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Abstract. A difference mixed finite element method based on the finite element pair

((P0×P1), (P0×P1), (P1×P0))×(P1×P1) for the three dimensional Poisson equation is stud-

ied. The method combines a mixed finite element discretization based on (P0, P0, P1)×P1-

element in (x , y)-plane and a finite difference discretization based on (P1, P1, P0)× P1-

element in z-direction. This allows to transmit the finite element solution of the three

dimensional Poisson equation in the direction (x , y, z) into a series of finite element so-

lution of the two dimensional Poisson equation in the direction (x , y). Moreover, error

estimates for the discrete approximation are derived. Numerical tests show the accuracy

and efficiency for the method proposed.
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1. Introduction

Finite element and finite difference methods are efficient ways to solve partial differ-

ential equations — cf. Refs. [2–4, 10, 16, 31, 34]. It is known that these methods made

great contributions to numerical solutions of partial differential equations, and each ap-

proach has its own merits. In contrast to finite difference methods, finite element methods

are more suitable to deal with regions with complex geometry. On the other hand, finite

difference methods are easier to implement.

Despite a considerable increase in available computing power in recent decades, still

there are difficulties in solving three dimensional (3D) partial differential equations, such

as overcoming the discretization of 3D space, constructing basis functions, etc. To reduce

the computational complexity of solving 3D equations, He et al. [15] constructed a differ-

ence finite element (DFE) based on the P1 × P1-conforming finite element discretization in

the (x , y)-plane and finite difference discretization in the z-direction. Notably, they found
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that the assembly of the stiffness matrix by such a DFE method is easier than the finite

element method. In fact, this method can be used in many real application problems. In

particular, for 3D primitive equations of the ocean [17, 18, 28], it benefits from the use of

a discretization in the z-direction in the way. We note that the horizontal velocity and the

vertical velocity are components of velocity in primitive equations.

Later on, the DFE method was subsequently used by Feng et al. [12] to solve the 3D heat

equation. Recently, the authors of the present work, proposed a DFE method for 3D steady

Stokes equations based on finite element pair ((P b
1 , P b

1 , P1)×P1)×(P1×P0) [13]. It was also

proven that this finite element pair satisfies the LBB condition in 3D domain. Furthermore,

Feng et al. [14] used the DFE method with the same finite element pair to solve 3D steady

Navier-Stokes equations. In addition, Lu et al. [26,27] presented a stabilized DFE method

for 3D steady Stokes equations and Navier-Stokes equations with help of the finite element

pair ((P1, P1, P1)× P1)× (P1 × P0), and shown that this finite element pair satisfies a weak

LBB condition in 3D domain.

In many practical situations, it is important to compute dual variables of partial dif-

ferential equations more accurately. For example, the gradient of the solution is the dual

variable in case of the Poisson equation, whereas the stress or pressure variable is the dual

variable in case of elasticity equation. In these situations, it is natural to introduce a mixed

finite element method. It is worth noting that mixed finite element spaces must be cho-

sen carefully so that they satisfy the LBB condition for the mixed method to be stable.

Nowadays, there are many special mixed finite element spaces, including Nédélec [29],

Raviart and Thomas [8, 11, 30], Brezzi et al. [5–7], Chen and Douglas [9]. These mixed

spaces do not contain the lowest order element for the ((P0, P0), P1) pair. Moreover, for

the two dimensional Poisson equation, Shi et al. [33] have considered the finite element

pair ((P0, P0), P1) which satisfied the LBB condition. Further, this finite element pair has

undergone some evolution and has been further developed [1,22,23,25,35–39]. Besides,

based on this finite element pair, Hou et al. [19–21] considered the superconvergence and

two-grid methods. Shi and Yang [32] obtained unconditionally optimal error estimates of

a new mixed finite element method for nonlinear Schrödinger equations.

Inspired by the works of He et al. [15] and Shi et al. [33], here we construct and an-

alyze a difference mixed finite element (DMFE) method for the 3D Poisson equation with

the finite element pair ((P0 × P1), (P0 × P1), (P1 × P0))× (P1 × P1). The calculation domain

in the method proposed is a cuboid, and the side surface has to be perpendicular to the

horizontal surface. Moreover, we prove that this finite element pair complies with the LBB

condition. Compared to the method in [12], the DMFE method performs finite difference

discretization in the z-direction and finite element discretization in the (x , y)-plane on the

basis of introducing intermediate flux which has to be only quadratic integrable. Besides,

the lower order finite element is applied in the DMFE method.

The rest of this paper is organized as follows. In Section 2, we introduce necessary

notations and recall the classical and other mixed variational formulations for the 3D Pois-

son equation. Section 3 describes the finite difference method based on the finite element

pair (P1, P1, P0) × P1 for the z-direction discretization. In Section 4, the DMFE solution

pair (uh, ph) based on ((P0× P1), (P0 × P1), (P1 × P0))× (P1× P1)-element of the 3D Poisson


