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Abstract

Given the measurement matrix A and the observation signal y, the central purpose

of compressed sensing is to find the most sparse solution of the underdetermined linear

system y = Ax+ z, where x is the s-sparse signal to be recovered and z is the noise vector.

Zhou and Yu [Front. Appl. Math. Stat., 5 (2019), Article 14] recently proposed a novel

non-convex weighted ℓr − ℓ1 minimization method for effective sparse recovery. In this

paper, under newly coherence-based conditions, we study the non-convex weighted ℓr − ℓ1
minimization in reconstructing sparse signals that are contaminated by different noises.

Concretely, the results reveal that if the coherence µ of measurement matrix A fulfills

µ < κ(s; r, α, N), s > 1, α
1

r N
1

2 < 1,

then any s-sparse signals in the noisy scenarios could be ensured to be reconstructed

robustly by solving weighted ℓr − ℓ1 minimization non-convex optimization problem. Fur-

thermore, some central remarks are presented to clear that the reconstruction assurance is

much weaker than the existing ones. To the best of our knowledge, this is the first mutual

coherence-based sufficient condition for such approach.
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1. Introduction

Compressed sensing [3, 8] has recently triggered much interest in signal and imaging pro-

cessing, statistics and applied mathematics. The crucial aim is to recover a high-dimensional

sparse signal from a small quantity of linear measurements. Generally, one thinks about the

linear model

y = Ax+ z, (1.1)

where A ∈ R
m×N is the measurement matrix with m ≪ N , z ∈ R

m is the noise vector and

x ∈ R
N is an s-sparse (i.e. the number of nonzero elements of x is not more than s) vector to be

recovered. Two widely utilized types of noises are the bounded ℓ2 noise [9,15] and the Dantzig

selector noise [4], respectively. Throughout the article, we suppose that the columns of A are

standardized, i.e. for all i, A⊤
i Ai = 1, where Ai, 1 ≤ i ≤ N , denotes the i-th column of A.

Because the linear model (1.1) is an underdetermined linear system, it is impossible to

stably reconstruct x based on A, z and y. Fortunately, it is possible to stably reconstruct

s-sparse signal x from (1.1) with a few appropriately exploiting sparse reconstruction methods

under suitable assumptions regarding A and z. There are two extensively applied frameworks to

describe such assumptions concerning A, which are separately the restricted isometry property

(RIP) [3] and the mutual coherence determined as [10, 12]

µ = max
1≤i<j≤N

|〈Ai, Aj〉|. (1.2)

For a more general definition of coherence, i.e. the block-coherence, see [13].

It is well known that ℓ1 minimization method [7], viewed as a convex extension of ℓ0 min-

imization method, presents an efficient approach for recovering s-sparse signal in numerous

contexts. The ℓ0 minimization method and the ℓ1 minimization method are respectively

min
x̃∈RN

‖x̃‖0

s.t. y = Ax̃+ z, ‖z‖2 ≤ ǫ,

min
x̃∈RN

‖x̃‖1

s.t. y = Ax̃+ z, ‖z‖2 ≤ ǫ.

Here ‖x̃‖0 represents the number of non-zero coordinates in x̃. In recent years, one alternative

approach of estimating the s-sparse signal in the references [6, 11, 14, 24, 25, 29] is to solve the

following ℓr minimization model:

min
x̃∈RN

‖x̃‖rr

s.t. y = Ax̃+ z, ‖z‖2 ≤ ǫ,
(1.3)

where ‖x̃‖rr =
∑N

i=1 |x̃i|r with x̃i being the i-th entry of x̃, r ∈ (0, 1] and

‖z‖2 =
(

m
∑

i=1

z2i

)
1

2

.

Compared with ℓ1 minimization, although it is more difficult to resolve model (1.3) because of

its noncovexity, there still exist a lot of algorithms to find the local optimal solution of (1.3).


