cost, we propose the utilization of one step of inverse iteration

to approximate the smallest singular values and the associated unit left and right singular

vectors of P(λi , c(k)).

Let σ
(k)

i
and u

(k)

i
, v
(k)

i
be approximations of the smallest singular value σ(i)

n
(c(k)) and

the associated unit left, right singular vectors u(i)n (c
(k)), v(i)n (c

(k)) of P(λi , c(k)), respectively.

We update these approximations by one step of inverse iteration — i.e.

P(λi , c(k))w = u
(k−1)

i
, (4.4)

v
(k)

i
= w/‖w‖, (4.5)

P(λi , c(k))H y = v
(k)

i
, (4.6)

σ
(k)

i
= 1/‖y‖, (4.7)

u
(k)

i
= σ

(k)

i
y, (4.8)

where u
(0)

i
is an initial guess.

The approximate computational cost of (4.4)-(4.8) is (2/3)n3 flops. This means that

the application of one step of inverse iteration can significantly reduce the computation

cost (21mn4 flops) of Step 5 in Algorithm 4.1. In particular, each iteration can reduce

it by (61/3)mn4 flops. Similar to [39], we choose the unit left singular vector u(i)
n
(c(0))

associated with the smallest singular value σ(i)n (c
(0)) of P(λi, c(0)) as our initial guess u

(0)

i
.

Let

gk =
�
σ
(k)

1
,σ
(k)

2
, · · · ,σ(k)mn

�T
, (4.9)

and

[Jk]i j = Re




�
u
(k)

i

�H

 
m−1∑

q=0

λ
q

i
A
(q)

j

!
v
(k)

i



 . (4.10)

In order to obtain a new estimate c(k+1), we solve the equation

Jk(c
(k+1) − c(k)) = −gk. (4.11)

Accordingly, the Newton-like method for solving the PPIEP has the form.

Algorithm 4.2 Newton-Like Method Based on the Smallest Singular Value.

1: Input: Matrices Am, {A
(q)

j
}mn

q=0 ∈ Rn×n, q = 0,1, . . . , m−1, given eigenvalues {λi}
mn
i=1
∈ C,

and an initial guess c(0) ∈ Cmn.

2: Output: Computed solution c(k+1).

3: if k = 0 then
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4: Implement Algorithm 4.1 once to obtain c(1), and set

σ
(0)

i
= σ(i)n (c

(0)), u
(0)

i
= u(i)n (c

(0)), v
(0)

i
= v(i)n (c

(0)), i = 1,2, . . . , mn.

5: end if

6: for k = 1,2, . . . until convergence do

7: Compute approximate smallest singular values σ
(k)

i
and the corresponding unit left

and right singular vectors u
(k)

i
and v

(k)

i
of P(λi, c(k)), i = 1,2, . . . , mn by the inverse

iteration (4.4)-(4.8).

8: Form the vector gk by Eq. (4.9).

9: if ‖gk‖ is small enough then

10: Stop;

11: else

12: Form the Jacobian matrix Jk by Eq. (4.10).

13: end if

14: Compute c(k+1) by solving linear system (4.11).

15: end for

The convergence of Algorithm 4.2 is elucidated by the subsequent theorem.

Theorem 4.3. Let the given eigenvalues {λi}
mn
i=1

be distinct and c∗ ∈ Rmn be a solution of the

PPIEP. If the Jacobian matrix J(c∗) is nonsingular, then Algorithm 4.2 generates a well-defined

sequence {c(k)} for which c(k)→ c∗, and the convergence is locally quadratic.

Proof. The proof is similar to [39, Theorem 3.2] and is omitted here.

5. Numerical Experiments

We present several numerical experiments to illustrate the effectiveness of the proposed

methods for solving the PPIEP. An initial guess c(0) ∈ Cmn can be randomly generated or

directly selected based on practical applications or desired solutions. To demonstrate the

locally quadratic convergence after a limited number of iterations, we select initial approx-

imations that are in close proximity to the exact solution c∗ of the PPIEP.

The stop criteria of Algorithms 3.1, 4.1, 4.2 are

‖ f (c(k))‖ ≤ 10−6, ‖g(c(k))‖ ≤ 10−6, ‖g(k)‖ ≤ 10−6,

where ‖ f (c(k))‖, ‖g(c(k))‖ and ‖g(k)‖ are defined as in (3.1), (4.1) and (4.9). In the tables,

CPU denotes the CPU time (in seconds) for computing an approximate solution for the

PPIEP.

We perform the tests in MATLAB R2016b with double precision arithmetic on an Intel

Core 2.9 GHz PC with 8GB memory under Windows 10 system.
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Example 5.1. The numerical solution of vibration problems by the dynamic element me-

thod leads to cubic eigenvalue problems [32]

λ3F3 +λ
2F2 +λF1 + F0 = 0,

where F T
i
= Fi , i = 0,1,2,3. Thus we construct a symmetric parameterized cubic inverse

eigenvalue problem

λ3A3 +λ
2A2(c) +λA1(c) + A0(c) = 0,

where Aq(c) =
∑9

j=1 c jA
(q)

j
, q = 0,1,2 and A3, {A

(q)

j
}9

j=1
∈ Rn×n are symmetric matrices.

Let m= 3, n= 3,

A3 =




5 2 1

2 7 5

1 5 6



 , A
(0)

0
=




4 2 5

2 8 3

5 3 2



 ,

A
(1)
0
=




4 3 3

3 2 4

3 4 2



 , A
(2)
0
=




4 3 7

3 8 4

7 4 4



 ,

A
(0)

1
= A

(1)
4 = A

(2)
7 =




1 0 0

0 1 0

0 0 1



 ,

A
(0)

2
= A

(1)
5 = A

(2)

8
=




0 1 0

1 0 1

0 1 0



 ,

A
(0)

3
= A

(1)

6
= A

(2)

9
=




0 0 1

0 0 0

1 0 0



 ,

and the remaining matrices be zero matrices. The given eigenvalues are −3.4,−1.4,1.3,

−0.2± 0.6i,±1.0i, 0.3± 1.0i, where i2 = −1. With the starting value

c(0) = (1,1,1,1,1,1,1,1,1,1)T ,

the sequences {c(k)} generated by Algorithms 3.1, 4.1 and 4.2 converge to the exact solution

c∗ = (1.7631,0.2767,1.6279,0.3296,0.1041,0.2119,0.2843,0.3467,0.5191)T.

The numerical results presented in Table 1 show that for symmetric PPIEP, all three methods

are effective and locally quadratic convergent.

Example 5.2. Consider now a parameterized cubic inverse eigenvalue problem with non-

symmetric matrices. Let m = 3, n= 3,

A3 =




1 1 2

1 2 0

3 2 3



 , A
(0)

1
=




2 0 0

0 1 0

0 0 1



 ,
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A
(0)
2
=




0 1 0

0 0 1

0 0 0



 , A
(0)
3
=




0 0 1

0 0 0

1 0 0



 ,

A
(1)
4 =




1 0 0

0 0 0

0 0 2



 , A
(1)
5 =




0 1 0

0 0 2

0 1 0



 , A
(1)

6
=




0 0 1

0 0 0

2 0 0



 ,

A
(2)
7 =




1 0 0

0 1 0

0 0 1



 , A
(2)

8
=




0 0 0

2 0 1

0 2 0



 , A
(2)

9
=




0 0 2

0 0 0

0 0 0



 ,

and remaining matrices be zero matrices. The target eigenvalues are 0.7643,−0.5370,

−1.2278,1.3867± 0.3248i,−0.0046± 0.9147i,−0.5818± 0.3594i. We choose the initial

guess as

c(0) = (1.2,1.2,1.2,1.1,1.3,1.4,1.4,1.3,1.1)T .

Applying Algorithms 3.1, 4.1 and 4.2, we obtain exact solution

c∗ = (1,1,1,1,1,1,1,1,1)T .

Numerical results are displayed in Table 2. It is clear that the proposed methods exhibit

effectiveness in handling the asymmetric PPIEP, while also preserving the locally quadratic

convergence.

Table 1: Convergence of algorithms for symmetric PPIEP.

Iteration Algorithm 3.1 Algorithm 4.1 Algorithm 4.2

k ‖c(k) − c∗‖ ‖ f (c(k))‖ ‖c(k) − c∗‖ ‖g(c(k))‖ ‖c(k) − c∗‖ ‖gk‖

0 2.13e-00 5.38e-00 2.13e-00 4.48e-00 2.13e-00 4.48e-00

1 7.06e-01 1.14e-00 8.38e-01 1.73e-00 8.38e-01 1.76e-00

2 5.09e-02 1.25e-01 9.17e-02 1.77e-01 4.14e-02 9.63e-02

3 4.25e-04 7.47e-04 4.70e-04 9.81e-04 9.86e-05 2.03e-04

4 2.33e-08 3.37e-08 3.93e-08 4.31e-08 1.83e-08 2.15e-09

CPU 0.0471 0.0363 0.0272

Table 2: Convergence of algorithms for non-symmetric PPIEP.

Iteration Algorithm 3.1 Algorithm 4.1 Algorithm 4.2

k ‖c(k) − c∗‖ ‖ f (c(k))‖ ‖c(k) − c∗‖ ‖g(c(k))‖ ‖c(k) − c∗‖ ‖gk‖

0 8.00e-01 1.76e-00 8.01e-00 1.39e-00 8.01e-00 1.39e-00

1 2.44e-01 2.33e-01 1.46e-01 1.19e-01 1.46e-01 1.19e-01

2 4.16e-02 4.02e-02 5.57e-03 6.89e-03 5.69e-03 7.08e-03

3 1.14e-03 1.06e-03 1.73e-05 1.41e-05 2.50e-05 1.63e-05

4 8.16e-07 7.64e-07 2.11e-10 8.61e-11 3.91e-10 1.80e-10

CPU(s) 0.0481 0.0319 0.0278
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Example 5.3. Consider various high-order PPIEPs. Matrices Am, Aq = (a
(q)
st ) ∈ Rn×n, q =

0,1, . . . , m − 1 are randomly generated by the MATLAB function rand, whose elements

uniformly distributed over [−1.0,1.0]. Let

A
(q)

qn+ j
= a

(q)

j j
e je

T
j +

n∑

i= j+1

�
a
(q)

ji
e je

T
i + a

(q)

i j
eie

T
j

�
,

A
(q)
qn+n = a(q)nn eneT

n , q = 0,1, . . . , m− 1, j = 1,2, . . . , n− 1,

and remaining matrices be zero matrices. We first compute the eigenvalues λ1,λ2, · · · ,λmn

of the polynomial eigenvalue problem

 
λmAm +

m−1∑

q=0

λqAq(c)

!
x = 0

at c∗ = (1,1, · · · , 1) ∈ Rmn, and then recompute the exact solution c∗ of the PPIEP by using

calculated eigenvalues λ1,λ2, · · · ,λmn. The initial value c(0) is obtained by perturbing c∗

c(0) = c∗ +µrc,

where µ = 0.01 is the disturbance parameter, rc ∈ Rmn is a vector whose elements are

generated randomly and distributed uniformly within [−1.0,1.0].

We implement Algorithms 3.1, 4.1 and 4.2 and provide the numerical results in Table 3.

In the table, ‘Its’ represents the number of iterations, while ‖c(I ts) − c∗‖ denotes the final

residual norm. Table 3 shows that Algorithm 3.1 requires the least iteration steps and CPU

time.

For the sake of brevity, we take n = 100, m = 4,5,6,7 as examples and use Fig. 1 to

show the locally quadratic convergence of the proposed methods for high-order PPIEPs.

From Fig. 1, it easy to see that Algorithms 3.1, 4.1 and 4.2 still have locally quadratic

convergence.

Table 3: Numerical results for high-order PPIEPs.

Order Algorithm 3.1 Algorithm 4.1 Algorithm 4.2

m n Its CPU ‖c(I ts) − c∗‖ Its CPU ‖c(I ts) − c∗‖ Its CPU ‖c(I ts) − c∗‖

4
50 4 22.04 1.63e-10 3 11.32 5.91e-07 3 10.49 5.91e-07

100 5 369.31 2.53e-10 4 208.01 3.87e-08 4 198.79 3.87e-08

5
50 5 48.50 1.20e-08 4 28.64 2.31e-06 4 26.98 2.31e-06

100 6 839.72 4.59e-12 4 421.63 1.10e-07 4 408.62 1.10e-07

6
50 5 76.15 3.51e-07 5 59.01 4.04e-07 5 55.43 4.01e-07

100 6 1368.86 1.12e-07 5 901.42 2.22e-06 5 869.01 2.16e-06

7
50 6 151.91 6.82e-12 5 95.84 1.38e-08 5 87.32 1.39e-08

100 8 3380.79 1.43e-11 5 1638.90 1.45e-11 5 1418.65 1.35e-11
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Figure 1: Convergence of the proposed methods for high-order PPIEPs.

6. Conclusion

This study focuses on two key aspects of PPIEPs — viz. the solvability and computability.

Using the theory of multiparameter eigenvalue problem, we propose a sufficient condition

for the existence of a solution to the PPIEP. In order to solve PPIEP, we propose the Newton

method based on the smooth QR-decomposition with column pivoting, and the Newton and

Newton-like methods based on the smallest singular values. If the given eigenvalues are dis-

tinct, the PPIEP has a solution c∗, the Jacobian matrix J(c∗) is nonsingular, and all methods

are locally quadratic convergent. Numerical results demonstrate that our proposed numer-

ical methods work well for solving the PPIEP. In addition to the algorithms proposed in this

paper, the Newton method based on the smooth LU-decomposition with complete pivoting

proposed and analyzed in [15] can also be extended to solve both symmetric and asym-

metric PPIEP. However, it is computationally expensive to compute mn LU-decompositions

with complete pivoting in each iteration, see [14] for more details. This leads to lower ef-

ficiency of the algorithm based on smooth LU-decomposition compared to the algorithms

proposed in this paper. Through a substantial number of experiments, we found that the

computational cost of these methods are dominated by the process of constructing the Ja-

cobian matrix during each iteration. The efficiency can be improved through the utilization

of the quasi-Newton method. Furthermore, our methods may be extended to solve the pa-

rameterized polynomial inverse eigenvalue problems of analytical matrix-valued functions

{Aq(c)}
m
q=0

that depend on the parameter c ∈ Rmn or c ∈ Cmn.
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