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Abstract. In this paper, we effectively solve the inverse source problem of the fractional

Poisson equation using a Monte Carlo sampling-based PINN method (MC-fPINN). We

construct two neural networks uN N (x;θ) and fN N (x;ψ) to approximate the solution

u∗(x) and the forcing term f ∗(x) of the fractional Poisson equation. To optimize these

networks, we use the Monte Carlo sampling method and define a new loss function com-

bining the measurement data and underlying physical model. Meanwhile, we present

a comprehensive error analysis for this method, along with a prior rule to select the

appropriate parameters of neural networks. Numerical examples demonstrate the great

accuracy and robustness of the method in solving high-dimensional problems up to 10D,

with various fractional orders and noise levels of the measurement data ranging from

1% to 10%.
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1. Introduction

The fractional partial differential equations (fPDEs) play a crucial role in the math-

ematical modeling of anomalous phenomena in science and engineering, including hy-

drology [16], viscoelasticity [12], and turbulent flow [3, 6]. In practical applications, we

often need to recover some information missed in these fPDEs, including the diffusion

coefficients, initial or boundary data, or source terms, especially for various problems in

physics [4] and biology [11]. However, solving inverse problems for the fractional Poisson

equation is a challenging task because of the non-locality and singularity of the fractional

Laplacian operator.
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More recently, with the significant advancements in deep learning techniques applied

to computational vision and natural language processing, neural network architectures

have been used to solve inverse problems for fPDEs. For example, Pang et al. extended

PINNs [14] to fPINNs [13] to solve the inverse problem of identifying parameters in the

partial advection diffusion equation. In their method, the integer derivative is calculated

using automatic differentiation while the fractional derivative is approximated by tradi-

tional numerical discretization, which leads to a high computational cost, especially for

high-dimensional problems. Later on, Yan et al. [18] proposed a Bayesian inversion with

neural operator (BINO) approach to solve the Bayesian inverse problem of the time frac-

tional subdiffusion equation, of which the diffusion coefficient can be recovered. In addi-

tion, they presented a Laplace fPINNs method to identify the diffusion coefficient function in

the time-fractional diffusion equation [19]. This method first transforms the original equa-

tion into a restricted problem in Laplace space and then solves it using PINNs. However,

despite the successful application of BINO and Laplace-fPINNs to time-fractional problems,

the methods have not been used in space-fractional and high-dimensional problems.

To deal with space-fractional derivative and higher-dimensional problems more effi-

ciently, Guo et al. [7] proposed a Monte Carlo sampling-based PINN method to identify the

parameters in the fractional advection-diffusion equation. Unlike to fPINNs, the MC-fPINN

calculates fractional derivatives using Monte Carlo sampling instead of traditional methods.

This reduces computational cost and enables their application to higher-dimensional prob-

lems. Furthermore, Feng et al. [5] introduced a MC-Nonlocal-PINNs approach, extending

the original MC-fPINNs for more general nonlocal operators. In this paper, we extend this

idea to address the inverse source problems for the fractional Poisson equation in both low

and high dimensions. In summary, our main contributions are as follows:

1. Except for the neural network for approximating the solutions of the fractional Pois-

son equation, we represent the forcing term function as another fully-connected neu-

ral network. To optimize these two neural networks, we use the Monte Carlo sam-

pling method mentioned in MC-fPINN and define a new loss function containing

regularization terms for residuals of fPDEs and measurement data. We effectively

address the inverse source problems related to the fractional Poisson equation, even

in high-dimensional cases. In computational experiments, we show the high accu-

racy and reliability of our method by varying the fractional orders while introducing

noise to the measurement data at levels between 1% and 10%.

2. We provide a systematical error analysis for the MC-fPINN method for this inverse

problem and a guideline for choosing suitable neural network parameters, such as

the total number of nonzero weights, depth, and samples. This guarantees that the

error in estimation remains consistent and manageable in order to attain the desired

level of accuracy.

The rest of this paper is organized as follows. In Section 2, we describe the inverse

problem of the fractional Poisson equation with the Dirichlet boundary condition and the

notation that will be used in this work. In Section 3, an inverse MC-fPINN method is


