
East Asian Journal on Applied Mathematics Vol. 15, No. 2, pp. 344-372

doi: 10.4208/eajam.2023-159.170324 May 2025

A Relaxed Decoupled Second-Order Energy-Stable

Scheme for the Binary Phase-Field Crystal Model

Xin Zhang1, Junxiang Yang1 and Zhijun Tan1,2,*

1School of Computer Science and Engineering, Sun Yat-sen University,

Guangzhou 510275, China.
2Guangdong Province Key Laboratory of Computational Science,

Sun Yat-sen University, Guangzhou 510275, China.

Received 6 July 2023; Accepted (in revised version) 17 March 2024.

Abstract. In this study, we construct a relaxed second-order time-accurate scheme for

the binary phase-field crystal model based on the recent paper [J. Wu, J. Yang and Z. Tan,

Eng. Comput. (2023)]. This scheme can significantly improve the consistency between

original and modified energies. Using the exponential SAV method, we construct the

first- and second-order time-accurate schemes by using the backward Euler formula and

the second-order backward difference formula, respectively. Then a new second-order

numerical scheme with relaxation is developed. This new numerical scheme satisfies

the energy dissipation law. Meanwhile, it is fully decoupled and efficient. Extensive

numerical experiments are carried out in 2D and 3D to verify the accuracy and stability

of the proposed scheme, as well as its ability to improve the consistency between the

original energy and modified energy.
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1. Introduction

There are many methods for studying crystal growth at the atomic length scale. One

of them is the phase-field crystal (PFC) model proposed by Elder et al. [3, 5]. It has been

widely used because of its advantage in capturing the phase transition phenomena. In the

PFC model, the time-average density of atoms is described by a phase-field variable φ. The

governing equations for the PFC model can be obtained by applying a variational method

to total free energy with respect to φ. The PFC model has been applied to simulate diverse

phenomena, such as elastic and plastic deformation, colloidal growth, and crystal growth

— cf. [5,21].
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The binary PFC (BPFC) model for binary alloys was developed by Elder et al. [4, 6].

Similar to the PFC model, the BPFC model introduces two phase-field variables. Adopting

the same derivation method as the PFC model, the governing equations for the BPFC model

can be derived, which includes two coupled nonlinear partial differential equations.

There are various numerical studies devoted to energy-stable schemes for PFC mod-

els — e.g. invariant energy quadratization (IEQ) approach [35], convex splitting method

[10, 28, 32], and scalar auxiliary variable (SAV) approach [22–24]. Two unconditionally

energy-stable finite difference schemes for the modified phase-field crystal (MPFC) model

have been proposed in [1]. The convergence of a second-order accurate convex splitting

scheme of [1] has been discussed in [2]. Shin et al. [25] constructed a first-order uncondi-

tional gradient-stabilized scheme and a second-order unconditionally weakly energy-stable

scheme using new convex splitting. Applied the IEQ method, Yang [37] developed tempo-

ral approximation schemes to solve the model for homopolymer blends. Liu and Li [19]

presented an improved IEQ method and an improved stable IEQ method. Li et al. [16]

proposed an unconditionally energy-stable scheme based on the IEQ method for the mod-

ified PFC model. Li and Shen [17] developed a fully discrete scheme for the PFC model

based on a stable SAV method. Li and Mei [15] considered decoupled second-order ac-

curate linear schemes for the BPFC models for binary colloidal crystals. Wang et al. [29]

combined the SAV method and the finite element approach to construct an energy stabi-

lization scheme for the PFC model. For other methods for solving PFC models, the reader

can consult [7–9,12,14,18,20,26,30,31,34].

For the PFC model, the difficulty of constructing energy-stable numerical schemes is the

stiffness issue caused by the nonlinear double-well potential. In addition, the two phase-

field variables of the BPFC model are nonlinearly coupled, which makes the development

of numerical methods more difficult. Therefore, there are only few studies of numerical

schemes for BPFC models. Tegze et al. [27] presented an efficient, first-order accurate

and explicit-type scheme to solve numerically the BPFC model by applying the operator

splitting method. However, this scheme does not follow any energy dissipation law. Wu

et al. [33] developed two energy-stable and decoupled schemes based on an exponential

semi-implicit SAV approach to solve the BPFC model, but numerical simulations show that

the consistency between the original and modified energy is not good.

As a result, we want to develop an energy-stable and efficient numerical scheme for

the BPFC model. Meanwhile, we use a relaxation technique [11,38] to improve poor con-

sistency between the original and modified energy. Using the exponential SAV method,

we expand the original equations and then construct numerical schemes. Thus, adding a

relaxation step to the second-order numerical scheme, we obtain a new numerical scheme.

All variables are still fully decoupled at each time step, which can be updated easily. There-

fore, the relaxed second-order numerical scheme enhances the consistency between two

energies while ensuring high efficiency and stability.

The organization of this work is as follows. In Section 2, we introduce the govern-

ing equations of the BPFC model. In Section 3, we construct a second-order scheme. In

Section 4, we carry out plenty of numerical simulations. Some conclusions are written in

Section 5.


