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Abstract

We develop a stabilizer free weak Galerkin (SFWG) finite element method for Brinkman

equations. The main idea is to use high order polynomials to compute the discrete weak

gradient and then the stabilizing term is removed from the numerical formulation. The

SFWG scheme is very simple and easy to implement on polygonal meshes. We prove

the well-posedness of the scheme and derive optimal order error estimates in energy and

L2 norm. The error results are independent of the permeability tensor, hence the SFWG

method is stable and accurate for both the Stokes and Darcy dominated problems. Finally,

we present some numerical experiments to verify the efficiency and stability of the SFWG

method.
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1. Introduction

In this paper, we consider the following Brinkman model: Seek unknown fluid velocity u

and pressure p satisfying

−µ∆u+ µκ−1u+∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = g on ∂Ω, (1.3)

where Ω ∈ Rd is a polygonal (d = 2) or polyhedral domain (d = 3), µ is the fluid viscosity coeffi-

cient and κ denotes the permeability tensor of the porous medium, f represents the momentum

source term, and the boundary value g satisfies the compatibility condition
∫

∂Ω g · n = 0.

For simplicity, we consider the Brinkman equations with boundary condition g = 0 and

take the viscosity coefficient µ to be 1. Assume that the permeability κ is piecewise constant

and there exist two constants λ1, λ2 > 0 such that

λ1ξ
tξ ≤ ξtκ−1ξ ≤ λ2ξ

tξ, ∀ ξ ∈ Rd,

where ξ is a column vector and ξt is the transpose of ξ. We consider that λ1 is the unit size

and λ2 may be the case of large size.
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The Brinkman equations (1.1)-(1.3) can be seen as a modified version of Darcy’s law ob-

tained by adding viscous forces to the Navier-Stokes equations [5]. This model has been ap-

plied in many fields, such as power engineering, petroleum industry, geology, geophysics, and

so on [4, 9, 10, 20]. Mathematically speaking, the Brinkman equations have different properties

due to the varying permeability tensor κ. When κ is very large, the Brinkman equations are

similar to Stokes equations. Conversely, when κ is small and close to zero, the equations are

similar to Darcy equations. Therefore, the numerical method designed for Brinkman equations

should be efficient and stable for both the Stokes and Darcy equations. To achieve this goal,

one natural attempt is to directly apply the existing stable Stokes elements (e.g. Mini-element,

P2 − P0 element, nonconforming Crouzeix-Raviart element) or the stable Darcy element (e.g.

Raviart-Thomas element) to the Brinkman equations. However, numerical experiments in [22]

show that when applying stable Darcy element the convergence would deteriorate when κ is

relatively large and vice versa. To overcome this difficulty, many recent studies have attempted

to develop suitable modified elements for Brinkman equations. For instance, Burman et al. [6]

add stabilizing terms penalizing the jumps on the normal component of the velocity field. Jun-

tunen et al. [15] generalize the classical Mini-element, and obtain a stable finite element method

for varying permeability. An H(div)-conforming element is applied to a geometric multi-grid

method [16] based on the DG method. In recent years, some new numerical approaches have

been developed for Brinkman equations, for example, virtual element methods [7], hybridiz-

able discontinuous Galerkin method [18, 19], mixed discontinuous Galerkin method [28], weak

Galerkin methods [14, 24, 36], and so on.

The weak Galerkin (WG) finite element method is first proposed by Wang and Ye [29] for the

second-order elliptic equations. They introduced the weak differential operators to approximate

the classical differential operators in the variational form. A unified study on WG methods

with other discontinuous Galerkin methods for solving partial differential equations has been

presented in [11, 12]. The discrete weak gradient is computed by the RTk or BDMk elements,

which limits the finite element partition to triangular meshes. In order to extend the partition

to polygonal meshes, a stabilizing term is added to the WG scheme in [30]. This stabilized

WG finite element method has been applied to various equations, see [13, 21, 23, 25–27, 31, 32].

However, such a stabilizing term also increases the difficulty of theoretical analysis and the

complexity of algorithm implementation. Therefore, efforts have been made to remove the

stabilizing term from the numerical scheme. A popular and efficient strategy is to raise the

degree of the polynomial that approximates the weak gradient [33]. The specific degree of

polynomial depends on the number of edges of polygonal meshes. Such a stabilizer free WG

method has been applied to Stokes equations [8], parabolic equations [2,37], wave equations [17],

biharmonic equations [34], and so on.

The purpose of this paper is to establish a stabilizer free weak Galerkin (SFWG) method

for Brinkman equations. Adopting high order piecewise polynomial space to approximate the

weak gradient of velocity, we establish a simple numerical scheme on general polygonal meshes

without any stabilizing term. Furthermore, we prove the well-posedness of the numerical scheme

and derive the optimal order error estimates. The corresponding energy and L2 error estimates

are independent of the permeability κ, so the SFWG method is suitable for both the Stokes and

Darcy dominated problems. Besides, in programming, the calculation of the stiffness matrix is

simpler and more intuitive since there is no stabilizing term.

The outline of the paper is summarized as follows. In Section 2, we introduce some basic

notations and the weak formulation of Brinkman model. Section 3 is devoted to constructing


