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Abstract. This paper is devoted to numerical simulation of time domain inverse acoustic

scattering problems with a point-like scatterer, multiple point-like scatterers or normal

size scatterers. Using Green’s functions and time convolution, we propose direct sam-

pling methods to reconstruct the location of the scatterer. The methods involve only

integral calculus without solving any equations and are easy to implement. Numerical

experiments show the effectiveness and robustness of the methods.
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1. Introduction

The inverse scattering problems are widely used in geophysical exploration, sonar de-

tection, non-destructive testing and medical imaging [12, 27, 31]. In the past decades,

frequency domain analysis is one of the main topics in the inverse acoustic scattering stud-

ies [2, 3, 19, 23]. Nevertheless, since in practical applications the dynamic scattered data

is easier to obtain, the time domain inverse scattering attracted attention of numerous re-

searchers lately [6,25].

This paper deals with a simple direct sampling method for inverse scattering problems

in the time domain. Sampling methods play an important role in solving inverse prob-

lems. Various sampling methods, such as the linear sampling method [9, 11, 22], the di-

rect sampling method [17], the reverse time migration method [10] and the factorization

method [18], have been studied in the past decades. The basic idea of the direct sampling

methods is to construct indicator functions that have different performances inside and

outside the area of the scatterer. Compared to the iterative methods, sampling methods do

not require a priori information of the geometry and physical properties of unknown target

and can be easily implemented.
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For frequency domain inverse scattering problems, the linear sampling method was first

proposed by Colton and Kirsch [11]. A multilevel linear sampling method and its enhance-

ment are proposed in [21] and [20], respectively. Based on the far field operator and the far

field pattern of the scattered field, a direct sampling method to reconstruct the scatterers

in the frequency domain is proposed in [24]. In [5, 30], simultaneous reconstructions of

an obstacle and its excitation sources in frequency domain are considered.

For time domain inverse scattering problems, the efficiency of the linear sampling me-

thod was shown by Chen et al. [9]. In [7, 29], the linear sampling method is used to

solve the time domain inverse scattering problems in a locally perturbed half-plane and the

time domain inverse scattering problems with cracks, respectively. The time domain lin-

ear sampling method is also considered to reconstruct an obstacle with Robin or Neumann

boundary condition from near field measurements [16] and reconstruct penetrable obsta-

cles [15]. Based on the migration method, effective sampling schemes to reconstruct small

and extended scatterers from knowledge of time-dependent scattered data are proposed

in [14].

The reconstruction of point-like scatterers has been studied by image-based direct meth-

ods in [17]. Note that the Green’s function plays an important role in the analysis of the

inverse problems of mathematical physics — cf. Refs. [4,6,13,26]. In [8], the approxima-

tions of the solution to the forward scattering problem are analyzed by utilizing the Green’s

function and the retarded single-layer potential, and an indicator function based on an ap-

proximate solution is defined to reconstruct the location of a single point-like scatterer.

Unfortunately, the proposed method in [8] is not effective to reconstruct multiple point-

like scatterers or normal size scatterers. In this paper, a novel direct sampling method is

proposed to reconstruct point-like scatterer based on the approximate solution to the for-

ward scattering problem and the application of the time convolution. Moreover, modified

methods are defined, which are feasible to reconstruct a single point-like scatterer, multiple

point-like scatterers and normal size scatterers.

The rest of the paper is organized as follows. A brief introduction of forward and inverse

scattering problems under consideration is given in Section 2. In Section 3, a novel direct

sampling method is proposed and the theoretical analysis of the method for reconstructing

a point-like scatterer is provided. Moreover, two modified methods are also considered

in this section. Numerical examples in two and three dimensional spaces presented in

Section 4, show the effectiveness and robustness of the methods. Finally, the paper is

concluded in Section 5.

2. Problem Setting

Let the scatterer is located in a bounded region D ∈ R3 and c > 0 be the sound speed of

the homogeneous background medium in R3\D. The Green’s function of the D’Alembert

operator c−2∂t t −∆ is

G(x , t; y) =
δ(t − c−1|x − y|)

4π|x − y| , x , y ∈ R3, x 6= y, t ∈ R,

where ∆ is the Laplacian in R3 and δ(t) is the Dirac delta distribution.
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Let λ(t) be a casual signal function. The casuality means that λ(t) = 0 for t < 0.

Assume that y represents the source point such that {y} ∩ D = ∅. Then the incident field

ui due to y is given by

ui(x , t; y) = G(x , t; y) ∗λ(t), x ∈ R3 \ {y}, t ∈ R,

where

G(x , t; y) ∗ λ(t) = λ(t − c−1|x − y|)
4π|x − y| (2.1)

is the time convolution of the Green’s and signal functions. The time convolution (2.1)

is an invaluable tool for the analysis of time domain scattering problems, which has been

utilized to solve the forward scattering problem [25], reconstruct stationary point sources

and a moving point source [6] and reconstruct a point-like scatterer [8].

For the analysis of the scattering problem, the total field utot is usually divided into an

incident field ui and a scattered field u, i.e. utot = ui + u. The forward scattering problem

for the impenetrable sound-soft obstacle D is to find a scattered field u, which satisfies the

homogeneous wave equation with Dirichlet boundary condition and homogeneous initial

conditions

c−2∂t tu(x , t)−∆u(x , t) = 0, x ∈ R3 \ D, t ∈ R, (2.2)

u(x , t) = −ui(x , t), x ∈ ∂ D, t ∈ R, (2.3)

u(x , 0) = 0, x ∈ R3 \ D, (2.4)

∂tu(x , 0) = 0, x ∈ R3 \ D. (2.5)

Note that since λ(t) is a casual function, the incident field ui and the scattered field

u vanish for t < 0. Then the homogeneous initial conditions (2.4) and (2.5) are direct

conclusions of the causality. The forward scattering problem (2.2)-(2.5) can be solved uti-

lizing classical methods such as the retarded potential boundary integral equation method

— cf. [1,25] for more details.

Assume that the region B contains D. The incident surface Γi and the measurement

surface Γm where the source points and the measurement points are respectively located,

are chosen as Γi = Γm = ∂ B. Here we consider the following inverse scattering problem:

Determine the location and the shape of an unknown target D from the partial knowledge

{u(x , t; y) : x ∈ Γm, t ∈ R, y ∈ Γi} of scattered waves.

A special case of the scatterer is the point-like scatterer. For time-harmonic scattering

problems with a certain wavelength, a scatterer is called point-like, if its diameter is far

smaller than the wavelength. However, for time-dependent scattering problems, the wave-

length is not fixed and we need the definition of the center wavelength. In the time domain,

the signal function is often chosen as a Gaussian-modulated sinusoidal pulse — i.e.

λ(t) = sin(ωt)e−σ(t−t0)
2

,

where ω > 0 is the center frequency, σ > 0 is the frequency bandwidth parameter and

t0 is the time-shift parameter. The center wavelength is 2πc/ω and a scatterer is called

point-like if its diameter is far smaller than the center wavelength.
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3. Direct Sampling Methods

In this section, several indicator functions are defined on the basis of the analysis of

the Green’s function and the scattering problem with a point-like scatterer. Direct sampling

methods can be established based on the indicator functions.

3.1. A direct sampling method

An approximate solution of the forward scattering problem with a point-like scatterer

based on the analysis of the Green’s function has been presented in [8].

Lemma 3.1 (cf. B. Chen & Y. Sun [8]). Assume that u(x , t; y) is the solution to the scattering

problem (2.2)-(2.5) with a point-like scatterer D, the incident point y and the nontrivial signal

function λ(t). The incident surface Γi and the measurement surface Γm satisfy Γi = Γm = ∂ B,

where ∂ B is the boundary of the region B which contains D. The diameter of the scatterer

D satisfies diam(D) = ǫ(x)minx ′∈∂ D |x − x ′| for arbitrary x ∈ Γm, in which 0 < ǫ(x)≪ 1.

Denote by y0 the geometric center of the point-like scatterer. Then we have

u(x , t; y) = CUy0
(x , t; y) + O

�

ǫ′(x ; y)
�

, x ∈ Γm, t ∈ R, y ∈ Γi,
where C is a constant, which depends only on x ′ and D, ǫ′(x ; y) =max{ǫ(x),ǫ(y)}, and Uy0

is defined by

Uy0
(x , t; y) = −λ(t − c−1|x − y0| − c−1|y − y0|)

4π|x − y0||y − y0|
.

Choose a sampling domain Ω such that Ω ∩ Γm = ∅ and D ⊂ Ω. Divide the sampling

region into the sampling grid with the sampling points z ∈ Ω as the grid points. Let u(x , t; y)

be the solution to the forward scattering problem (2.2)-(2.5) with the incident point y.

Using Lemma 3.1, we define the indicator function

I1(z) =










∫

Γm
(u ∗ Uz) (x , t; y)dsx










2

L2(R×Γi)









∫

Γm
(u ∗ u) (x , t; y)dsx










L2(R×Γi)










∫

Γm
(Uz ∗ Uz) (x , t; y)dsx










L2(R×Γi)

, z ∈ Ω, (3.1)

where (u ∗ Uz)(x , t; y) denotes the time convolution of u(x , t; y) and Uz(x , t; y) and

‖ϕ(t; y)‖L2(R×Γi) :=

�
∫

Γi

∫

R

|ϕ(t; y)|2dtdsy

�1/2

.

For the reconstruction of a single point-like scatterer utilizing the indicator function

I1(z), we expect that I1(z) reaches the maximum when the sampling point z coincides with

the position of the point-like scatterer. For analysis, we need another indicator function —

viz.

I
′

1
(z) =










∫

Γm
(u ∗ uz) (x , t; y)dsx










2

L2(R×Γi)









∫

Γm
(u ∗ u) (x , t; y)dsx










L2(R×Γi)










∫

Γm
(uz ∗ uz) (x , t; y)dsx










L2(R×Γi)

, z ∈ Ω, (3.2)
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where uz(x , t; y) is the solution of the scattering problem (2.2)-(2.5) when the point-like

scatterer is located at D
′
= {x ∈ R3 | x − z + y0 ∈ D}.

Theorem 3.1. Assume that u(x , t; y) is the solution to the scattering problem (2.2)-(2.5) with

a point-like scatterer D, the incident point y and the nontrivial signal function λ(t). Denote

by y0 the geometric center of D. The incident surface Γi and the measurement surface Γm satisfy

Γi = Γm = ∂ B, where ∂ B is the boundary of the region B which contains D in it. The diameter

of the scatterer D satisfies diam(D) = ǫ(x)minx ′∈∂ D |x − x ′| for arbitrary x ∈ Γm, in which

0 < ǫ(x) ≪ 1. Denote by Ω the sampling region that contains D in it and assume that the

distance betweenΩ and Γm satisfies dist(Ω, Γm)> diam(D). For a point z ∈ Ω, let uz(x , t; y) be

the solution to (2.2)-(2.5) with a point-like scatterer located at D
′
= {x ∈ R3|x−z+ y0 ∈ D}.

The indicator function I
′
1(z) defined by (3.2) satisfies

I
′
1(z) < 1, z 6= y0,

I
′
1(z) = 1, z = y0.

The indicator function I1(z) defined by (3.1) satisfies

I1(z) = I
′

1(z) + O (ǫ),

where 0< ǫ≪ 1.

Proof. Denote by F [ϕ](x ,ω; y) the Fourier transform of ϕ(x , t; y) on the time vari-

able t. According to the convolution theorem, the Plancherel theorem and the Cauchy-

Schwarz inequality, we have

I
′

1(z) =








F
�
∫

Γm
(u ∗ uz)dsx

�

(ω; y)










2

L2(R×Γi)







F
�
∫

Γm
(u ∗ u)dsx

�

(ω; y)










L2(R×Γi)








F
�
∫

Γm
(uz ∗ uz)dsx

�

(ω; y)










L2(R×Γi)

=










∫

Γm
F [u] (x ,ω; y)F [uz] (x ,ω; y)dsx










2

L2(R×Γi)









∫

Γm
(F [u] (x ,ω; y))2 dsx










L2(R×Γi)










∫

Γm
(F [uz] (x ,ω; y))2 dsx










L2(R×Γi)

≤













�
∫

Γm
(F [u] (x ,ω; y))2 dsx

�1/2 �∫

Γm
(F [uz] (x ,ω; y))2 dsx

�1/2












2

L2(R×Γi)









∫

Γm
(F [u] (x ,ω; y))2 dsx










L2(R×Γi)










∫

Γm
(F [uz] (x ,ω; y))2 dsx










L2(R×Γi)

≤ 1.

Noticing that uy0
(x , t; y) = u(x , t; y), we have

I
′

1
(y0) =










∫

Γm
(u ∗ uy0

)(x , t; y)dsx










2

L2(R×Γi)









∫

Γm
(u ∗ u) (x , t; y)dsx










L2(R×Γi)










∫

Γm
(uy0
∗ uy0

)(x , t; y)dsx










L2(R×Γi)

= 1.
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Moreover, combining with the uniqueness of the solution to the scattering problem — cf. [9,

Theorem 4], we have

I
′

1
(z) < 1, z 6= y0,

I
′

1(z) = 1, z = y0.

Note that diam(D
′
) = diam(D) and Lemma 3.1 imply

uz(x , t; y) = CUz(x , t; y) + O
�

ǫ′(x ; y)
�

.

Define ǫ = supx∈Γm,y∈Γi ǫ
′(x ; y). Then we have 0< ǫ≪ 1 and uz = CUz +O (ǫ). Moreover,

a direct computation yields

I
′

1(z) =










∫

Γm
(u ∗ uz) (x , t; y)dsx










2

L2(R×Γi)









∫

Γm
(u ∗ u) (x , t; y)dsx










L2(R×Γi)










∫

Γm
(uz ∗ uz) (x , t; y)dsx










L2(R×Γi)

=










∫

Γm
(u ∗ (CUz + O (ǫ))) (x , t; y)dsx










2

L2(R×Γi)









∫

Γm
(u ∗ u) (x , t; y)dsx










L2(R×Γi)

× 1









∫

Γm
((CUz + O (ǫ)) ∗ (CUz + O (ǫ))) (x , t; y)dsx










L2(R×Γi)

=

C2









∫

Γm
(u ∗ Uz) (x , t; y)dsx










2

L2(R×Γi)
+ O (ǫ)










∫

Γm
(u ∗ u)(x , t; y)dsx










L2(R×Γi)

�

C2










∫

Γm
(Uz ∗ Uz) (x , t; y)dsx










L2(R×Γi)
+ O (ǫ)

�

=










∫

Γm
(u ∗ Uz) (x , t; y)dsx










2

L2(R×Γi)









∫

Γm
(u ∗ u)(x , t; y)dsx










L2(R×Γi)

�









∫

Γm
(Uz ∗ Uz) (x , t; y)dsx










L2(R×Γi)

� + O (ǫ)

= I1(z) + O (ǫ).

This completes the proof.

According to Theorem 3.1, we can derive that the indicator function I
′
1(z) reaches its

global maximum if and only if z = y0, and I1(z) is an approximation of I
′
1(z). Then we

can say that, approximately, I1(z) reaches its global maximum if and only if z = y0. Thus,

we can get the approximate location of the point-like scatterer by drawing the image of

I1(z). The algorithm can be summarized as Algorithm 3.1. The feasibility of the algorithm

to reconstruct a point-like scatterer is verified by the numerical experiments in the next

section.
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Algorithm 3.1 The Reconstruction Scheme Using the Indicator Function I1(z).

Step 1. Choose the scatterer D, the signal function λ(t), the incident surface Γi and

the measurement surface Γm = Γi . Select the sensing points x i ∈ Γm, i = 1, . . . , Nm, the

equidistant time nodes tk ∈ [0, T ], k = 0, . . . , Nt and the source points y j ∈ Γi, j =

1, . . . , Ni. Collect the scattered data on Γm: u(x i , tk; y j), i = 1, . . . , Nm, k = 0, . . . , Nt ,

j = 1, . . . , Ni.

Step 2. Choose a cubic sampling domain Ω such that D ⊂ Ω, Ω∩ Γm = ∅. Divide Ω into

equidistant sampling grid, for any sampling point z ∈ Ω, compute

Nu,Uz
(z) =

 

Ni
∑

j=1

Nt
∑

k=0

�

�

�

�

�

Nm
∑

i=1

k
∑

l=0

u(x i , tk−l; y j)Uz(x i, t l ; y j)∆t∆sxi

�

�

�

�

�

2

∆t∆sy j

!1/2

,

Nu,u(z) =

 

Ni
∑

j=1

Nt
∑

k=0

�

�

�

�

�

Nm
∑

i=1

k
∑

l=0

u(x i, tk−l ; y j)u(x i , t l ; y j)∆t∆sxi

�

�

�

�

�

2

∆t∆sy j

!1/2

,

NUz ,Uz
(z) =

 

Ni
∑

j=1

Nt
∑

k=0

�

�

�

�

�

Nm
∑

i=1

k
∑

l=0

Uz(x i, tk−l ; y j)Uz(x i, t l ; y j)∆t∆sxi

�

�

�

�

�

2

∆t∆sy j

!1/2

,

and

I1(z) =
N2

u,Uz
(z)

Nu,u(z)NUz ,Uz
(z)

,

where ∆t is the length of the time step, ∆sxi
and ∆sy j

are the areas of the grid cells of

the sensor x i and the source y j , respectively.

Step 3. Mesh I1(z) on the sampling grid. The location of the point-like scatterer is

determined by the global maximum point of I1(z).

Remark 3.1. A time shift parameter µ appears in the numerical computation of the time

domain inverse scattering problems — cf. [7,8,15]. The time shift parameter has a signifi-

cant impact on the reconstruction of the scatterer. However, the theoretical analysis of the

time shift is scarce and the time-shift parameter is usually chosen by trial and error in the

numerical experiments.

In the definition of the indicator function (3.1), we choose the time convolution of u

and Uz instead of the product noted in [8]. An important property of the convolution is

(τµ f ) ∗ g = f ∗ (τµg) = τµ( f ∗ g),

where τµ is the time shift operator defined by (τµ f )(t) = f (t −µ). On this basis, we have

∫

R

�

�

�

(τµ f ) ∗ g
�

(t)
�

�

2
dt =

∫

R

�

�

�

τµ( f ∗ g)
�

(t)
�

�

2
dt =

∫

R

|( f ∗ g) (t)|2 dt.
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The property is found interesting since the time shift is no longer an important factor when

we utilize the time convolution in the indicator function.

3.2. Modified indicator functions

For x ∈ Γm, t ∈ R and z ∈ Ω, compare the functions

Uz(x , t; y) = −λ(t − c−1|x − z| − c−1|y − z|)
4π|x − z||y − z|

and

(G ∗λ)(x , t; z) =
λ(t − c−1|x − z|)

4π|x − z| .

Note that the difference between the signal functions λ(t − c−1|x − z| − c−1|y − z|) and

λ(t − c−1|x − z|) is the time shift c−1|y − z|. Define

f1,z(x , t; y) := u(x , t; y) ∗λ(t − c−1|x − z|),
f2,z(x , t; y) := u(x , t; y) ∗λ(t − c−1|x − z| − c−1|y − z|).

According to Remark 3.1, we have

f2,z(x , t; y) = f1,z(x , t − c−1|y − z|; y),

and direct computations give
















∫

Γm

f2,z(x , t; y)dsx
















L2(R×Γi)

=
















∫

Γm

f1,z(x , t − c−1|y − z|; y)dsx
















L2(R×Γi)

=
















∫

Γm

f1,z(x , t; y)dsx
















L2(R×Γi)
,

which means that Uz(x , t; y) and (G ∗ λ)(x , t; z) play similar roles while calculating time

convolutions.

Using the notation

Gz(x , t) = (G ∗ λ)(x , t; z),

we define a new indicator function — viz.

I2(z) =










∫

Γm
(u ∗ Gz) (x , t; y)dsx










2

L2(R×Γi)









∫

Γm
(u ∗ u) (x , t; y)dsx










L2(R×Γi)










∫

Γm
(Uz ∗ Uz) (x , t; y)dsx










L2(R×Γi)

, z ∈ Ω.
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Note that only the molecular is slightly modified in I2(z) compared to I1(z). Therefore,

a new algorithm based on the indicator function I2(z) is similar to Algorithm 3.1 except

that we use

I2(z) =
N2

u,Gz
(z)

Nu,u(z)NUz ,Uz
(z)

instead of I1(z) as the indicator, in which Nu,u(z) and NUz ,Uz
(z) are defined the same as that

in Algorithm 3.1 and

Nu,Gz
(z) =

 

Ni
∑

j=1

Nt
∑

k=0

�

�

�

�

�

Nm
∑

i=1

k
∑

l=0

u(x i, tk−l ; y j)Gz(x i, t l)∆t∆sxi

�

�

�

�

�

2

∆t∆sy j

!1/2

.

Furthermore, notice that ‖
∫

Γm
(u ∗ u)(x , t; y)dsx ‖L2(R×Γi) is independent of z and has no

influence to the effect of the algorithm. Based on this thought, we go a step further and

define a new modified indicator function

I3(z) =
















∫

Γm

(u ∗ Gz) (x , t; y)dsx
















L2(R×Γi)
, z ∈ Ω.

Once again, a new algorithm based on the indicator function I3(z) is similar to Algo-

rithm 3.1, except that

I3(z) = Nu,Gz
(z)

is used as the indicator.

Note that algorithm based on the indicator function I3(z) is feasible to reconstruct a sin-

gle point-like scatterer, multiple point-like scatterers, a normal size scatterer or some of the

more complicated cases. The effectiveness and robustness of the algorithm can be seen in

Section 4.

4. Numerical Experiments

This section demonstrates the effectiveness of the proposed algorithms with numerical

experiments in both two and three dimensional spaces. In R2, the Green’s function of the

D’Alembert operator c−2∂t t −∆ is

G2(x , t; y) =
H(t − c−1|x − y|)

2π
p

t2 − c−2|x − y|2
, x , y ∈ R2, x 6= y, t ∈ R,

where H(t) is the Heaviside function

H(t) = 1, t > 0,

H(t) = 0, t ≤ 0.
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The time convolution of the Green’s function and the signal function is

G2(x , t; y) ∗ λ(t)

=

∫ t−c−1|x−y|

−∞

λ(τ)

2π
p

(t −τ)2 − c−2|x − y|2
dτ, x , y ∈ R2, x 6= y, t ∈ R.

In the experiments, N = Ni = Nm denote the number of the incident/measurement

points. The time interval [0, T ] is equally divided into Nt time steps. Choose the sound

speed in the homogeneous background medium as c = 1. The random noise is added to

the scattered data by

uǫ = u(1+ ǫr),

where ǫ denotes the noise level and r are uniformly distributed random numbers ranging

from −1 to 1. The signal function is chosen to be a sinusoidal pulse

λ(t) = sin(4t)e−1.6(t−3)2 .

Unless otherwise specified, in the experiments in R2, we choose T = 25 for Algorithms 3.1

and the algorithm based on the indicator function I2(z), T = 15 for algorithm based on the

indicator function I3(z), and Nt = 128 for all the three algorithms. N = 20 is chosen for

the reconstructions with full aperture data. The measurement points are evenly distributed

on the circle of radius 4 with the center at the origin, which means the measurement points

are

x i = 4

�

cos
iπ

10
, sin

iπ

10

�

, i = 0,1, . . . , 19.

As sampling points we chose 21× 21 uniformly distributed points in the sampling region

Ω= [−2.6,2.6]× [−2.6,2.6].

Example 4.1 (Reconstructions of a point-like scatterer). In this example, we reconstruct

a point-like scatterer utilizing the Algorithms 3.1 and the algorithms based on the indicator

functions I2(z) and I3(z). The boundary of the scatterer is parameterized as

s(θ) = (a, b) + 0.001(cosθ , sinθ), θ ∈ [0,2π). (4.1)

The reconstructions of point-like scatterers centered at (a, b) = (0,0) with different noise

are shown in Fig. 1. The measurement points are marked with black asterisks and the

green asterisks represent the exact locations of the point-like scatterers. Fig. 1 shows that

the algorithms are feasible and robust to reconstruct a point-like scatterer.

Example 4.2 (Reconstructions of multiple point-like scatterers). The simultaneous recon-

structions of multiple point-like scatterers are considered in this example. The boundaries

of the scatterers are also parameterized as (4.1) with different centers (a, b). Fig. 2 shows

the reconstructions of different numbers of point-like scatterers with the noise level ǫ = 5%.

The exact locations of the scatterers are marked with green asterisks.
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Figure 1: Reconstructions of a single point-like scatterer centered at (0, 0) with different indicators and
noise levels.
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Figure 2: Reconstructions of multiple point-like scatterers using different indicator functions, ǫ = 5%.
(a)-(c) Reconstructions of 2 point-like scatterers centered at (−1,−1) and (1, 1.5), respectively. (d)-
(f) Reconstructions of 3 point-like scatterers centered at (−1,−1), (1, 1.5) and (1.5,−1), respectively.
(g)-(i) Reconstructions of 5 point-like scatterers centered at (−1,−1), (1, 1.5), (1.5,−1), (−1.5, 1.5) and
(0, 0), respectively.
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Example 4.3 (Reconstructions of a normal size scatterer). Consider the reconstructions of

a normal size scatterer from both full and limited aperture scattered data. The boundaries of

the scatterers, such as the circle-shaped scatterer, the kite-shaped scatterer and the starfish-

shaped scatterer, can be parameterized as

Circle : s(θ) = (a, b) + 1.5(cosθ , sinθ), θ ∈ [0,2π), (4.2)

Kite : s(θ) = (a, b) + (cosθ + 0.65 cos2θ − 0.65,1.5sinθ), θ ∈ [0,2π), (4.3)

Star f ish : s(θ) = (a, b) + (1+ 0.2 cos5θ)(cosθ , sinθ), θ ∈ [0,2π). (4.4)
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Figure 3: Reconstructions of circular scatterers using different indicator functions, ǫ = 5%. The circles
are centered at (0, 0) in the first row and centered at (1, 1) in the second row.
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Figure 4: Reconstructions of kite-shaped scatterers using different indicator functions, ǫ = 5%. The kite
is centered at (0, 0) in the first row and centered at (1, 1) in the second row.
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The reconstructions of the three kinds of scatterers with full aperture data and the re-

constructions of the starfish-shaped scatterer using limited aperture data are provided in

Figs. 3-6. For the reconstructions from limited aperture data, N = 10 and N = 15 are

chosen for the apertures θ = π and θ = (3/2)π, respectively. The coordinates of the

measurement points are

x i = 4

�

cos
iπ

9
, sin

iπ

9

�

, i = 0,1, . . . , 9

-5 0 5
-5

0

5

0.2

0.4

0.6

0.8

1

(a) I1

-5 0 5
-5

0

5

1

2

3

4

5

6

7

8

(b) I2

-5 0 5
-5

0

5

2

3

4

5

6

7

10-4

(c) I3

-5 0 5
-5

0

5

0.2

0.4

0.6

0.8

1

(d) I1

-5 0 5
-5

0

5

1

2

3

4

5

6

7

(e) I2

-5 0 5
-5

0

5

2

3

4

5

6

7

8
10-4

(f) I3

Figure 5: Reconstructions of starfish-shaped scatterers using different indicator functions, ǫ = 5%. The
starfish is centered at (0, 0) in the first row and centered at (1, 1) in the second row.
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Figure 6: Reconstructions of starfish-shaped scatterer centered at (0, 0) from limited aperture data using
different indicator functions, ǫ = 5%.
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for the aperture θ = π and

x i = 4

�

cos
3iπ

28
, sin

3iπ

28

�

, i = 0,1, . . . , 14

for the aperture θ = (3/2)π. The exact boundaries of the scatterers are marked with green

dash lines. From Figs. 3-6, we can find that Algorithms 3.1 and the algorithm based on

the indicator function I2(z) can roughly reconstruct a normal size scatterer centered at

(a, b) = (0,0), but are not feasible to reconstruct a scatterer that is not centered at the

origin. Nevertheless, the algorithm based on the indicator function I3(z) can reconstruct

a normal size scatterer no matter the scatterer is centered at the origin or not. For the

reconstructions of the scatterers with limited aperture data, only the part of the boundary

curve that is close to the measurement points can be well reconstructed.

Example 4.4 (Simultaneous reconstructions of a normal size scatterer and a point-like scat-

terer). Simultaneous reconstructions of a normal size scatterer and a point-like scatterer

are now considered. The boundaries of the point-like, acorn-shaped and rounded-square-

shaped scatterers centered at (a, b) are respectively parameterized as

s(θ) = (a, b) + 0.1(cosθ , sinθ), θ ∈ [0,2π), (4.5a)

s(θ) = (a, b) + 0.84

�

17

4
+ 2 cos3θ

�1/2

(cosθ , sinθ), θ ∈ [0,2π), (4.5b)

s(θ) = (a, b) +

p
2

2

�

cos3 θ + sin3 θ + cosθ + sinθ ,

− cos3 θ + sin3 θ − cosθ + sinθ
�

, θ ∈ [0,2π). (4.5c)
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Figure 7: Reconstructions of a normal size scatterer centered at (0, 0) and a point-like scatterer centered
at (2.2, 2.2) using different indicator functions, ǫ = 5%. (a)-(c) Reconstructions of the acorn-shaped
scatterer and the point-like scatterer. (d)-(f) Reconstructions of the rounded-square-shaped scatterer
and the point-like scatterer.
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The point-like scatterer is chosen to be centered at (2.2,2.2), which is marked with green

asterisk. The acorn-shaped and rounded-square-shaped scatterers are centered at (0,0),

the exact boundaries are marked with green dash lines. The reconstructions are shown in

Fig. 7. The result shows that the algorithm based on the indicator function I3(z) can roughly

reconstruct the shapes of acorn-shaped or rounded-square-shaped scatterers together with

the location of the point-like scatterer.

Example 4.5 (Reconstructions of two disconnected normal size scatterers). Consider the

reconstructions of two disconnected normal size scatterers using the algorithm based on the

indicator function I3(z). The boundaries of the circle-shaped, kite-shaped, acorn-shaped

and starfish-shaped scatterers are parameterized similar as (4.2)-(4.5) except that the sizes

of the scatterers are chosen to be respectively four-ninths, half, half and two-thirds of the

original sizes. The boundary of the peanut-shaped scatterer centered at (a, b) is parame-

terized as

s(θ) = (a, b) +
5

12
(4 cos2 θ + sin2 θ)1/2(cosθ , sinθ), θ ∈ [0,2π).

Choose the noise level ǫ = 5%, the terminal time T = 25 and Nt = 256. The reconstruc-

tions are shown in Fig. 8. The exact boundaries of the scatterers are marked with green

dash lines, the measurement points are marked with black asterisks.

In the following two examples, we consider the effectiveness of the algorithm based on

the indicator function I3(z) to reconstruct point-like scatterers and cubes in R3. Note that

the computation cost of the three-dimensional time domain forward scattering problem is

expensive and the k-Wave software is utilized for the calculation [28]. In Examples 4.6-

4.7, the measurement surface Γm is chosen to be a spherical surface centered at the origin

with radius 4, the incident surface is chosen as Γi = Γm. Denote by N the number of the

measurement points and incident points whose locations are generated by the function

makeCartSphere utilizing the k-Wave software. The Cartesian coordinates of the mea-

surement points for i = 0,1, . . . , N − 1 are

x i = 4
�q

1−α2
i

cos(3−
p

5)iπ,αi ,
q

1−α2
i

sin(3−
p

5)iπ
�

, αi =
2i − N + 1

N
.
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Figure 8: Reconstructions of two disconnected normal size scatterers using the indicator function I3,
ǫ = 5%. (a) The circle-shaped scatterer centered at (−1,−1) and the kite-shaped scatterer centered
at (1, 1). (b) The kite-shaped scatterer centered at (−1,−1) and peanut-shaped scatterer centered at
(1, 1). (c) The acorn-shaped scatterer centered at (−1,−1) and the starfish-shaped scatterer centered
at (1, 1).
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Figure 9: The geometric diagram of the measurement points and sampling region.

The sampling points are chosen as 21× 21× 21 equidistant points in the sampling region

Ω = [−2,2] × [−2,2] × [−2,2]. The geometric diagram of the measurement points and

sampling region is shown in Fig. 9. The noise level is chosen as ǫ = 5%.

Example 4.6 (Reconstructions of point-like scatterers in R3). Consider the reconstructions

of point-like scatterers by choosing N = 50, T = 19 and Nt = 256. The exact locations of

the point-like scatterers are marked with green asterisks. In fact, the point-like scatterers is

cube-shaped due to the characteristics of the k-Wave software when calculating the wave

field. For the reconstruction of a single point-like scatterer, the locations of the scatterers

are chosen as

D1 = [−0.05,0.05]× [−0.05,0.05]× [−0.05,0.05],

D2 = [0.35,0.45]× [−0.85,−0.75]× [0.15,0.25].

The location of a single point-like scatterer can be roughly identified even if the scatterer

is not centered at the origin, the results can be seen in Fig. 10.

For the reconstructions of multiple point-like scatterers in R3, the locations of the scat-

terers are chosen to be

D3 = [0.55,0.65]× [0.75,0.85]× [0.95,1.05],

D4 = [−1.05,−0.95]× [−0.85,−0.75]× [−0.65,−0.55],

respectively. The reconstructions can be seen in Fig. 11.

Example 4.7 (Reconstructions of cube scatterers). Consider the reconstructions of cube

scatterers are considered in this example by choosing N = 50, T = 25 and Nt = 256.

Again, the forward scattering problem is solved utilizing the k-Wave software. The mea-

surement points, the source points, the sampling grids and other parameters are the same

as in Example 4.6. See Figs. 12 and 13 for the reconstructions. In Fig. 12, the cube is

chosen as

D5 = [−0.4,0.8]× [−0.4,0.8]× [−0.4,0.8].
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Figure 10: Reconstructions of a single point-like scatterer using the indicator function I3, ǫ = 5%.
(a,d) The reconstructions of the scatterers D1 and D2, respectively. (b,e) The slices through the center
of the scatterers along the x1-x2 plane. (c,f) The slices through the center of the scatterers along the
x1-x3 plane.
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Figure 11: Simultaneous reconstruction of two point-like scatterers D3 and D4 using the indicator function
I3, ǫ = 5%. a) The reconstruction of the scatterers. b) The slice through the center of the scatterer
along the x1-x2 plane. c) The slice through the center of the scatterer along the x1-x3 plane.

a) b) c)

Figure 12: Reconstructions of the cube D5 using the indicator function I3, ǫ = 5%. a) The geometry
setting. b) The reconstruction of the cube with iso-surface level 0.02. c) The reconstruction of the cube
with iso-surface level 0.015.
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a) b) c)

Figure 13: Simultaneous reconstructions of two disconnected cubes D6 and D7 using the indicator
function I3, ǫ = 5%. a) The geometry setting. b) The reconstruction of the cubes with iso-surface level
0.008. c) The reconstruction of the cubes with iso-surface level 0.007.

In Fig. 13, the two disconnected cubes are chosen as

D6 = [0.4,1]× [0.4,1]× [0.4,1],

D7 = [−1,−0.4]× [−1,−0.4]× [−1,−0.4],

respectively. The noise level is chosen as ǫ = 5%. This example shows that the algorithm

based on the indicator function I3(z) could give the approximate positions of the cubes, but

is no effective to determine the shape of the cubes.

5. Conclusion

Simple direct sampling methods based on the time convolution of the Green’s function

and the signal function have been provided to reconstruct point-like and normal size scat-

terers in this paper. Numerical examples in two and three dimensional spaces demonstrate

the effectiveness and robustness of the methods.
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