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Abstract

In this paper, we investigate the local discontinuous Galerkin method with generalized

numerical fluxes for one-dimensional nonlinear Korteweg-de Vries type equations. The

numerical flux for the nonlinear convection term is chosen as the generalized Lax-Friedrichs

flux, and the generalized alternating flux and upwind-biased flux are used for the dispersion

term. The generalized Lax-Friedrichs flux with anti-dissipation property will compensate

the numerical dissipation of the dispersion term, resulting in a nearly energy conservative

scheme that is useful in resolving waves and is beneficial for long time simulations. To

deal with the nonlinearity and different numerical flux weights, a suitable numerical initial

condition is constructed, for which a modified global projection is designed. By establishing

relationships between the prime variable and auxiliary variables in combination with sharp

bounds for jump terms, optimal error estimates are obtained. Numerical experiments are

shown to confirm the validity of theoretical results.
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1. Introduction

In this paper, we study the local discontinuous Galerkin (LDG) method with generalized

numerical fluxes for one-dimensional nonlinear Korteweg-de Vries (KdV) type equations

ut + f(u)x + uxxx = 0, (x, t) ∈ I × (0, T ], (1.1a)

u(x, 0) = u0(x), x ∈ I, (1.1b)

where u0(x) is a smooth function and I = [a, b]. The nonlinear function f(u) is assumed to be

sufficiently smooth with respect to u, and the exact solution u is smooth. The periodic boundary

conditions are mainly considered, and the case with mixed boundary conditions is numerically

investigated. For KdV equations, compared with the standard upwind and alternating fluxes,

the energy conserving scheme will produce a lower growth of errors and is efficient in resolving

waves. This can be achieved by choosing central fluxes for generalized KdV equations [1] or

the generalized numerical fluxes with different weights for linearized KdV equations [11]. For
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nonlinear KdV type equations (1.1), by constructing a suitable numerical initial condition and

a modified projection in combination with the relationships between the prime variable and

auxiliary variables, optimal error estimates are derived.

The nonlinear KdV type equation is an important model for many nonlinear phenomena,

which can describe wave phenomena in bubble-liquid mixtures [19], plasma physics [8] and

anharmonic crystals [24]. There have been a variety of work on the theoretical and numeri-

cal aspects of KdV equations. For example, in [7], a generalized tanh function method was

implemented to find the exact solutions of the KdV equation and the coupled KdV equation.

A meshless method of lines was presented for the numerical solution of the KdV equation in [16].

Numerical solution of the KdV equation was obtained using the space-splitting technique and

the differential quadrature method with cosine expansion [15].

The LDG method is an extension of the discontinuous Galerkin (DG) method. The DG

method is a class of finite element method using discontinuous piecewise polynomials as the

numerical solution and test functions, leading to advantages in high order accuracy, high par-

allel efficiency, flexibility for hp-adaptivity. It was first introduced to solve a linear steady-state

hyperbolic equation [14] and was developed for solving nonlinear time dependent conservation

laws [3,5]. The LDGmethod was proposed by Cockburn and Shu [4] to solve convection-diffusion

equations. The main idea of the LDG method is to rewrite the original partial differential equa-

tion (PDE) involving high order spatial derivatives into an equivalent first order system and

then the DG method can be applied. Later, it was actively applied to solve various high order

equations. We refer to review papers [17, 21] for more details.

The LDG scheme for KdV type equations was first proposed in [23], in which stability

property was shown for nonlinear case and suboptimal (k + 1/2)-th order was derived for the

linear case. In [10], the method was extended to solve the nonlinear dispersive PDE involving

compactly supported traveling wave solutions. For the LDG scheme solving nonlinear KdV

equations, suboptimal (k + 1/2)-th order error estimate was obtained [20], and the loss of half

an order is mainly due to some extra boundary terms arising from high order derivatives. By

establishing several energy equations, optimal error estimate of order k + 1 is derived for lin-

earized KdV equations [22]. Note that purely upwind and alternating fluxes are used in above

work. For generalized KdV equations, a posteriori error estimates of conservative LDG meth-

ods is given [9]. In [25], for KdV type systems, four conservative and dissipative LDG schemes

are proposed, in which the conservative/dissipative numerical fluxes are designed for the lin-

ear dispersion term and the nonlinear convection term, respectively. By virtue of some local

Gauss-Radau projections, suboptimal error estimates of order k+1/2 are derived for dissipative

fluxes, and numerical examples indicate that the conservative scheme performs better than the

dissipative one for long time simulations.

In addition to the stability issue of the numerical fluxes in the design of scheme, the nu-

merical viscosity plays an important role in resolving waves and for long time simulations. The

LDG method with central and generalized alternating fluxes for solving the Burgers-Poisson

equation was presented in [13]. The LDG scheme with upwind-biased and generalized alter-

nating fluxes for linear convection-diffusion problem was discussed in [2]. In [11], the LDG

method using generalized numerical fluxes for linearized KdV equations was studied and the

optimal error estimate was obtained. For scalar nonlinear hyperbolic conservation laws, the

generalized local Lax-Friedrichs (GLLF) flux that may not be monotone was proposed and

optimal error estimate was shown in [12]. In these studies, according to different choices of

numerical fluxes, generalized Gauss-Radau (GGR) projections were proposed, and an analysis


