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Abstract. This paper focuses on the randomized Milstein scheme for approximating

solutions to stochastic Volterra integral equations with weakly singular kernels and non-

differentiable drift coefficients. An essential component of the error analysis involves

the utilization of randomized quadrature rule for stochastic integral to avoid the Taylor

expansion in the drift coefficient. Finally, we implement the simulation of multiple sin-

gular stochastic integral in the numerical experiment by applying the Riemann-Stieltjes

integral.
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1. Introduction

Over the past several decades, stochastic Volterra integral equations (SVIEs) have been

widely applied in various areas, including mathematical finance, physics, biology, and engi-

neering [6,20]. However, such equations are nonlinear and it is difficult to determine their

explicit solutions, so that it is necessary to develop numerical schemes [5, 11, 17, 18, 27].

In particular, numerical methods for stochastic Volterra integral equations with weakly sin-

gular kernels (SVIEwWSKs) have been widely studied. In particular, a θ -Euler scheme and

a Milstein scheme for SVIEwWSKs are investigated in [16]. Besides, the Euler-Maruyama

(EM) scheme and a Milstein scheme of a more general form of SVIEs were studied in [24].

Later on, a fast EM scheme for weakly singular SVIEs with variable exponent has been intro-

duced in [15]. The EM scheme for weakly singular stochastic fractional integro-differential

equations was investigated in [3], while the fast EM scheme for SVIEs with singular and
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Hölder continuous kernels was studied in [28]. For more information about stochastic

differential equations (SDEs) the reader can consult [9, 29–36]. In addition, randomized

Euler and Runge-Kutta schemes for deterministic differential equations have been studied

in [4,7,8,10,12,25,26]. A randomized EM scheme for scalar SDEs with Carathéodory type

drift coefficient functions was investigated in [23]. Furthermore, randomized EM schemes

for scalar SDEs with drift coefficients Lipschitz continuous with respect to the space vari-

able but only measurable with respect to the time variable were introduced in [21, 22],

while a randomized Euler scheme of SDEs with drift and diffusion coefficients perturbed

by a deterministic noise was studied in [19].

Inspired by the drift-randomized Milstein scheme in [13], we apply a randomized sche-

me to the classical Milstein scheme, which leads to a randomized Milstein scheme for

SVIEwWSKs. Compared with the drift coefficient function in [16], the function b here

is not necessarily differentiable and this can be observed in numerical simulations. Note

that the drift and diffusion coefficients in [13] are temporal Hölder continuous, hence it

is more challenging to cope with the singular kernels in the drift and diffusion coefficients

(t − s)−α and (t − s)−β , since in our work they tend to infinity as s tends to t. The main

result of this paper shows that, under Assumptions 2.1 and 2.2, the convergence rate of the

randomized Milstein scheme for SVIEsWSKs does not exceed min{1−2β , 1−α}. Moreover,

testing the convergence rate still remains a problem in [14,16] since the simulation of the

multiple singular stochastic integrals
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is a significant challenge. This problem is resolved by using the Riemann-Stieltjes integral.

It will be discussed in more detail in Section 4.

The rest of the paper is structured as follows. In Section 2, we introduce notations,

assumptions and a few important lemmas useful in the proofs. Section 3 aims to get the final

convergence rate of the randomized Milstein scheme. In Section 4, we consider a numerical

example to validate the effectiveness of the theoretical results.

2. Preliminaries

If A is a vector or matrix, its transpose is denoted by AT . If x ∈ Rn, then |x | is its

Euclidean norm. If A is a matrix, let |A| =
p

trace(AT A) be its trace norm. If a, b are real

numbers, then a∨ b :=max{a, b}, a∧ b :=min{a, b}. Let Sn = {1, . . . , n}, S0n = {0,1, . . . , n}

for any n ∈ N. If s ∈ R, then ⌊s⌋ refers to the integer part of s. Denote by C2(Rd) the family

of twice continuously differentiable functions in Rd . For p > 0 and t ≥ 0, we denote by

Lp(Ω,F ,P) = Lp(Ω) the family of Rd -valued random variables X such that

‖X‖Lp(Ω) := (E|X |p)1/p =

�∫

Ω
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�1/p

<∞.


