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Abstract. This paper proposes difference finite element (DFE) methods for the Poisson

equation in a four-dimensional (4D) region ω× (0, L4). The method converts the Pois-

son equation in a 4D region into a series of three-dimensional (3D) subproblems by the

finite difference discretization in (0, L4) and deals with the 3D subproblems by the finite

element discretization in ω. In performing the finite element discretization, we select

different discretization elements in the regionω: hexahedral, pentahedral, and tetrahe-

dral elements. Moreover, we prove the stability of the DFE solution uh and deduce the

first-order convergence of uh with respect to the exact solution u under H1-error. Finally,

three numerical examples are given to verify the accuracy and effectiveness of the DFE

method.
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1. Introduction

The Poisson equation is an essential class of elliptic PDEs used to solve various practical

problems, including the heat conduction and electric potential distribution. Numerical

approaches commonly used for solving this equation include finite element (FE) and finite

difference (FD) methods. The main principle of FE methods is to discretize the continuous

problem in the variational form [1–8,15,18,19], while the main principle of the FD method

is to directly approximate the differential terms in the local partial differential equation,
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transforming the differential equation into algebraic equations [9, 14, 16, 24, 25, 27–30].

FD methods are usually simpler and easier to implement, whereas FE methods are more

suitable for solving complex regional problems.

Since FE and FD methods rely on mesh, the solution of the Poisson equation in dimen-

sions higher than three by these methods represents a significant challenge. In this paper,

we propose a DFE method specifically designed for solving the 4D Poisson equation by com-

bining FE and FD methods. The method discretizes the 4D Poisson equation into a series of

3D subproblems through FD discretization and then solves these 3D problems using the FE

method. By examining the coefficient matrix formed by the DFE method, it can be observed

that during the assembly of the coefficient matrix, we only need to compute the stiffness

and mass matrices of the 3D Poisson equation once. Therefore, we transform the compu-

tation of the 4D problem into the calculation of the 3D Poisson problem, thereby reducing

the computational complexity.

The DFE method was first proposed by He et al. [13] in order to solve the 3D Poisson

equation. The method transforms the 3D Poisson problem into a series of 2D elliptic prob-

lems by the finite difference discretization in the z-direction. Then, the DFE method has

been applied to the 3D heat, Stokes, Navier-Stokes, and MHD equations [10–12, 22, 23].

So, the validity of the DFE method in 3D regions has been fully verified. The aim of this

paper is to explore the applicability, stability, and convergence of the DFE method for 4D

problems. First, we consider the FD discretization in the x4-direction to transform the 4D

Poisson problem into a series of 3D subproblems and show the stability of the FD solution

uτ. Then, we choose different discretization elements corresponding to different basis func-

tions to discretize the 3D subproblems — viz. Q1(x1, x2, x3)-element in hexahedral mesh,

P1(x1, x2)× P1(x3)-element in pentahedral mesh, and P1(x1, x2, x3)-element in tetrahedral

mesh. Furthermore, we show the first-order convergence of the DFE solutions uh to the

exact solution u in the H1-norm. Numerical examples confirm the effectiveness of the DFE

method for the 4D Poisson equation.

The structure of this paper is as follows. Section 2 reviews the FE method for the 3D

Poisson equation based on three different discretization elements and recalls the definition

and properties of a projection operator Rh : X → Xh. Section 3 considers the discretization

of the 4D Poisson equation in (0, L4) by the FD method. Then, we define the FD solution

uτ =

l4−1∑

m=1

um(x1, x2, x3)ψm(x4)

and prove the stability of uτ and the error estimate for uτ. In Section 4, we show the details

of the DFE method of the 4D Poisson equation and define the DFE solution

uh =

N∑

l=1

l4−1∑

m=1

um
l
φl(x1, x2, x3)ψm(x4).

The stability of the DFE solution uh and H1-error estimates for uh are proved. Finally, three

numerical examples of the 4D Poisson equation are presented to test the correctness of the

theoretical results and the finiteness of the DFE method in Section 5.


