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Abstract. The matrix rank approximation has shown high effectiveness in the matrix

rank minimization (MRM) problem, which aims to recover the underlying low-rank

structure from the observed matrix by imposing the rank constraint. The nuclear norm,

serving as a convex surrogate of matrix rank, is employed in the MRM problem by shrink-

ing singular values of the observed entry. However, this substitution treats each singular

value equally, which is virtually ℓ1-norm penalty of the singular value vector. Theoret-

ically, the rank function of the matrix can be considered as ℓ0-norm of its singular val-

ues. Consequently, minimizing the nuclear norm frequently results in biased solutions

in various applications. In this article, we first propose a novel nonconvex rank approx-

imation, named tight and flexible rank (TFR) approximation, to describe rank function

effectively. Specifically, the TFR approximation can more tightly approach the rank func-

tion and exhibit greater flexibility in handling diverse singular values, as compared to

existing nonconvex rank approximations. Furthermore, we apply TFR approximation to

matrix completion and develop a solving algorithm with guaranteed convergence based

on the framework of proximal alternating minimization. Extensive experiments reveal

that the proposed matrix completion model with TFR approximation outperforms sev-

eral existing state-of-the-art convex and nonconvex methods.
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1. Introduction

Matrices are widely used in various fields, including computer vision and machine learn-

ing [10,27,43–45,47,60,61], where some of their features, especially the low-rank prop-

erty, can be utilized [36, 39, 56, 63]. It is worth noting that many related tasks — e.g.

matrix completion [5], compressive sensing [11], and image denoising [13,38,70], can be
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described as the matrix rank minimization (MRM) problem, which consists in finding an

approximate low-rank matrix from its degraded observation by the rank constraint [29].

Mathematically, this rank minimization problem can be formulated as follows:

min
X∈Rm×n

rank(X)

s.t. A (X) = B,
(1.1)

where X ∈ Rm×n is the underlying matrix, A : Rm×n → Rm×n a linear map, and B ∈

R
m×n the observed matrix. The choice of A depends on the specific application. Since

the direct solution of the problem (1.1) is NP-hard [6], it usually depends on replacing the

discontinuous rank function by an appropriate matrix rank approximation [20,21,62]. The

later can be represented as

min
X∈Rm×n

Ψ(X)

s.t. A (X) = B,
(1.2)

where Ψ(X) is the rank approximation of matrix X. Because the matrix rank is the number

of non-zero singular values — i.e. ℓ0-norm of the singular value vector, Ψ(X) is usually

defined as a function of singular values [24,71]. Thus, the MRM problem (1.1) is often ap-

proached by minimizing an appropriate rank approximation that penalizes singular values.

This method is widely-used in various applications [40,48,65].

As the tightest convex approximation of the matrix rank, the nuclear norm is defined

as the sum of the singular values. This transforms the minimization of the matrix rank

into a constraint on singular values of the underlying matrix [15]. Candès and Recht [7]

proved that low-rank structures can be extracted from the degraded matrix by minimizing

the nuclear norm with a high probability. The application of the nuclear norm further

demonstrates the effectiveness of the rank approximation defined by singular values [25].

Virtually, the singular value provides quantifiable information of the matrix. For example,

larger singular values usually contain significant information about textures and edges [59].

However, the nuclear norm treats the singular values of the matrix equally. As a result, the

nuclear norm shrinks the same value for each singular value. Numerous studies — e.g.

[33,50,68], show that usually such a uniform shrinkage leads to a restricted performance.

Theoretically, the rank function of the matrix is ℓ0-norm of its singular values, and the

relationship between the nuclear norm and the rank of matrices can be seen as the rela-

tionship between ℓ0-norm and ℓ1-norm of singular value vectors [37], cf. Section 2 for

more details. Clearly, there exists a distance between two norms for the constraint on sin-

gular values, which limits the performance of the nuclear norm. Note that there are many

nonconvex matrix rank approximations aimed to better describe the ℓ0-norm for singular

values, [35,40]. In particular, Hu et al. [24] proposed the truncated nuclear norm, defined

as the sum of the smaller singular values. Dong et al. [11] achieved promising results on

compressive sensing by using the nonconvex logdet function as the surrogate of the rank

function. Kang et al. [26] successfully applied the logdet function to recommender system

via matrix completion. Nie et al. [34] utilized the Schatten p-norm for low-rank matrix

restoration. Chen et al. [8] proposed the logarithmic norm to induce a sparsity-driven


