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Abstract. This paper concerns the mathematical analyses of the diffusion model in ma-

chine learning. The drift term of the backward sampling process is represented as a con-

ditional expectation involving the data distribution and the forward diffusion. The train-

ing process aims to find such a drift function by minimizing the mean-squared residue

related to the conditional expectation. Using small-time approximations of the Green’s

function of the forward diffusion, we show that the analytical mean drift function in

DDPM and the score function in SGM asymptotically blow up in the final stages of the

sampling process for singular data distributions such as those concentrated on lower-

dimensional manifolds, and are therefore difficult to approximate by a network. To

overcome this difficulty, we derive a new target function and associated loss, which re-

mains bounded even for singular data distributions. We validate the theoretical findings

with several numerical examples.
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1. Introduction

The field of generative models has emerged as a powerful tool for building continuous

probabilistic models that generate new samples from given discrete datasets. Furthermore,

by accounting for the joint distribution of observable (condition, query) and target vari-

ables, these models offer a flexible and efficient way to generate samples based on queries.

Such generative models have been applied across a wide range of disciplines, including
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computer vision [13], speech signal processing [43], natural language processing [20], and

natural sciences [41]. Recent advances in generative models, including the popular varia-

tional autoencoder [23], generative adversarial network [17], flow-based model [2], and

DeepParticle model [45], have demonstrated their ability to solve diverse problems across

different domains. These models share a common feature: they directly model a push-

forward map from easy-to-sample distribution to an unknown distribution driven by data

through neural networks (including the composition of invertible functions).

In contrast to these direct constructions, another type of generative model links distri-

butions through one-parameter continuous deformations (parameter t ∈ [0, T ] or [0,∞)
in the following up various models). This approach has a long history in the mathematical

literature. A straightforward example is the Langevin Monte Carlo (LMC), where we start

from arbitrary distribution solving the following SDE:

dX t = v(t, X t)d t +
Æ

2D(t, X t)dWt , (1.1)

where (v, D) = (−∇ log pdata, I). From arbitrary initial distribution X0 ∼ p0, LMC (1.1)

solves until t is sufficiently large. Then the distribution of X t continuously deforms from

arbitrary distribution p0 to pdata as t →∞.

Without analytic expression to pdata, a number of constructive data-driven approaches

to (v, D) have been considered in the literature — cf. Refs. [4,8,31,39,44]. Once a model of

(v, D) is derived either analytically or from data, the stochastic differential equation (SDE)

integrator can be used to numerically solve the SDE from initial to terminal time (some

T > 0 or∞), thereby interpreting it as a generative model.

Among these constructions, the diffusion models have attracted huge attention due

to their well-known performance in practical applications. Inspired by non-equilibrium

thermodynamics [38], Ho et al. [19] proposed denoising diffusion probabilistic models

(DDPMs), a class of latent variable models, as an early diffusion model. Later, Song et

al. [40] unified several earlier models through the lens of stochastic differential equations

and proposed score-based generative models (SGMs). The backward process (generation of

new samples) can be interpreted as solving Eq. (1.1) with a tweak that reverts the notation

of time and the initial distribution after the tweak is assumed to be a standard normal

distribution [1]. Luo [28] and Yang et al. [46] provided literature reviews from different

perspectives.

Despite its success, the sampling process for diffusion models is extremely slow and the

computational cost is high. In DDPMs [19], for instance, 1000 steps are typically needed

to generate samples. Several works have attempted to accelerate the sampling process

[21, 25–27, 29, 37, 47, 48]. In addition, Zhang and Chen [47] pointed out that there were

dramatically different performances in terms of discretization error and training error when

they trained the score function of SGM on different datasets. On theoretical side, several

recent works have shown the convergence bound for diffusion models, for instance [6,9,11,

24]. It is then natural to seek justifications for the gap between practical costly performance

and theoretical convergence guarantee.

In fact, the aforementioned theoretical results require the score function to be ap-

proximated well by a neural network, in the L2 or L∞ sense. While in practice, when


