
Journal of Computational Mathematics

Vol.43, No.1, 2025, 143–173.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2307-m2023-0016

A PERTURBED QUASI-NEWTON ALGORITHM FOR
BOUND-CONSTRAINED GLOBAL OPTIMIZATION*

Raouf Ziadi1) and Abdelatif Bencherif-Madani

Laboratory of Fundamental and Numerical Mathematics (LMFN), Department of Mathematics,

Faculty of Sciences, University Ferhat Abbas Setif 1, Setif, Algeria

Emails: ziadi.raouf@gmail.com, raouf.ziadi@univ-setif.dz, lotfi madani@yahoo.fr

Abstract

This paper presents a stochastic modification of a limited memory BFGS method to

solve bound-constrained global minimization problems with a differentiable cost function

with no further smoothness. The approach is a stochastic descent method where the

deterministic sequence, generated by a limited memory BFGS method, is replaced by

a sequence of random variables. To enhance the performance of the proposed algorithm

and make sure the perturbations lie within the feasible domain, we have developed a novel

perturbation technique based on truncating a multivariate double exponential distribution

to deal with bound-constrained problems; the theoretical study and the simulation of the

developed truncated distribution are also presented. Theoretical results ensure that the

proposed method converges almost surely to the global minimum. The performance of the

algorithm is demonstrated through numerical experiments on some typical test functions as

well as on some further engineering problems. The numerical comparisons with stochastic

and meta-heuristic methods indicate that the suggested algorithm is promising.

Mathematics subject classification: 90C26, 90C30.

Key words: Global optimization, Limited memory BFGS method, Stochastic perturbation,

Truncated multivariate double exponential distribution.

1. Introduction

In this paper we consider the following bound-constrained global optimization problem:

min
x∈D

f(x), (P)

where D is the hyper-rectangle
∏n

i=1 D
(i), D(i) = [a(i), b(i)], n ≥ 2 and the objective function

f(x) : Rn → R is differentiable but not necessarily convex. The problem (P) is of interest in

many real-world problems involving objective functions which are only differentiable. Numerous

algorithms, depending on the regularity of f , have been already proposed, see [7,8,16,27,29]. We

are concerned here with differentiable objective functions and no additional smoothness on ∇f

is required. As is well known the deterministic methods [10, 16, 26, 27] guarantee theoretically

their convergence to the global minimum in a finite number of iterations. However, most of them

suffer from computing challenges as the problem’s size is relatively high. On the other hand, the

stochastic population-based algorithms [3, 9, 24] are practically the most used. Unfortunately,

these methods are not based on theoretical results that guarantee their convergence to the

* Received January 20, 2023 / Revised version received April 18, 2023 / Accepted July 4, 2023 /

Published online December 25, 2023 /
1) Corresponding author

144 R. ZIADI AND A. BENCHERIF-MADANI

global minimum and most of them are computationally expensive. Their effectiveness, due to

the lack of guidance by a gradient during the searching process, is relatively inferior in terms

of convergence speed for this class of problems.

In differentiable optimization, the methods that are currently in active investigation include

the conjugate gradient and quasi-Newton’s methods [2], which generate a sequence of points

{xj}j∈N ⊂ R
n starting from an initial point x0 ∈ R

n following the procedure

xj+1 = xj + tjdj , (1.1)

where dj is a descent direction for f at xj and tj ∈ R
+ is a step-length which ensures that

xj+1 is a feasible point with f(xj+1) ≤ f(xj). Without convexity, these methods are limited

in applications since often only local minima are obtained. In order to escape from these local

minima, several modifications of the procedure (1.1) have been proposed. Pogu et al. [20] have

proposed, in the case where the search space is a ball, a random perturbation of the gradient

method with a fixed step-length and El Mouatasim et al. [7,8] have proposed respectively a ran-

dom perturbation of the reduced and the conditioned gradient methods for constrained global

optimization where the objective function is continuously differentiable; in these works, the

perturbations are governed by the standard normal distribution N (0, In). Ziadi et al. [30] have

introduced a competitive conjugate gradient algorithm by adjusting a Gaussian perturbation

strategy to a variant of the Polak-Ribière conjugate gradient method to solve bound-constrained

and unconstrained global optimization problems where the function’s gradient is supposed to

be fully Lipschitz. However, the drawback of the aforementioned methods, especially when

the dimension of the problem is relatively high, is that an important number of the generated

points lie outside the feasible domain, thereby being discarded slow down the algorithm.

To tackle this problem with only a differentiable cost function, we suggest here a direct

simulation of a truncated multivariate double exponential law on the hype-rectangle D. The

latter actually lends itself to truncation in D more efficiently than a multivariate Gaussian law

N (µ, σIn). To the best of our knowledge, the use of a truncated double exponential law is new

and in view of the comments in Morgan [14, pp. 100-103], it turns out to be relatively efficient

in our case. The rigorous simulation procedure is carried out in Section 4 below.

Moreover, we adjust our new truncated perturbation strategy by giving a new representation

of the quasi-Newton methods. We show how to use it efficiently to deal with bound-constrained

global optimization problems by combining our developed perturbation strategy with a variant

of L-BFGS-B (limited memory Broyden-Fletcher-Goldfarb-Shanno with boundaries) algorithm

proposed by Byrd et al. [4]. Recall that currently the so called L-BFGS-B algorithm is one

of the most efficient quasi-Newton methods for solving large-scale bound-constrained problems

due to features of rapid convergence and moderate memory requirement, but is still inadequate

for non-convex global optimization. Our proposed method will be called P-LBFGSB (Perturbed

L-BFGS-B algorithm). Starting from a point X0 in D, the new sequence {Xk}k∈N is given by

Xk+1 ∈ argmin
{

f
(

G(Xk)
)

, f
(

P1
k

)

, f
(

P2
k

)

, · · · , f
(

Pr
k

)}

(1.2)

with

P l
k = Pl

(

G(Xk)
)

, l = 1, 2, . . . , r,

where G(Xk) is the last point obtained by a few iterations using the L-BFGS-B algorithm

starting from Xk and Pl(G(Xk)), for l = 1, 2, . . . , r, are the stochastic perturbations of the

point G(Xk) that are renewed independently at each iteration k, having the following truncated

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 145

density function:

ΓD
µ,σ(x) =

1D(x)
∫

D

Nµ,σ(y)dy

·Nµ,σ(x), (1.3)

where 1D is the indicator function of D and

Nµ,σ(x) = (2 σ)−n exp

(

−
n
∑

i=1

∣

∣x(i) − µ(i)
∣

∣/σ

)

is the multivariate double exponential density function with σ is a positive scale referred to as the

diversity and µ = (µ(1), µ(2), · · · , µ(n)) is a location vector. The perturbations P1
k ,P

2
k , · · · ,P

r
k

are i.i.d (independent and identically distributed) random vectors having the common law ΓD
µ,σ

with the same diversity parameter that decreases to zero slowly enough to prevent the sequence

{Xk}k∈N from converging to a local minimum, see Section 3 below.

In what follows, after giving some notations, we briefly describe the quasi-Newton methods

in Section 2 and also the L-BFGS-B algorithm. Next we introduce our proposed truncated

perturbation strategy in Section 3 to be followed by its simulation in Section 4. In Section 5,

a detailed description of the P-LBFGSB algorithm and its convergence properties are given in

Section 6. In the last part, numerical results are reported and some conclusions are drawn.

1.1. Notation

We denote by f∗ the global minimum of f(·) in D, i.e. minDf = f∗ ∈ R and x∗ is a global

minimiser of problem (P). ∇f(x) designates the gradient of f at the point x. For x ∈ R
n, x(i) is

the i-th component of x and xT stands for the transpose of x. In is the n×n identity matrix and

1D is the indicator function of D. ‖x‖ is the Euclidean norm of x and ‖x‖∞ = maxi=1,...,n |x(i)|.

Λ(D) = ‖b− a‖ is the diameter of D, where

a =
(

a(1), a(2), · · · , a(n)
)

, b =
(

b(1), b(2), · · · , b(n)
)

.

The projection of x onto the feasible space D is PD(x), where

P
(i)
D (x) = min

{

max
(

a(i), x(i)
)

, b(i)
}

, i = 1, . . . , n.

For the sets A and B, we denote by A − B the set of points that are in A but not in B. The

symbol a ≃ b means that a is nearly equal to b, meas(·) stands for the Lebesgue measure on

R
n, r.v. for random variable or vector, a.s. for almost surely, and i.i.d. for independent and

identically distributed. P(A|B) = P(A ∩ B)/P(B) is the conditioned probability of A given B,

with P(B) > 0.

For notational simplicity, for l=1, . . . , r we set P l
k instead of Pl(G(Xk)), and for k = 0, 1, . . . ,

we set Gk instead of G(Xk), where G(Xk) designates the last point obtained by the L-BFGS-B

algorithm after a few iterations, starting from Xk.

2. Quasi-Newton Methods

Quasi-Newton methods are widely used in solving large-scale unconstrained local optimiza-

tion problems. They use the updating formulas for the approximation of the Hessian. Among

the most successful methods are the BFGS and especially L-BFGS (limited memory BFGS).

146 R. ZIADI AND A. BENCHERIF-MADANI

They start from an initial point x0 ∈ R
n and generate a sequence of points {xj}j∈N by the pro-

cess (1.1), where tj > 0 is a step-length which is determined by a line search procedure (usually

chosen so that it satisfies the Wolfe line search conditions) to ensure a sufficient decrease of f

and dj (the descent direction) is of the form

dj = −Hj∇f(xj), (2.1)

where Hj is the inverse Hessian approximation matrix updated by the following formula:

Hj+1 = V T
j HjVj + ρksjs

T
j (2.2)

with

yj = ∇f(xj+1)−∇f(xj), sj = xj+1 − xj , ρj =
1

yTj sj
, Vj = I − ρjyjs

T
j .

In the standard BFGS method, the update formula of Hj in (2.2) needs to stock a full sized

n2-matrix, whereby for large n, the induced cost in terms of memory space and calculations is

too important. To reduce the cost, the limited memory BFGS method (L-BFGS) was introduced

by Nocedal [13, 15] and is an adaptation of the BFGS method for large scale problems. The

only difference is in the matrix update: instead of storing the matrices Hj , the L-BFGS stores

the last m̃ + 1 couples {si, yi}
j
i∈j−m̃, which provides a fast rate of convergence and requires

minimal storage, where m̃ = min{j,m− 1} and m ≥ 1 is a given parameter (typically m = 5).

If the initial approximation matrix H0 is the identity matrix, then the first m iterations of the

BFGS and L-BFGS methods produce exactly the same directions. In the L-BFGS method, the

matrix Hj is obtained by updating m times the basic matrix H0 using BFGS formula with the

last m iterations. From (2.2) we see that Hj can be written as

Hj+1 =
[

V T
j · · ·V T

j−m̃

]

H0 [Vj−m̃ · · ·Vj]

+ ρj−m̃

[

V T
j · · ·V T

j−m̃+1

]

sj−m̃sTj−m̃ [Vj−m̃+1 · · ·Vj]

+ ρj−m̃+1

[

V T
j · · ·V T

j−m̃+2

]

sj−m̃+1s
T
j−m̃+1 [Vj−m̃+2 · · ·Vj]

· · · · · · · · · · · ·

+ ρjsjs
T
j . (2.3)

For bound-constrained problems, the L-BFGS-B algorithm (limited memory BFGS for

bound-constrained optimization) introduced by Byrd et al. [4] is an extension of the L-BFGS

algorithm to handle simple bounds. It is based on the gradient projection method and uses

a limited memory BFGS matrix H to approximate the inverse Hessian of the objective function.

Due to its ability to deal with bounds on the variables, it is considered as one of the most suc-

cessful large-scale bound-constrained optimization methods. For a given iteration j, the matrix

Hj that approximates the inverse Hessian at a point xj is calculated using the L-BFGS update

formula (2.3) and the objective function is approximated by a quadratic model as

qj(x) = f(xj) +∇f(xj)
T (x− xj) +

1

2
(x− xj)

THj(x− xj).

At each iteration, the L-BFGS-B algorithm minimizes qj(x) subject to D, using the gra-

dient projection strategy to determine a set of active constraints, followed by a minimization

of qj(x) regarding the active bounds as equality constraints. The computation for the general-

ized Cauchy point and the subspace minimization are the most crucial phases at each iteration j

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 147

(for more details see [4]). The objective of the Cauchy point computation is to minimize the

quadratic approximation of the objective function qj(x), starting from the current point xj ,

on the path defined by the projection of the steepest descent direction on the feasible domain.

After the Cauchy point xc is obtained, the quadratic function qj(x) is minimized over the free

variables subject to their lower and upper bounds, i.e. the variables that are identified as inside

the feasible design space, and then backtracked into the feasible design space to obtain x̃. The

new search direction is computed as dj = x̃j − xj and a step-length tj is determined in such

a way that it satisfies the strong-Wolfe conditions (SW) to compute the new design variable xj+1

f(xj + tjdj)− f(xj) ≤ c1tj∇f(xj)
T dj ,

∣

∣∇f(xj + tjdj)
Tdj
∣

∣ ≤ c2
∣

∣∇f(xj)
T dj
∣

∣, (SW)

where 0 < c1 < 1/2 and c1 < c2 < 1. The matrixHj+1 is then computed based on the new point

xj+1 using the L-BFGS update formula (2.3) and a new iteration is started. The algorithm

stops when, for a point xj , the norm of the projected gradient (in the sup-norm sense) onto the

feasible design space is small, i.e. ‖PD (xj −∇f(xj))− xj‖∞ ≃ 0.

3. The Truncated Multivariate Double Exponential Perturbation

As mentioned above, the convergence of the quasi-Newton methods to the global minimum

cannot be guaranteed without convexity. We shall overcome this difficulty by using appropriate

perturbations. The idea is to perturb the point obtained by the procedure G(·) provided by

a L-BFGS-B variant. The new sequence of iterates, denoted by {Xk}k∈N, is obtained using

formula (1.2) where the term Xk+1 is the record point at the step k + 1. It is the result

of a series of convenient perturbations P1
k ,P

2
k , · · · ,P

r
k of the term G(Xk) (see Algorithm 5.1

below). The main difficulty here is that a significant loss of information, thereby slowing

down the algorithm, occurs when an important number of perturbation points are generated

outside the feasible domain, especially in large scale problems. Inspired by [30], our idea is

to perturb the last point thus obtained by the procedure G(·) using the truncated multivariate

double exponential law whose diversity parameter σ decreases slowly to zero. The perturbations

P1
k ,P

2
k , · · · ,P

r
k are renewed independently at each iteration k and the new record point Xk+1

is chosen according to formula (1.2). The r.v. P1
k ,P

2
k , · · · ,P

r
k are i.i.d. with density ΓD

Gk,σk
(x)

obtained from (1.3) by letting µ = Gk and σ = σk,

ΓD
Gk,σk

(x) =
1D(x)

∫

D

exp

(

−
n
∑

i=1

∣

∣y(i) − G
(i)
k

∣

∣/σk

)

dy

exp

(

−
n
∑

i=1

∣

∣x(i) − G
(i)
k

∣

∣/σk

)

, (3.1)

where the sequence {σk}k∈N is chosen as follows:

σk =
Λ(D)

ln(k + n)α
, (3.2)

where Λ(D) = ‖b− a‖, n ≥ 2 and α > 0 is a parameter to be defined below. From (3.1), for all

k ≥ 0 and l ∈ {1, . . . , r}, P l
k ∈ D a.s., i.e. P(P l

k ∈ D) = 1.

There are three parameters in the definition of {σk}k∈N: Λ(D) the diameter of the feasible

domain, α the rate of decrease of the sequence {σk}k∈N and n the dimension of space. In our

choice, Λ(D) and α have leading roles. The explicit appearance of Λ(D) in the numerator

148 R. ZIADI AND A. BENCHERIF-MADANI

allows the possibility to make explorations in all regions of the feasible domain; however, given

such a generality and through numerical experiments, it is plain that some extra care is needed

to somehow dampen the influence of Λ(D) (especially for large-size domains), whence the

appearance of n in the denominator. Moreover, concerning the asymptotic behaviour of the

sequence {σk}k∈N, it is important, for σk to decrease slowly to zero: a logarithm is a first-hand

candidate slowly varying function. In this way, the first few terms of the sequence {σk}k∈N

will fit in with Λ(D), that is if the search space D is large, the perturbation points will be

sufficiently spread out to cover D, diversify the search and avoid stagnation in local minima

zones, see Figs. 5.1-5.4.

Note that along the iterations k, the generated perturbations P1
k ,P

2
k , · · · ,P

r
k will increas-

ingly tend to concentrate and after a certain threshold, the perturbations cluster around one

point only (which is a global minimum with high probability). The rate of decrease of the

sequence {σk}k∈N is strongly linked to the choice of the parameter α, see the comments of

Table 7.3 for its precise influence.

4. Simulation of the Truncated Double Exponential Law ΓD
µ,σ(x)

We suggest here a proper, though elementary, simulation of ΓD
µ,σ which, as pointed out

above, is of some efficiency against the truncated Gaussian law, even in a spherical domain.

Recall that

ΓD
µ,σ(x) =

1D(x)
∫

D

Nµ,σ(y)dy

·Nµ,σ(x),

where

Nµ,σ(x) =
1

(2σ)n
exp

(

−
n
∑

i=1

∣

∣x(i) − µ(i)
∣

∣/σ

)

.

Our choice of the law ΓD
µ,σ(x) is tailored to fit the situation of our paper. Since

D =

n
∏

i=1

D(i), D(i) = [a(i), b(i)], i = 1, 2, . . . , n,

ΓD
µ,σ(x) appears as the density of the vector whose independent components are the one-

dimensional truncated double exponential laws

ΓD(i)

µ(i),σ(s) =
1D(i)(s)

∫ b(i)

a(i)

e−
|s−µ(i)|

σ ds

e−
|s−µ(i)|

σ , i = 1, 2, . . . , n.

The simulation of such a vector is then carried out by simple one-dimensional inversions.

By straightforward calculations, for i = 1, 2, . . . , n, we have

∫ b(i)

a(i)

e−
|s−µ(i)|

σ ds =

∫ µ(i)

a(i)

e−
µ(i)−s

σ ds+

∫ b(i)

µ(i)

e−
s−µ(i)

σ ds

= σ
(

2− e−
µ(i)−a(i)

σ − e−
b(i)−µ(i)

σ

)

.

The cumulative distribution function F (i), i = 1, 2, . . . , n of the density ΓD(i)

µ(i),σ
has two forms.

When s ∈ [a(i), µ(i)], we have

F (i)(s) = λ(i)
(

e
s
σ − e

a(i)

σ

)

,

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 149

where

λ(i) =
σe−

µ(i)

σ

∫ b(i)

a(i)

e−
|s−µ(i)|

σ ds

,

and when s ∈ (µ(i), b(i)],

F (i)(s) = F (i)
(

µ(i)
)

+ β(i)
(

1− e−
s−µ(i)

σ

)

,

where β(i) = λ(i)eµ
(i)/σ.

Therefore, for a component P(i), i = 1, 2, . . . , n, we draw a uniform r.v. U (i) in [0, 1]; we

take P(i) to be σ log(ea
(i)/σ + U (i)/λ(i)) or µ(i) + σ log((1 − (U (i) − C(i))/β(i))−1) according to

the cases U (i) < C(i) and U (i) ≥ C(i), where

C(i) = λ(i)
(

e
µ(i)

σ − e
a(i)

σ

)

.

Algorithm 4.1 below simulates the generation of such a random vector P , i.e. our proposed

truncated multivariate double exponential law ΓD
µ,σ for given parameters µ and σ.

Algorithm 4.1: Pseudo-Code of the Simulation of the Truncated Double Exponential

Law ΓD
µ,σ.

Input : n, lower and upper bounds a = (a(1), a(2), · · · , a(n)), b = (b(1), b(2), · · · , b(n)),

the expected value µ = (µ(1), µ(2), · · · , µ(n)) and diversity parameters σ.

Output: P = (P(1),P(2), · · · ,P(n)).

1 for i = 1, . . . , n do

// Calculate M (i), λ(i), β(i) and C(i) for each coordinate i

2 M (i) =

∫ b(i)

a(i)

e−
|s−µ(i)|

σ ds = σ
(

2− e−
µ(i)−a(i)

σ − e−
b(i)−µ(i)

σ

)

.

3 λ(i) =
σ

M (i)
e−

µ(i)

σ .

4 β(i) = λ(i)e
µ(i)

σ .

5 C(i) = λ(i)
(

e
µ(i)

σ − e
a(i)

σ

)

.

// Generate a uniform r.v. U (i) on [0, 1] for each coordinate i

6 U (i) = U[0,1].

7 if U (i) < C(i) then Set P(i) = σ log

(

e
a(i)

σ +
U (i)

λ(i)

)

.

8 else Set P(i) = µ(i) + σ log

(

(

1−
U (i) − C(i)

β(i)

)−1
)

.

9 end

10 Return: P .

In order to further describe our modification, Fig. 4.1 illustrates the difference between the

(univariate) double exponential density and its truncation. Moreover, Figs. 4.2 and 4.3 represent

the points generated by the bivariate double exponential and the bivariate truncated double

exponential laws on the squares [−2, 2]2 and [−0.5, 0.5]2 with the same diversity parameter.

150 R. ZIADI AND A. BENCHERIF-MADANI

(a) σ = 2, µ = 0 (b) σ = 3, µ = 0

Fig. 4.1. Probability density functions on [−2, 2], with different diversity parameters.

(a) (b)

Fig. 4.2. Illustration of 500 points generated by double exponential (a) and our truncated double

exponential (b) distributions with σ = 2 and µ = (0, 0) in the box [−2, 2]2.

(a) (b)

Fig. 4.3. Illustration of 500 points generated by double exponential (a) and our truncated double

exponential (b) distributions with σ = 2 and µ = (0, 0) in the box [−0.5, 0.5]2.

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 151

5. The P-LBFGSB Algorithm

5.1. Algorithm description

For each step k ≥ 0 of the P-LBFGSB algorithm, let xj be the j-th iterated point of the

L-BFGS-B local search algorithm starting from x0 = Xk, where the step-length tj is calculated

for each descent direction dj . At the step k, in each iteration j of the L-BFGS-B algorithm,

we update the initial (identity) matrix H0 for m times using L-BFGS formula to get Hj+1

according to the Eq. (2.3). Also, as we need to store the last m values of the pairs {yi, si}
j
i∈j−m̃,

we can not repeatedly perturb the main iteration (1.1) (since for j ≥ 1 the matrix Hj is used

to determine a descent direction following L-BFGS-B method). In order to exploit Hj for

an effective descent while avoiding a premature convergence towards a local minimum, we shall

run a few iterations of the L-BFGS-B local search method with Jmax ≥ m, then the last record

point thus obtained x
Jmax

is perturbed following the formula (1.2) and the new record point

will be noted Xk+1. However, if for a certain j ≤ Jmax we have

∥

∥PD

(

xj −∇f(xj)
)

− xj

∥

∥

∞
< 10−5,

then xj is a local minimizer; in this case, we call upon the stochastic perturbation procedure

since the L-BFGS-B method can not be used. In both cases, the new record point will be

noted Xk+1 and is determined following scheme (1.2). We continue this process until the

stopping criterion is fulfilled (see Remark 5.1 below). Algorithm 5.1 below summarizes the

main steps of the proposed method.

Remark 5.1 (The Stopping Conditions of the Algorithm). As can be seen in Theo-

rem 6.1, the algorithm converges asymptotically to the global minimum with probability one;

for this reason, there are two types of stop criteria that can be used to terminate the searching

process. Firstly, the searching process can stop when a maximal number of iterations Kmax has

been reached. Alternatively, one can stop the algorithm if the diversity parameter σk reaches

a value less than σmin (small enough), since in this case there is a too poor bet seeking for

a lower promising region.

Figs. 5.1-5.4 illustrate the work done by the P-LBFGSB algorithm, to minimise the Drop-

Wave, Langerman, Michalewicz, and Shaffer 2 functions (by setting r = 10, α = 3, Jmax = 5).

Fig. 5.1. Minimization process of the Drop-Wave function: Global minimizer x∗ = (0, 0) with global

minimum f(x∗) = −1.

152 R. ZIADI AND A. BENCHERIF-MADANI

Fig. 5.2. Minimization process of the Modified Langerman function: Global minimizer x∗ = (9.68107,

0.66665) with global minimum f(x∗) = −0.96500.

Fig. 5.3. Minimization process of the Michalewicz’s function: Global minimizer x∗ = (2.2029, 1.5707)

with global minimum f(x∗) = −1.8013.

Fig. 5.4. Minimization process of the Schaffer 2 function: Global minimizer x∗ = (0, 0) with global

minimum f(x∗) = 0.

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 153

Algorithm 5.1: Pseudo-Code of the P-LBFGSB Algorithm.

Input : Objective function f , search-space Limits: (a, b), dimension of problem n,

define the diversity sequence {σk}k∈N with parameter α > 0, Jmax the

maximum number of iterations in the L-BFGS-B descent procedure, r the

number of perturbations during a step k.

Output: Global minimum f∗ and global minimizer x∗.

// Initialization

1 Set k = 0 and choose randomly X0 in D.

2 Set f∗ = f(X0) and x∗ = X0.

// Main loop

3 while the stopping criterion not fulfilled do

4 Set σk = Λ(D)/(ln(k + n)α).

// L-BFGS-B local search phase

5 Set j = 0, x0 = Xk and set H0 = In.

6 while j ≤ Jmax and ‖PD(xj −∇f(xj))− xj‖∞ ≥ 10−5 do

// Apply the L-BFGS-B local search algorithm, starting from x0 = Xk

and let G(Xk) the last point obtained.

7 Update Hj using the L-BFGS update formula (2.3).

8 Calculate dj and tj.

9 Set xj+1 = xj + tjdj .

10 j = j + 1.

11 end

12 Set G(Xk) = xj // G(Xk) is the last point obtained after j iterations

starting from Xk.

// Perturbation phase

13 Generate r random vectors i.i.d. P1
k ,P

2
k , · · · ,P

r
k following (3.1) using

Algorithm 4.1.

14 Select Xk+1 ∈ argmin{f(G(Xk)), f(P1
k), f(P

2
k), · · · , f(P

r
k)}

15 k = k + 1.

16 end

17 Set x∗ = Xk, x
∗ is a prescribed solution and f∗ = f(Xk) is the approximated global

minimum.

// Get the solution

18 Return (x∗, f∗).

6. The Convergence of the P-LBFGSB Algorithm

Let X0 be a starting point with f(X0) > f∗. The sequence of r.v. {f(Xk)}k∈N where Xk is

defined in (1.2), is clearly decreasing and bounded below by f∗ a.s. so that it does converge a.s.

to a limit greater than or equal to f∗. It only remains to show that the limit is actually f∗. For

a level θ > f∗, by monotonicity, it suffices to show that the event {f(Xk) ≤ θ, infinitely often}

holds with probability one, for all real θ ∈ (f∗, f(X0)). We are inspired by [23] where the

following version of the celebrated Borel-Cantelli lemma is given.

154 R. ZIADI AND A. BENCHERIF-MADANI

Lemma 6.1. Let {Tk}k∈N be a decreasing sequence of r.v. which is bounded below by T ∗ ∈ R.

Suppose there exists γ > 0 such that for all θ ∈ (T ∗, T ∗ + γ) there exists a sequence of positive

reals {δk(θ)}k∈N with

P {Tk+1 ≤ θ | Tk > θ} ≥ δk (θ) > 0,

+∞
∑

k=0

δk(θ) = +∞, (6.1)

then the sequence of r.v. {Tk}k≥0 converges to T ∗ a.s.

We can make explicit calculations to exhibit the diverging series {δk(θ)}k∈N. Indeed we

have the lemma.

Lemma 6.2. Let γ = f(X0) − f∗ > 0 and θ ∈ (f∗, f∗ + γ), set Dθ = {x ∈ D, f(x) < θ}. For

all k ∈ N we have

P {f(Xk+1) < θ | f(Xk) ≥ θ} ≥
(

σkπΛ(D)
)−n

2 meas(Dθ) exp
(

− nΛ(D)/σk

)

. (6.2)

Proof. Note that Dθ is compact with non empty interior. Since Xk+1 is the record up to

iteration k, then from (1.2), for k ∈ N and l ∈ {1, . . . , r}, we have

f(Xk+1) ≤ f(P l
k).

Since P1
k ,P

2
k , · · · ,P

r
k are i.i.d. random variables, for all θ ∈ (f∗, f∗ + γ) and l ∈ {1, . . . , r}, we

have

P {f(Xk+1) < θ, f(Xk) ≥ θ} ≥ P
{

f
(

P l
k

)

< θ, f(Xk) ≥ θ
}

= P
{

f
(

P1
k

)

< θ, f(Xk) ≥ θ
}

.

It follows that

P {f(Xk+1) < θ, f(Xk) ≥ θ}

≥ P
{

f(P1
k) < θ, f(Xk) ≥ θ

}

= P
{

P1
k ∈ Dθ, Xk /∈ Dθ

}

= P
{

P1
k ∈ Dθ, Xk ∈ D −Dθ

}

=

∫

D−Dθ

1
∫

D

exp

(

−
n
∑

i=1

∣

∣y(i) − G(i)(Xk)
∣

∣/σk

)

dy

×

{

∫

Dθ

exp

(

−
n
∑

i=1

∣

∣y(i) − G(i)(x)
∣

∣/σk

)

dy

}

P {Xk ∈ dx}

≥
1

∫

D

exp

(

−
n
∑

i=1

∣

∣y(i) − G(i)(Xk)
∣

∣/σk

)

dy

× inf
x∈D−Dθ

{

∫

Dθ

exp

(

−
n
∑

i=1

∣

∣y(i) − G(i)(x)
∣

∣/σk

)

dy

}

∫

D−Dθ

P {Xk ∈ dx} .

Since
n
∑

i=1

∣

∣y(i) − G(i)(Xk)
∣

∣/σk ≥ ‖y − G(Xk)‖
2/
(

σk Λ(D)
)

,

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 155

then

P {f(Xk+1) < θ, f(Xk) ≥ θ}

≥
1

∫

D

exp
(

− ‖y − G(Xk)‖
2/
(

σk Λ(D)
)

)

dy

× inf
x∈D−Dθ

{

∫

Dθ

exp

(

−
n
∑

i=1

∣

∣y(i) − G(i)(x)
∣

∣/σk

)

dy

}

∫

D−Dθ

P {Xk ∈ dx}

≥
1

∫

Rn

exp
(

− ‖y − G(Xk)‖
2/
(

σk Λ(D)
)

)

dy

× inf
x∈D−Dθ

{

∫

Dθ

exp

(

−
n
∑

i=1

∣

∣y(i) − G(i)(x)
∣

∣/σk

)

dy

}

∫

D−Dθ

P {Xk ∈ dx} .

Since meas(D −Dθ) > 0, then
∫

D−Dθ

P {Xk ∈ dx} = P {Xk /∈ Dθ} > 0.

Therefore, by the elementary Bayes formula

P
{

f(Xk+1) < θ | f(Xk) ≥ θ
}

≥
1

∫

Rn

exp
(

−‖y − G(Xk)‖
2/
(

σk Λ(D)
))

dy

inf
x∈D−Dθ

{

∫

Dθ

exp

(

−
n
∑

i=1

∣

∣y(i)−G(i)(x)
∣

∣/σk

)

dy

}

.

By an elementary Gaussian integral, we have
∫

Rn

exp
(

− ‖y − G(Xk)‖
2/
(

σk Λ(D)
)

)

dy =
(

σkπΛ(D)
)

n
2 .

On the other hand, since we have
n
∑

i=1

∣

∣y(i) − G(i)(x)
∣

∣/σk ≤ nΛ(D)/σk,

then

P
{

f(Xk+1) < θ | f(Xk) ≥ θ
}

≥ meas(Dθ)/
(

σkπΛ(D)
)

n
2 exp (−nΛ(D)/σk) .

The proof is complete. �

We are now in the position to state the theorem.

Theorem 6.1. Let us assume that f(X0) > f∗, then the proposed algorithm converges to the

global minimum almost surely.

Proof. Since the sequence {σk}k∈N is decreasing, then from Lemma 6.2, for all θ ∈ (f∗, f∗+γ)

and k ∈ N, we have

P
{

f(Xk+1) < θ | f(Xk) ≥ θ
}

≥ meas(Dθ)/
(

σkπΛ(D)
)

n
2 exp

(

− nΛ(D)/σk

)

≥ meas(Dθ)/
(

σ0πΛ(D)
)

n
2 exp

(

− nΛ(D)/σk

)

.

On the other hand, by replacing {σk}k∈N by its value in the Eq. (3.2) and since meas(Dθ) > 0,

then for all θ ∈ (f∗, f∗ + γ) and k ∈ N, we have

156 R. ZIADI AND A. BENCHERIF-MADANI

P
{

f(Xk+1) < θ | f(Xk) ≥ θ
}

≥
(

meas(Dθ)/
(

σ0πΛ(D)
)

n
2

)

(k + n)−nα > 0.

Now, for α ≤ 1/n the series with the general term

δk(θ) =
(

meas(Dθ)/
(

σ0πΛ(D)
)

n
2

)

(k + n)−nα,

is diverging, whence the result by Lemma 6.1. �

Inspired by [21], the next theorem deals with the case where f has a unique global min-

imiser x∗ over D. In this situation, the sequence of best solutions {Xk}k∈N converges to x∗

almost surely.

Theorem 6.2. If x∗ is the unique global minimiser of f over D, then the sequence of best

solutions {Xk}k∈N generated by the P-LBFGSB algorithm converges to x∗ almost surely.

Proof. For all δ > 0, set Sδ = B(x∗, δ) and f̃δ = minx∈D−Sδ
f(x); note that f̃δ > f∗. Since

the sequence {f(Xk)}k∈N converges to f∗ a.s. (from Theorem 6.1), it follows that there exists

a set A ⊂ Ω with P(A) = 0 so for all ω ∈ Ac we have f(Xk(ω)) → f∗. Then, for each ω ∈ Ac,

there is an integer k̃ such that for all k ≥ k̃ we have

f
(

Xk(ω)
)

− f∗ < f̃δ − f∗,

so that f(Xk(ω)) < f̃δ. If Xk(ω) ∈ D − Sδ, then ‖Xk(ω) − x∗‖ ≥ δ and therefore f(Xk(ω)) ≥

f̃δ > f∗, which is a contradiction. Therefore, we must have Xk(ω) ∈ Sδ for all k ≥ k̃ and the

sequence {Xk}k≥0 converges to x∗ a.s. �

7. Numerical Experiments

We present here a series of numerical results concerning the P-LBFGSB algorithm applied to

a diverse set of test problems found in [19,29], as well as on three engineering applications. All

numerical experiments are implemented in the scientific software MATLAB version R2015a. In

all experiments, the P-LBFGSB algorithm is implemented with the setting parameters α = 3,

r = 10n for the perturbation phase, whereas for the local search algorithm L-BFGS-B, we

have used the L-BFGS-B MATLAB code, downloadable from [31], with the setting parameters

Jmax = 10,m = 5 and H0 = In, the other parameters are set to their standard values. These

parameters are considered standard except for the results in Table 7.3 where the method’s

response is examined when the tuning parameters assume different values. The number of

evaluations involved in the P-LBFGSB algorithm is given by the following formula:

Nfg = Nf + n×Ng, (7.1)

where n is the dimension of the problem, Nf and Ng are respectively the number of evaluations

of the objective and gradient functions f(·) and ∇f(·).

To begin with, in order to illustrate the fact that the stochastic perturbation of the L-

BFGS-B method does lead to a global minimiser, it is compared in Table 7.2 with three BFGS

variants: standard BFGS [2], HANSO [17] and L-BFGS-B [4] using certain non-convex func-

tions taken from Table 7.1. The standard BFGS and HANSO are unconstrained quasi-Newton

algorithms, their MATLAB implementations are freely downloadable from [32] and used for

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 157

Table 7.1: Test problems.

Problem number Dimension n Problem name Search region Global minimum

1 2 Schaffer 2 function [−10, 10]2 0

2 2 Drop-Wave function [−10, 10]2 −1

3 2 Shubert function [−10, 10]2 −186.7309

4 2 Bird function [−2π, 2π]2 −106.764537

5 4 Wood function [−30, 30]4 0

6 4 Colville function [−10, 10]4 0

7, 8, 9, 10, 11, 12 5, 10, 20, 30, 40, 50 Dixon and Price function [−10, 10]n 0

13 10 0.096103

14 20 0.192206

15 30 Cosine Mixture function [−30, 30]n 0.288309

16 40 0.384412

17, 18, 19, 20, 21, 22 5, 10, 20, 30, 40, 50 Exponential function [−30, 30]n 0

23, 24, 25, 26, 27, 28 4, 10, 20, 30, 40, 50 Griewank function [−30, 30]n 0

29, 30, 31, 32, 33, 34 5, 10, 20, 30, 40, 50 Levy and Montalvo 1 function [−10, 10]n 0

35, 36, 37 2, 8, 10 Easom function [−20, 20]n −1

38, 39, 40, 41 3, 5, 7, 10 Salomon function [−10, 10]n 0

42 2 −1.80130

43 5 Michalewicz function [0, π]n −4.68765

44 8 −7.66375

45 10 −9.66015

46 2 −1.08093

47 5 Modified Langerman function [0, 10]n −0.96500

48 7 −0.51700

49 10 −0.96500

50 3 [0, 1]3 −3.86278

51 6 Hartamann function [0, 1]6 −3.32237

52, 53, 54 2, 5, 7 Modified Xin-She Yang 3 function [−10, 10]n 0

55, 56, 57 2, 5, 7 Expanded Schaffer function [−5, 5]n 0

58, 59, 60, 61, 62, 63 4, 10, 20, 30, 40, 50 Rosenbrock function [−5, 5]n 0

64, 65, 66, 67, 68, 69 5, 10, 20, 30, 40, 50 Rastrigin function [−5.12, 5.12]n 0

70, 71, 72, 73, 74, 75 4, 16, 20, 24, 40, 50 Powell function [−10, 10]n 0

76, 77, 78, 79, 80, 81 5, 10, 20, 30, 40, 50 Perm’s function (P)n,0 .5 [−n,n]n 0

82, 83, 84, 85, 86, 87 5, 10, 20, 30, 40, 50 Ackley function [−30, 30]n 0

88 5 −195.8299

89 10 Styblinski-Tang function [−5, 5]n −391.6599

90 20 −783.3195

91 30 −1174.9797

92 4 m = 5,−10.1532

93 4 Shekel function [0, 10]4 m = 7,−10.4029

94 4 m = 10,−10.5364

95 2 4.98151

96 5 Paviani function [2.001, 9.99]n 9.73052

97 10 −45.77847

98 2 −1.4914

99 8 Sine envelope function [−10, 10]n −10.44047

100 10 −13.41403

158 R. ZIADI AND A. BENCHERIF-MADANI

Table 7.2: Performance comparison of P-LBFGSB with BFGS, L-BFGS-B and HANSO methods.

Part I.

Problem
x0

BFGS

number Nf/Ng/Nfg/CPU(s)

84/84/924/0.1077

24 x0 = (−2, · · · ,−2) x∗

loc
= (−3.1401,−13.3154, · · · , 0)

f∗

loc
= 0.0468

73/73/8036/0.1063

25 x0 = (10, 10, · · · , 10) x∗

loc
= (9.42, 8.8768, · · · , 9.8851)

f∗

loc
= 0.1599

1315/1315/67065/3.1461

34 x0 = (10, 10, · · · , 10) x∗

loc
= (−1.0422,−1.0346, · · · , 10.8345)

f∗

loc
= 630.0132

44/44/132/0.0843

42 x0 = (7, 9) x∗

loc
= (7, 9.0226)

f∗

loc
= −0.3910

42/42/252/0.1030

43 x0 = (1, π, 3, π, 2) x∗

loc
= (1, 3.1416, 2.8620, 3.1416, 2)

f∗

loc
= −0.2731

58/58/522/0.0906

44 x0 = (1, π, π, 0, 0, π, 3, 2) x∗

loc
= (1, 3.1416, 3.1416, · · · , 1.7560)

f∗

loc
= −1.9806

1/1/11/0.0394

45 x0 = (0, π, · · · , 0, π) x∗

loc
= (0, 3.1416, · · · , 0, 3.1416)

f∗

loc
= −2.6787e-309

61/61/183/0.0875

46 x0 = (3, 10) x∗

loc
= (3.2601, 10.9656)

f∗

loc
= −1.5611e-04

59/59/354/0.1050

47 x0 = (9, 2, 1, 5, 1) x∗

loc
= (8.9967, 2.1633, 1.0093, 4.9910, 1.0311)

f∗

loc
= −8.9552e-04

51/51/561/0.1843

65 x0 = (−0.3944, 1.2071, · · · ,−0.3944, 1.2071) x∗

loc
= (1.9899,−2.9849, · · · ,−2.9849)

f∗

loc
= 64.6722

51/51/1071/0.11119

66 x0 = (−3.2700, 3.3090, · · · ,−3.2700, 3.3090) x∗

loc
= (0.9949,−0.995, · · · ,−0.995)

f∗

loc
= 19.8992

60/60/1860/0.1402

67 x0 = (−1,−1,−8, · · · ,−1,−1,−8) x∗

loc
= (0.9949, 0.9949, · · · , 7.9592)

f∗

loc
= 656.6558

62/62/2542/0.159858

68 x0 = (1.5, 2.5, 4.2, 3.2, · · · , 1.5, 2.5, 4.2, 3.2) x∗

loc
= (0.9949, 1.9899, · · · ,−4.9747)

f∗

loc
= 1.9648e-03

58/58/2958/0.1715

69 x0 = (−8.5, 4,−2.2,−3,−1, · · · ,−8.5, 4,−2.2,−3,−1) x∗

loc
= (0,−0.9950, · · · ,−2.9849)

f∗

loc
= 895.4446

40/40/240/0.0840

82 x0 = (10, 10, 10, 10, 10) x∗

loc
= (9.9949, 9.9949, 10, 10, 10)

f∗

loc
= 17.2919

40/40/840/ 0.1097

84 x0 = (10, 10, 10, · · · , 10) x∗

loc
= (9.9949, 9.9949, · · · , 10)

f∗

loc
= 17.2919

40/40/2040/ 0.1112

87 x0 = (10, 10, · · · , 10) x∗

loc
= (9.9949, 9.9949, · · · , 10)

f∗

loc
= 17.2919

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 159

Table 7.2: Performance comparison of P-LBFGSB with BFGS, L-BFGS-B and HANSO methods.

Part II.

Problem
x0

L-BFGS-B

number Nf/Ng/Nfg/CPU(s)

57/11/167/0.1173

24 x0 = (−2, · · · ,−2) x∗

loc
= (−3.1346,−4.4232, · · · , 0.0001,−0.0163)

f∗

loc
= 0.0076

109/21/529/0.1756

25 x0 = (10, 10, · · · , 10) x∗

loc
= (3.1400, 4.4384, · · · ,−0.0001,−0.0001)

f∗

loc
= 0.0296

422/52/3022/1.2485

34 x0 = (10, 10, · · · , 10) x∗

loc
= (−0.9541,−0.9423, · · · , 10.8340)

f∗

loc
= 2.0883e+03

15/3/21/0.0906

42 x0 = (7, 9) x∗

loc
= (7, 9.0187)

f∗

loc
= −0.3829

42/5/67/0.1031

43 x0 = (1, π, 3, π, 2) x∗

loc
= (1, 3.1416, 2.8620, 3.1416)

f∗

loc
= −0.2731

66/8/130/0.1164

44 x0 = (1, π, π, 0, 0, π, 3, 2) x∗

loc
= (1, 3.1416, 3.1416, 0, 0, 3.1416, 3.0250, 2.0777)

f∗

loc
= −0.9894

21/1/31/0.0678

45 x0 = (0, π, · · · , 0, π) x∗

loc
= (0, 3.1416, · · · , 0, 3.1416)

f∗

loc
= −2.6787e-309

12/3/18/0.0915

46 x0 = (3, 10) x∗

loc
= (2.9362, 10.0158)

f∗

loc
= −1.2081e-04

27/6/57/0.3511

47 x0 = (9, 2, 1, 5, 1) x∗

loc
= (9.0010, 2.0006, 1.0067, 5.0070)

f∗

loc
= −8.9331e-04

50/12/170/0.1151

65 x0 = (−0.3944, 1.2071, · · · ,−0.3944, 1.2071) x∗

loc
= (−0.5e-4,−0.4e-4, · · · ,−0.5e-4,−0.4e-4)

f∗

loc
= 100

63/12/303/0.1417

66 x0 = (−3.2700, 3.3090, · · · ,−3.2700, 3.3090) x∗

loc
= (−0.9950, 0.9950, · · · ,−0.9950, 0.9950)

f∗

loc
= 19.8992

55/8/295/0.1520

67 x0 = (−1,−1,−8, · · · ,−1,−1,−8) x∗

loc
= (−0.9950,−0.9950, · · · ,−0.9950,−5.9696)

f∗

loc
= 378.0791

35/3/155/0.1389

68 x0 = (1.5, 2.5, 4.2, 3.2, · · · , 1.5, 2.5, 4.2, 3.2) x∗

loc
= (−4.9747, 3.9797, · · · , 1.9899,−2.9849)

f∗

loc
= 537.2740

186/22/1286/1.0681

69 x0 = (−8.5, 4,−2.2,−3,−1, · · · , x∗

loc
= (−4.9747, 3.9797, · · · ,−2.9849,−0.9950)

−8.5, 4,−2.2,−3,−1) f∗

loc
= 417.8805

40/4/60/0.0989

82 x0 = (10, 10, 10, 10, 10) x∗

loc
= (0.9685, 0.9685, 10, 10, 10)

f∗

loc
= 3.5745

40/4/120/0.1095

84 x0 = (10, 10, 10, · · · , 10) x∗

loc
= (0.9685, 0.9685, · · · , 10)

f∗

loc
= 3.5745

40/4/240/0.1984

87 x0 = (10, 10, · · · , 10) x∗

loc
= (0.9685, 0.9685, · · · , 10)

f∗

loc
= 3.5745

160 R. ZIADI AND A. BENCHERIF-MADANI

Table 7.2: Performance comparison of P-LBFGSB with BFGS, L-BFGS-B and HANSO methods.

Part III.

Problem
x0

HANSO

number Nf/Ng/Nfg/CPU(s)

49/49/539/0.1107

24 x0 = (−2, · · · ,−2) x∗

loc
= (−3.1401,−13.3154, · · · , 0)

f∗ = 0.0468

180/180/3780/0.1918

25 x0 = (10, 10, · · · , 10) x∗

loc
= (−0.0001,−4.4385, · · · ,−0.0001)

f∗

loc
= 0.0172

1315/1315/67065/3.0851

34 x0 = (10, 10, · · · , 10) x∗ = (−1.0422,−1.0346, · · · , 10.8345)

f∗

loc
= 630.0132

13/13/39/0.0999

42 x0 = (7, 9) x∗

loc
= (7, 9.0226)

f∗

loc
= −0.3910

42/42/252/0.1124

43 x0 = (1, π, 3, π, 2) x∗

loc
= (1, 3.1416, 2.8620, 3.1416, 2.0000)

f∗

loc
= −0.2731

58/58/522/0.1114

44 x0 = (1, π, π, 0, 0, π, 3, 2) x∗

loc
= (1, 3.1416, 3.1416, · · · , 1.7560)

f∗

loc
= −1.9806

1/1/11/0.0734

45 x0 = (0, π, · · · , 0, π) x∗

loc
= (0, 3.1416, · · · , 0, 3.1416)

f∗

loc
= −2.6787e-309

8/8/24/0.0753

46 x0 = (3, 10) x∗

loc
= (2.9369, 10.0163)

f = −1.2085e-04

4/4/24/0.0755

47 x0 = (9, 2, 1, 5, 1) x∗

loc
= (9.001, 2.0002, 1.0068, 5.0071, 1.0046)

f∗

loc
= −8.9330e-04

51/51/561/0.1189

65 x0 = (−0.3944, 1.2071, · · · ,−0.3944, 1.2071) x∗

loc
= (1.9899,−2.9849, · · · ,−2.9849)

f∗

loc
= 64.6722

51/51/1071/0.1301

66 x0 = (−3.2700, 3.3090, · · · ,−3.2700, 3.3090) x∗

loc
= (0.9949,−0.995, · · · ,−0.995)

f∗

loc
= 19.8992

60/60/1860/0.1596

67 x0 = (−1,−1,−8, · · · ,−1,−1,−8) x∗

loc
= (0.9949, 0.9949, · · · , 7.9592)

f∗

loc
= 656.6558

62/62/2542/0.1926

68 x0 = (1.5, 2.5, 4.2, 3.2, · · · , 1.5, 2.5, 4.2, 3.2) x∗

loc
= (0.9949, 1.9899, · · · ,−4.9747)

f∗

loc
= 457.6776

58/58/2958/0.1906

69 x0 = (−8.5, 4,−2.2,−3,−1, · · · ,−8.5, 4,−2.2,−3,−1) x∗

loc
= (0,−0.9950, · · · ,−2.9849)

f∗

loc
= 895.4446

40/40/240/0.1034

82 x0 = (10, 10, 10, 10, 10) x∗

loc
= (9.9949, 9.9949, 10, 10, 10)

f∗

loc
= 17.2919

40/40/840/0.1191

84 x0 = (10, 10, 10, · · · , 10) x∗

loc
= (9.9949, 9.9949, · · · , 10)

f∗

loc
= 17.2919

40/40/2040/ 0.1393

87 x0 = (10, 10, · · · , 10) x∗

loc
= (9.9949, 9.9949, · · · , 10)

f∗

loc
= 17.2919

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 161

Table 7.2: Performance comparison of P-LBFGSB with BFGS, L-BFGS-B and HANSO methods.

Part IV.

Problem
x0

P-LBFGSB

number Nf/Ng/Nfg/CPU(s)

14637/224/4.3335

24 x0 = (−2, · · · ,−2) x∗ = (−0.0018,−2.7390, · · · ,−0.0045)

f∗ = 9.4607e-05

34479/309/40659/7.0916

25 x0 = (10, 10, · · · , 10) x∗ = (−0.0047,−0.0009, · · · , 0.056)

f∗ = 8.6333e-05

4501/471/28051/12.6333

34 x0 = (10, 10, · · · , 10) x∗ = (−1.0001,−1, · · · ,−1)

f∗ = 3.9062e-08

412/31/474/0.1780

42 x0 = (7, 9) x∗ = (2.2018, 1.5679)

f∗ = −1.8009

10560/252/11820/3.3544

43 x0 = (1, π, 3, π, 2) x∗ = (2.1941, 1.5743, 1.2865, 1.9241, 1.7178)

f∗ = −4.68765

14666/242/16602/4.7398

44 x0 = (1, π, π, 0, 0, π, 3, 2) x∗ = (2.2020, 1.5712, · · · , 1.7561)

f∗ = −7.6637

35954/510/41054/7.3787

45 x0 = (0, π, · · · , 0, π) x∗ = (2.2029, 1.5708, · · · , 1.5708)

f∗ = −9.6601

2892/116/3124/0.9723

46 x0 = (3, 10) x∗ = (9.7184, 0.6819)

f∗ = −1.0809

919/52/1179/0.4795

47 x0 = (9, 2, 1, 5, 1) x∗ = (8.0739, 8.7770, 3.4670, 1.8670, 6.7080)

f∗ = −0.96495

51/11/161/0.1314

65 x0 = (−0.3944, 1.2071, · · · ,−0.3944, 1.2071) x∗ = (−0.5049e-3,−0.4950e-3, · · · ,−0.495e-3)

f∗ = 4.9593e-06

16861/150/19861/5.9594

66 x0 = (−3.2700, 3.3090, · · · ,−3.2700, 3.3090) x∗ = (−0.5148e-03, 0.1746e-03, · · · , 0.1889e-03)

f∗ = 8.8052e-05

29446/179/34816/8.2777

67 x0 = (−1,−1,−8, · · · ,−1,−1,−8) x∗ = (0.0580e-3, 0.0538e-3, · · · , 0.1650e-3)

f∗ = 9.922e-05

48559/189/56119/12.6417

68 x0 = (1.5, 2.5, 4.2, 3.2, · · · , 1.5, 2.5, 4.2, 3.2) x∗ = (0.2995e-3,−0.3979e-3, · · · , 0.0775e-3)

f∗ = 9.6297e-05

107918/409/128368/26.5683

69 x0 = (−8.5, 4,−2.2,−3,−1, · · · , x∗ = (−0.4914e-4,−0.4912e-4, · · · ,−0.5011e-4)

−8.5, 4,−2.2,−3,−1) f∗ = 2.4667e-05

428/44/648/0.1988

82 x0 = (10, 10, 10, 10, 10) x∗ = (0.588e-04,−0.004e-04,−0.0326e-04,

0.8711e-04, 0.2354e-04)

f∗ = 7.1168e-05

1166/55/1716/0.3418

84 x0 = (10, 10, 10, · · · , 10) x∗ = (0.0223e-04, 0.4126e-04, · · · , 0.5494e-04)

f∗ = 9.5431e-05

41262/636/47622/6.0528

87 x0 = (10, 10, · · · , 10) x∗ = (−0.1665e-04, 0.1029e-04, · · · ,−0.3017e-04)

f∗ = 9.8294e-05

162 R. ZIADI AND A. BENCHERIF-MADANI

Table 7.3: Numerical study of the influential parameters of the P-LBFGSB algorithm. Part I.

Problem 8 12

number Average(Std.dev.) Nf/Ng/CPU(s) Average(Std.dev.) Nf/Ng/CPU(s)

2 3.5050E-06(3.3301E-05) 45123/1185/7.5286 2.9388E+00(4.3123E+00) 53395/7705/53.6261

α 2.5 3.9264E-08(5.6691E-07) 40509/889/5.5597 6.9485E-03(3.3325E-01) 49908/10551/75.0566

3* 1.2146E-04(1.2751E-04) 44085/928/7.2014 3.1451E-01(3.1704E-01) 59430/12355/81.6257

4 5.7768E-02(2.3940E+00) 39996/799/6.3408 9.9581E+00(4.9824E-01) 45335/7224/53.8717

50 3.33241E-02(3.5288E+00) 24584/1352/5.04965 6.2145E+00(1.5088E+00) 38519/12751/84.5804

r 100* 1.2146E-04(1.2751E-04) 44085/928/7.2014 3.1451E-01(3.1704E-01) 59430/12355/81.6257

300 6.4123E-09(2.1482E-10) 98584/824/13.5080 7.2111E-05(7.2541E-05) 102251/11827/78.041

500 0(0) 156365/636/19.5507 4.4445E-09(2.0828E-11) 161025/11152/82.7466

5 3.2142E-06(2.2145E-04) 34292/525/5.6363 2.2145E-05(2.5241E-05) 42631/5295/38.9917

jmax 10* 1.2146E-04(1.2751E-04) 44085/928/7.2014 3.1401E-01(3.1704E-01) 59430/12355/81.6207

20 0(0) 53854/2156/9.2480 3.0520E-01(2.5401E-01) 69570/22514/132.0509

100 2.6635E+00(1.3794E+01) 14402/333/2.2189 6.1377E+01(3.1341E+01) 58571/4822/46.8258

Kmax 300* 1.2146E-04(1.2051E-04) 44085/928/7.2014 3.1451E-01(3.1714E-01) 59430/12355/81.6257

500 0(0) 65541/11089/21.7916 1.2247E-06(7.8170E-04) 99420/22514/133.2417

Problem 26 28

number Average(Std.dev.) Nf/Ng/CPU(s) Average(Std.dev.) Nf/Ng/CPU(s)

2 2.9225E-01(1.9228E+00) 48996/2358/4.2943 3.8407E-01(1.38547E+00) 48328/1599/5.0907

α 2.5 4.4487E-07(3.3384E-09) 56675/3527/6.5157 2.9580E-03(4.9274E-03) 52330/1908/4.2200

3* 7.7157E-06(3.6175E-08) 53069/2854/5.4641 1.9145E-03(1.3337E-02) 54825/2224/7.6815

4 1.9341E-01(5.336E-01) 45883/2238/4.8843 8.9676E-02(6.6186E-01) 51285/2127/6.8120

50 3.33243E+00(3.2001E-01) 29021/3624/3.632 4.2877E-01(2.1009E-01) 43535/2452/4.8015

r 100* 7.7157E-06(3.6175E-08) 53069/2854/5.4641 1.9145E-03(1.3337E-02) 54825/2224/7.6815

300 0(0) 96525/2557/6.02147 1.5252E-08(4.4111E-10) 100305/2295/8.9078

500 0(0) 158095/2105/8.5504 0(0) 159182/1899/9.7621

5 4.21451E-07(2.00014E-06) 39522/1319/2.3691 3.5004E-04(2.4250E-04) 41412/1430/3.9885

jmax 10* 7.7157E-06(3.6175E-08) 53069/2854/5.4641 1.9145E-03(1.3337E-02) 54825/2224/7.6815

20 0(0) 66907/5584/8.3975 2.0042E-02(8.2142E-04) 86900/4504/10.4414

100 3.0292E-01(3.0140E+01) 15238/1268/2.0391 5.9204E-01(6.2114E-01) 22368/1135/3.8257

Kmax 300* 7.7157E-06(3.6175E-08) 53069/2854/5.4641 1.9145E-03(1.3337E-02) 54825/2224/7.6815

500 0(0) 98628/4331/10.9897 6.8141E-10(6.3224E-12) 78496/4686/11.3768

Problem 61 67

number Average(Std.dev.) Nf/Ng/CPU(s) Average(Std.dev.) Nf/Ng/CPU(s)

2 7.7308E-01(3.0347E-01) 49385/2152/3.7069 6.3528E-05(3.5204E-03) 35245/215/5.2383

α 2.5 6.2304E-02(1.7240E-01) 50235/2295/3.4120 3.5240E-07(2.0047E-08) 38387/322/7.3291

3* 2.0057E-02(4.9915E-01) 48338/2075/3.1083 6.4475E-06(3.9366E-08) 39605/378/9.9254

4 6.3052E-01(2.2123E-01) 43520/1725/2.2145 1.8604E-02(1.3047E-01) 35027/226/7.3506

50 1.0042E-01(1.3387E-01) 27354/2604/2.4801 4.6144E-07(5.9918E-09) 19009/199/6.3197

r 100* 2.0057E-02(4.9915E-01) 48338/2075/3.1083 6.4475E-06(3.9366E-08) 39605/378/9.9254

300 3.1524E-06(8.4417E-08) 108338/2148/4.0530 0(0) 95819/315/22.4487

500 4.8834E-09(8.3142E-12) 163523/1866/4.4371 0(0) 154330/282/29.9407

5 2.3959E-07(4.3643E-07) 37159/928/1.8307 3.5884E-04(3.5121E-02) 36321/108/7.9952

jmax 10* 2.0057E-02(4.9915E-01) 48338/2075/3.1083 6.4475E-06(3.9366E-08) 39605/378/9.9254

20 6.2201E-05(2.3500E-03) 68689/5159/5.2545 0(0) 47289/1038/17.5073

100 6.0958E-01(3.9500E+00) 16504/955/1.4498 3.0040E-02(2.9949E-01) 21309/198/6.1132

Kmax 300* 2.0057E-02(4.9915E-01) 48338/2075/3.1083 6.4475E-06(3.9366E-08) 39605/378/9.9254

500 2.0911E-07(3.0133E-09) 115304/4322/9.6950 0(0) 77595/772/20.0537

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 163

Table 7.3: Numerical study of the influential parameters of the P-LBFGSB algorithm. Part II.

Problem 79 87

number Average(Std.dev.) Nf/Ng/CPU(s) Average(Std.dev.) Nf/Ng/CPU(s)

2 3.2014E-07(3.3351E-09) 33049/1347/17.8936 6.0242E-01(2.3847E-01) 44284/968/3.3017

α 2.5 0(0) 31118/997/14.1915 4.8387E-03(2.8350E-03) 46057/1127/3.2908

3* 0(0) 31589/1102/15.5070 5.5978E-03(5.9117E-01) 43143/885/3.0459

4 2.2518E-03(1.2521E-01) 31210/975/13.6310 2.9284E-03(6.8507E-02) 44342/989/3.3541

50 4.4084E-06(4.80174E-09) 26508/1189/14.4572 2.2250E-01(1.3312E+00) 28320/827/2.2450

r 100* 0(0) 31589/1102/15.5070 5.5978E-03(5.9117E-01) 43143/885/3.0459

300 0(0) 91298/872/23.4867 3.3379E-07(9.7738E-09) 108243/1086/4.8570

500 0(0) 151133/796/34.0575 0(0) 167917/989/4.8379

5 8.9281E-05(1.2812E-06) 30535/728/8.7986 2.3514E-01(2.2141E-01) 36235/324/1.43253

jmax 10* 0(0) 31589/1102/15.5070 5.5978E-03(5.9117E-01) 43143/885/3.0459

20 0(0) 50232/3067/27.1711 1.6603E-02(1.3811E-03) 59385/2014/5.2083

100 7.4554E-04(3.9004E-02) 16833/777/8.8896 1.4030E-01(1.4899E-01) 18202/399/0.8597

Kmax 300* 0(0) 31589/1102/15.5070 5.5978E-03(5.9117E-01) 43143/885/3.0459

500 0(0) 61735/3233/34.9535 3.9499E-09(5.7342E-12) 90555/2093/3.5009

all the experiments of Table 7.2 with default parameters setting (using weak Wolfe line search

conditions). The same initial point is used for all methods for each test problem. For the

BFGS and HANSO algorithms, each implementation has been stopped when a point xk such

that ‖∇f(xk)‖ < 10−6 is found, whereas for the L-BFGS-B algorithm, each implementation

has been stopped when a point xk such that ‖PD(xk −∇f(xk))− xk‖∞ < 10−5 is found.

As can be seen from these results, the proposed method converges to a global minimiser

in a finite number of evaluation points whereas L-BFGS-B, BFGS and its modified version

HANSO all converge to a local minimum only.

Before making comparisons (with other methods), we analyse in Table 7.3 the influence

of various parameters by considering the basic set of values: α = 3, r = 100,Kmax = 300

and jmax = 10. The performance of the method can be observed under the action of one

parameter, the other parameters are kept to their standard values. This will give us a clue

on the influence of each parameter in the algorithm. For this study, the proposed algorithm

is executed independently 10 times per test problem and we record the average and standard

deviation (Std.dev.) of the solution error |f(Xk) − f∗|. The mean CPU(s)-time (in seconds)

and the average number of evaluations of the objective and gradient functions are also recorded.

From the numerical results, we see that the convergence of the P-LBFGSB algorithm de-

pends on the choice of the parameters α, r, Jmax and Kmax: α (the rate of decrease of the

sequence σk), r (the number of perturbations accomplished in each step k), Jmax (the maximal

number of iterations executed by the L-BFGS-B in each step k) and the maximal number of

steps to be performed Kmax. We can then see that the best choices for α are between 2.5 and 3.

For α below 2.5, the values of σk decrease slowly with far-off perturbations which increases the

possibility of spotting new remote record points; however, in this case, the generated perturba-

tions become important and the algorithm slows down, especially when n ≥ 10. Contrariwise,

when α ≥ 3 the sequence σk decreases more rapidly so that, after a certain number of itera-

tions, most of the generated points cluster around the perturbed point, making it hard to escape

from an eventual local minimizer, whence a premature convergence towards a local minimum

is possible. As far as Jmax and r are concerned, an increment in Jmax improves quickly the

164 R. ZIADI AND A. BENCHERIF-MADANI

value of f , but we also risk to stagnate for a while in a local minimizer, so we must increase the

parameter r for the stochastic perturbation to generates sufficient points to hope for an escape

from stagnation, whence the drawback of having to generate a relatively important number of

points to spot the global minimum with the desired accuracy. To sum up, in order to avoid

too many points while searching for the global minimum with the desired accuracy, we suggest

standard values for these parameters. Of course, these values have to be moderately changed

(by increasing r, Jmax and decreasing α) when D or n become larger or when the accuracy is

more stringent.

In order to show the efficiency of the P-LBFGSB method, it is compared with two stochas-

tic algorithms: G-CARTopt (classification and regression trees) [22] and AESLS (Alienor-

Evtushenko-stochastic-local-search) [28], and six well known evolutionary algorithms in global

optimization: DE (differential evolution) [24], CMA-ES (covariance matrix adaptation evolution

strategy) [12], SPSO (standard particle swarm optimization) [25], HS (harmony search) [11],

EO (equilibrium optimizer) [9] and COA (coyote optimization algorithm) [18], by observing

the number of function evaluations and the time elapsed by each algorithm to obtain an ap-

proximate solution. The solutions of the test problems whose objective functions have diverse

analytical expressions and structures are observed and the results of the numerical experiments

are reported in Table 7.4. The MATLAB implementations of the methods DE, CMA-ES, SPSO,

HS, G-CARTopt, EO and COA are downloadable from [33–39] (with default setting parame-

ters). In all the experiments every computation was terminated as successful when a recorded

solution with error satisfying

err = |f(xk)− f∗| ≤ 10−5, (7.2)

was reached within 5×105 function evaluations and whose calculation time does not exceed 100

seconds, otherwise, the computation was considered as failure. The stopping criterion of the

P-LBFGSB algorithm (see Algorithm P-LBFGSB step 4) is replaced by the stopping condition

(7.2) and the number of function evaluations is calculated by the formula (7.1).

In these comparisons, all test problems have been independently run twenty times by the

algorithm under consideration; the mean number of the evaluations and the mean calculation

time for each algorithm have been reported; the average number of evaluations of the gradient

functions is moreover recorded for the P-LBFGSB. If during the trials, a method has failed at

least once, the number of failures was reported. For a given problem, the average number has

not been calculated for an algorithm with at least 5 failures in 20 executions; for failures less

than 5, the average of the twenty trials is calculated and, for each failure, the maximal number of

evaluation points or the maximal CPU-time (depending on the failure case) is associated. The

mean value is then displayed with an indication of the number of failures between parentheses.

For P-LBFGSB algorithm the average number of the evaluations is calculated by the following

formula:

Nfgmean = Nfmean + n×Ngmean.

From Table 7.4, in Figs. 7.1 and 7.2, the global performances of the seven algorithms are

compared with P-LBFGSB (using their respective performance profiles relative to the number of

function evaluations and CPU-time needed to reach the global minimum) under the logarithmic

performance profile of Dolan and Moré [6]. For each method, we plot the fraction p of problems

for which the method has a number of function evaluations (respectively CPU-time) that is

within a factor τ . The top curve in the plot corresponds to the method that solves most

problems within a factor τ , for more details see [6].

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 165

Table 7.4: Number of function evaluations required by P-LBFGSB and the other methods to reach the

global minimum. Part I.

Problem P-LBFGSB DE SPSO HS G-CARTopt

number Nfgmean/CPU(s) feval/CPU(s) feval/CPU(s) feval/CPU(s) feval/CPU(s)

1 3047/0.1365 2640/0.3412 700/0.0716 71232/4.7149 322/0.6959

2 4845/0.4244 6288/0.8093 2996/0.2991 fail(9) 4063/8.1148

3 6677/0.2009 6264/0.8124 4932/0.4895 7436/0.4616 960/1.0887

4 2835/0.0256 2224/0.2202 2855/0.3663 14444/1.2814 645/0.4473

5 2917/0.1437 91160/12.4980 21272/3.0186 fail(20) 5225/15.7623

6 35837/1.8829 14040/1.3116 4965/0.7962 fail(12) 2128/3.9982

7 24225/3.5922 12576/2.0571 5040/1.7474 90375/10.3851(1) 2736/9.2372

8 172649/14.4369 fail(10) fail(16) 270541/48.5828(4) fail(20)

9 244494/37.8796(2) fail(15) fail(20) fail(18) fail(20)

10 fail(8) fail(11) fail(20) fail(20) fail(20)

11 fail(8) fail(06) fail(20) fail(20) fail(20)

12 fail(7) fail(20) fail(20) fail(20) fail(20)

13 28780/6.8223 9648/3.730 13200/2.1121 35044/4.9306 fail(12)

14 38653/7.4508 42616/6.9917 58484/20.6384 341824/82.7057(4) fail(19)

15 351863/53.3252(1) 107958/18.0329 fail(18) fail(12) fail(20)

16 449487/68.5691(2) 219076/38.0083 fail(20) fail(8) fail(20)

17 348/0.0637 2012/0.3433 1596/0.2180 4516/0.4808 1251/3.9725

18 1282/0.1048 4492/0.8052 2628/0.5274 12912/1.8332 3138/14.5657

19 95981/1.0748 9536/1.7367 4800/1.6028 41080/9.5732 7712/33.0923

20 144740/1.4437 14588/2.6591 205168/118.1265 358260/127.6444 fail(15)

21 263661/4.5537 19936/3.6051 fail(6) 457972/214.0011(4) fail(20)

22 fail(9) 25804/4.7529 fail(20) fail(9) fail(20)

23 740/0.0515 11664/1.9128 267708/41.5324 fail(12) fail(6)

24 245006/5.2910(1) 17620/2.8547 350000/70.7129(3) fail(11) fail(18)

25 145645/2.0760(1) 12640/2.1517 fail(5) 168542/45.3009(3) fail(20)

26 208141/4.1927(1) 18380/3.1482 308953/65.3254(4) fail(20) fail(20)

27 272296/4.6197(1) 23144/3.9049 114496/78.2541(2) fail(20) fail(20)

28 275804/6.3620(1) 27964/4.9080 485968/72.3255(4) fail(20) fail(20)

29 1271/0.2054 2344/0.4420 2680/0.4717 3784/0.4402 2144/6.8838

30 2949/0.4055 5348/0.9580 3876/0.9780 9092/1.5253 4606/19.2140

31 9284/1.2377 11176/2.0511 6980/7.0903 28860/7.9062 8934/34.3338

32 16704/2.4027 17756/3.2792 10140/5.6123 484988/184.2204(4) fail(12)

33 22140/3.4692 24716/4.5897 10808/6.2293 fail(6) fail(20)

34 20636/3.4644 32636/6.3958 20640/18.6353 fail(15) fail(20)

35 1456/0.0560 1414/0.1310 1780/0.2452 0.3903/9572 571/0.3755

36 10252/0.8248 8964/0.8048 fail(20) 72604/6.0541(1) 4114/13.0553

37 14241/0.9585 16964/1.49242 fail(20) 124720/12.6486(2) 5293/17.6602

38 215227/7.1459(2) 93663/9.1399 21920/3.1466 fail(20) 251456/82.1066(4)

39 222269/8.4945(4) fail(17) fail(20) fail(20) fail(12)

40 fail(20) fail(17) fail(17) fail(20) fail(17)

41 fail(20) fail(14) fail(19) fail(20) fail(20)

42 1162/0.0919 708/0.1127 1216/0.1512 1240/0.0871 275/0.3019

43 19808/5.6737 3148/0.5283 303504(4)/57.7091 5216/0.5466 fail(5)

44 44551/6.5385 55780/8.7762(1) 56528/10.0644 26464/3.6214 fail(8)

45 36785/6.4542 59580/9.6003 fail(14) 64152/10.1642 fail(15)

46 110/0.1335 3916/0.7080 64040/11.0479 71216/6.9471(1) 968/3.758

47 11050/3.5153 139576/27.6813 54220/11.0580 323496/43.7390(4) 1186/46.4116

48 192518/45.9213(3) 416516/81.3752(4) 103372(1)/29.2819 393362/71.1899(4) fail(9)

49 fail(10) fail(20) 52772(1)/17.3358 fail(9) fail(20)

50 3385/0.2208 1184/0.1219 2025/0.3030 2056/0.3317 614/0.5701

166 R. ZIADI AND A. BENCHERIF-MADANI

Table 7.4: Number of function evaluations required by P-LBFGSB and the other methods to reach the

global minimum. Part II.

Problem P-LBFGSB DE SPSO HS G-CARTopt

number Nfgmean/CPU(s) feval/CPU(s) feval/CPU(s) feval/CPU(s) feval/CPU(s)

51 fail(12) fail(20) fail(20) fail(20) fail(20)

52 120964/5.3163 fail(16) 3000/0.4500 32432/1.5006 1091/0.8137

53 404649/16.1077(3) fail(16) 52830/9.7001 fail(20) 10654/22.5418

54 fail(20) fail(20) fail(15) fail(20) fail(20)

55 38457/5.8930 15900/2.9337 4815/1.0029 372348/35.0889(4) 12842/85.5033(3)

56 20145/8.2041 119412/24.5623 fail(15) fail(9) 1897/5.9501

57 fail(12) 429826/98.7955 fail(20) fail(14) fail(10)

58 12384/2.8475 20820/3.3032 37148/5.4190 fail(12) fail(12)

59 28947/10.8417 181320/28.5223 276584(2)/67.5560 fail(20) fail(20)

60 477501/60.0164(3) fail(8) fail(20) fail(20) fail(20)

61 fail(9) fail(6) fail(20) fail(20) fail(20)

62 fail(11) fail(11) fail (20) fail(20) fail(20)

63 fail(9) fail(20) fail(20) fail(20) fail(20)

64 10102/3.5955 5320/0.8668 176788/32.1008(4) 10364/0.9935 fail(5)

65 12826/2.8450 14116/2.3429 fail(6) 23636/3.3730 fail(20)

66 51524/11.3096 50600/8.4894 fail(20) 455048/108.1896(4) fail(20)

67 55299/11.7770 142708/23.7796 fail(20) fail(12) fail(20)

68 191223/42.6672 360420/60.3150 fail(20) fail(20) fail(20)

69 333193/76.5341 fail(20) fail(20) fail(20) fail(20)

70 2285/0.1108 8064/1.2501 4004/0.5319 37844/3.2007 1516/4.7361

71 12723/0.5055 158152/25.4620 140676/39.1219 fail(17) fail(10)

72 17914/0.7267 317080/52.3128 230492/79.7261 fail(20) fail(12)

73 20968/0.7664 491152/80.9260 353980/136.0873(3) fail(20) fail(20)

74 37523/1.2182 fail(20) fail(8) fail(20) fail(20)

75 47474/1.3446 fail(17) fail(14) fail(20) fail(20)

76 3314/0.1130 3036/0.5258 3292/0.4883 7096/0.8679 1932/6.9557

77 9566/0.5688 7456/1.3319 7324/1.7166 25920/4.8751 6208/32.2524

78 17817/1.0594 18388/5.8843 42476/20.2240 297420/175.3301(2) fail(10)

79 29909/15.6359 102456/18.3595 132320/106.1886(3) fail(5) fail(12)

80 45147/28.2387 49820/39.6211 fail(8) fail(11) fail(20)

81 70525/36.8422 72772/85.9157 fail(6) fail(20) fail(20)

82 2059/0.3899 5044/0.6717 5336/0.7293 24600/2.3562 6114/26.4751

83 6025/0.0872 9908/1.3178 7344/1.4622 34952/4.6243 6176/29.2344

84 10912/0.1479 19260/2.6075 12308/3.9865 fail(20) fail(11)

85 24045/0.3049 28344/4.0764 307084/142.9028(2) fail(20) fail(20)

86 83679/1.0334 38264/5.4343 fail(20) fail(20) fail(20)

87 109618/5.4801 48432/6.9138 fail(20) fail(20) fail(20)

88 253840/15.87555(2) fail(10) 5860/1.0060 252736/16.6449(4) 3475/8.3538

98 fail(8) fail(10) 302560/84.9217(4) 159228/16.8822(3) fail(14)

90 fail(11) fail(15) fail(11) 360825/66.7224(4) fail(14)

91 fail(20) fail(20) fail(20) fail(17) fail(20)

92 25381/2.16665 17220/1.6057 53640/6.8815(1) 158996/9.4665 1803/3.2096

93 29868/1.8686 29304/2.7425 3930/0.6217 fail(14) fail(9)

94 125304/3.5240(2) 100016/9.6665 4175/0.6783 fail(20) 17808/64.8135

95 404/0.0362 508/0.0705 875/0.1247 1720/0.0939 291/0.2005

96 666/0.0382 2096/0.2438 2705/0.4778 8632/0.6452 1596/3.3528

97 1857/0.0805 5604/0.6293 5305/1.2836 22644/2.5355 4495/13.5779

98 984/0.0481 592/0.0724 332/0.0454 fail(9) 279/0.3894

99 fail(7) 422200/50.5455(4) 170472/36.1353 50096/5.0071 fail(13)

100 fail(7) 415376/47.0313 227362/43.0603 fail(20) fail(20)

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 167

Table 7.4: Number of function evaluations required by P-LBFGSB and the other methods to reach the

global minimum. Part III.

Problem AESLS EO COA CMA-ES

number feval/CPU(s) feval/CPU(s) feval/CPU(s) feval/CPU(s)

1 1188/0.2597 1228/0.0911 1422/0.1405 5037/0.2567

2 27668/2.9180 1968/0.1484 12220/0.6202 fail(13)

3 1102/0.0862 4300/0.4979 8986/0.4670 15923/4.6999

4 5063/0.2086 1410/0.0475 4720/0.1925 18350/2.4207

5 16764/0.9173 188597/17.8046 46454/3.1169 7360/1.6778

6 427713/37.1732(4) 21037/4.2304(2) 21418/0.8759 51704/3.1174

7 26733/1.4802 fail(20) 30117/1.7171 2700/0.7549

8 fail(20) fail(20) 106814/6.0952 fail(8)

9 fail(20) fail(20) 458842/26.1955(4) fail(8)

10 fail(20) fail(20) fail(12) fail(12)

11 fail(20) fail(20) fail(20) fail(20)

12 fail(20) fail(20) fail(20) fail(20)

13 304040/43.8516(4) 12255/1.3798 86950/11.2123 11924/2.0914

14 fail(5) 20843/2.0874 198805/25.8456 31356/8.0637

15 fail(12) 24123/2.5333 312475/38.9567(1) 30225/7.5262

16 fail(20) 360804/25.3255(2) 361900/47.4209 46312/12.0480

17 424/0.0307 2487/0.2635 30475/1.1908 9536/1.7367

18 3816/0.4067 3877/0.4201 77890/3.0394 8811/1.9070

19 333116/83.3204 4432/0.4444 169765/6.7281 27742/3.9948

20 437387/87.0294(3) 5245/0.5929 251260/10.0687 44954/7.2015

21 fail(9) 5542/0.5397 330025/13.4297 61185/11.6997

22 fail(17) 5510/0.6366 401305/16.8382 77840/24.7163

23 15764/1.9403 7695/0.5040 27082/1.8662 fail(9)

24 317967/48.3792 4360/0.4119 122345/8.4421 5040/1.2911

25 464949/77.8232(2) 2145/0.1981 126065/9.0915 15184/4.0120

26 fail(6) 2455/0.2848 167945/12.3440 24360/7.1496

27 fail(20) 2605/0.2596 244351/18.3591(1) 32550/6.9250

28 fail(20) 2845/0.3497 239414/18.4144(4) 42688/7.1677

29 9495/1.5515 1954/0.2676 18070/1.1773 1602/0.4125

30 228991/40.2568(2) 7850/0.9805 55045/3.6133 4818/1.2667

31 135520/18.5295 15122/2.2080 119500/7.9855 14248/3.8863

32 486757/76.1811(3) 22400/2.3058 176785/11.9776 24444/6.8215

33 fail(6) 29120/4.3084 233980/16.1046 31830/5.3533

34 fail(12) 37965/3.8966 289540/20.2766 41504/7.3690

35 167/0.0114 980/0.0292 5476/0.2031 378/0.0504

36 250092/21.5296 4520/0.1408 61600/2.5162 88681/4.2804

37 fail(13) 5705/0.1783 85250/3.3549 fail(6)

38 fail(5) 7590/0.2812 fail(10) fail(17)

39 fail(9) 162790/5.9122(4) fail(20) fail(20)

40 fail(19) fail(20) fail(20) fail(20)

41 fail(19) fail(20) fail(20) fail(20)

42 1052/0.0964 862/0.0954 2935/0.3607 570/0.1324

43 137047/47.0626(1) fail(9) 25525/3.0734 97111/22.5431

44 221113/42.0041 fail(16) 59530/7.7435 fail(16)

45 fail(6) fail(20) 82990/10.8918 fail(20)

46 4719/1.1473 5823/0.9283 fail(5) 1320/0.4541

47 336951/93.9013(3) 400560/42.3869(4) 218963/41.8466(4) 57432/21.5914(2)

48 fail(9) fail(7) fail(7) fail(17)

49 fail(19) fail(20) 265123/51.0071(4) fail(20)

50 635/0.0404 1057/0.0370 5248/0.2278 282/0.0414

168 R. ZIADI AND A. BENCHERIF-MADANI

Table 7.4: Number of function evaluations required by P-LBFGSB and the other methods to reach the

global minimum. Part IV.

Problem AESLS EO COA CMA-ES

number feval/CPU(s) feval/CPU(s) feval/CPU(s) feval/CPU(s)

51 fail(20) fail(20) fail(12) fail(13)

52 33511/3.1316 920/0.0348 14656/0.6568 22414/2.9638

53 fail(7) 128328/4.7584(2) fail(9) 201420/18.2177(3)

54 fail(11) fail(17) fail(20) fail(17)

55 9669/3.0752 2730/0.3259 46108/5.6346 51404/8.2004

56 fail(9) 303035/43.1558(4) 103852/14.8987(2) fail(8)

57 fail(10) fail(18) 318567/36.4441(4) fail(11)

58 48680/4.3381 fail(20) fail(20) 27600/6.2213

59 467463/41.4330(3) fail(6) 281465/19.0103 498300/90.1053(4)

60 fail(12) fail(11) fail(20) fail(8)

61 fail(20) fail(11) fail(20) fail(13)

62 fail(20) fail(20) fail(20) fail(20)

63 fail(20) fail(20) fail(20) fail(8)

64 149261/42.0386(4) 2110/0.2490 42237/2.4866 156240/29.9365(3)

65 fail(17) 3270/0.3835 101705/5.7970 419265/80.3112(4)

66 fail(17) 5113/0.6139 212825/12.2736 fail(11)

67 fail(17) 5053/0.6253 308071/18.0668 fail(20)

68 fail(17) 11343/4.5432 412420/24.6229 fail(20)

69 fail(17) fail(5) 486871/29.5983 fail(20)

70 1172/0.1018 2111/0.2346 16762/1.1745 1784/0.4488

71 60015/5.6749 5158/0.4171 314482/22.6776 22560/4.9689

72 107655/10.6568 5197/0.4372 465442/34.1212(4) 111773/27.2109

73 198530/19.7912 3815/0.3131 fail(12) 210980/26.1855

74 fail(20) 5607/0.7565 fail(20) fail(10)

75 fail(20) 5453/0.7089 fail(20) fail(20)

76 867/0.0905 5115/0.8070 24408/3.0958 3096/0.7583

77 6520/1.3023 11330/3.9301 93117/13.3153 10296/3.0052

78 77664/45.1479 18572/14.1780 258768/87.5680 40560/20.9688

79 326997/393.0954 26070/35.5304 fail(12) 89320/84.5556

80 fail(7) 5380/69.6549 fail(17) fail(9)

81 fail(13) fail(5) fail(20) 89848/86.9093

82 102244/12.2848 1753/0.2079 42550/2.2356 2808/0.6940

83 212055/27.3097(2) 3442/0.4205 107440/5.6991 8492/1.9061

84 fail(6) 4052/0.4592 229720/12.4291 24492/3.7145

85 fail(17) 4452/0.4845 327355/18.0816 38388/10.8115

86 fail(14) 4887/0.6036 412285/23.1954 51150/10.1175

87 fail(20) 5194/0.6911 491995/28.2281(2) 64032/15.3524

88 109230/9.0916 300450/10.0423(3) fail(12) 400475/20.0451(4)

98 fail(5) 300309/10.5323(4) fail(20) fail(14)

90 fail(11) fail(8) fail(20) fail(20)

91 fail(20) fail(14) fail(20) fail(20)

92 283691/25.4181(4) 5625/0.1834 18820/0.8066 11857/0.7408

93 236329/20.7825 19070/0.6691 90880/3.5973 22041/2.5122

94 22785/0.8825 106310/3.4598 37324/1.4100 98557/5.0017

95 122/0.0316 650/0.0315 2272/0.1147 315/0.0241

96 669/0.0375 2228/0.1002 15904/0.7973 5274/0.3414

97 3687/0.1938 6710/0.2953 54388/2.6292 33174/2.2414

98 1036/0.0685 325/0.0173 fail(10) 700/0.1028

99 fail(7) 11190/0.5444 85696/4.9491 86924/5.4201

100 fail(7) fail(14) fail(11) fail(17)

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 169

Fig. 7.1. Performance profiles plot based on the number of function evaluations.

Fig. 7.2. Performance profiles plot based on CPU-time.

Figs. 7.1 and 7.2 show that the P-LBFGSB curve dominates the other curves, in particular,

it is fastest for about 29% of the test problems and it solves about 82% of the test problems

successfully, followed by DE and EO with respectively 76% and 74%. COA and CMA-ES have

respectively the fourth and the fifth best performance by solving about 71% and 65% of the tests

problems, whereas SPSO, AESLS, HS and G-CART score respectively about 64%, 50%, 47%

and 37%.

These outcomes indicate that, for this class of problems, the P-LBFGSB algorithm works

rather well. One of the main reasons for this is the fact that the actual exploitation of the

gradient leads towards lower regions with a moderate number of trial points. However, the

suggested algorithm generates a somewhat large number of points in the case where the global

minimizer attraction region is very narrow, in which case we would need more regularity on the

gradient. On the whole, the numerical comparisons show that the suggested algorithm appears

promising and competitive in practice.

7.1. Further applications to some engineering problems

In this section, we provide examples of common engineering problems that are modelled

as global optimization problems and solved by the proposed algorithm. In these experiments,

the P-LBFGSB algorithm was executed thirty independent runs for each problem to determine

the best-obtained solution x∗ and each run was terminated when the diversity parameter σk

reaches a value less than σmin = 10−2.

170 R. ZIADI AND A. BENCHERIF-MADANI

Lennard-Jones atomic cluster problem [5]

The Lennard-Jones potential is a mathematical model used to describe the interaction between

two neutral atoms or molecules. It is commonly used in simulations of intermolecular forces,

particularly for noble gases and non-polar molecules. Determining the most stable configuration

of a cluster with N -atoms amounts to find the relative positions of the atoms that minimize

the potential energy. The potential energy minimum of the cluster has the following form:

minE =

N
∑

i6=j

4ε

(

(

σ

‖rij‖

)12

−

(

σ

‖rij‖

)6
)

,

where N designates the atomic cluster size, rij = ‖xi−xj‖ is the distance between atoms i and

j (xi ∈ R
3 is the position of the i-th atom), ε is the depth of the potential well and σ is the

distance at which the potential energy is zero. The best obtained solutions for this problem

with N = 2, 3, . . . , 7 (using reduced units σ = ε = 1) are represented in Table 7.5, where the

variables are bounded as

−2 ≤ xi ≤ 2, i = 1, 2, . . . , n, n = 3N.

Table 7.5: Obtained solutions for the Lennard-Jones cluster problem.

N xi Energy/E

2 1.2889, 1.5285,−1.5020, 1.6200, 0.5900,−1.5999 −1

3
1.3713,−0.8436,−1.6044, 1.5023,−0.8614,−0.6131,

−3
0.6265,−0.5682,−0.9966

4
1.1414,−0.8995, 0.1269, 1.5330,−1.4839,−0.5839,

−6
1.9759,−0.6190,−0.3475, 1.9994,−1.3848, 0.2952

5

0.3927,−0.4090, 0.4639, 0.0608,−0.1168,−0.4346,

−9.10390.4762,−1.0173,−0.3228,−0.4233,−0.8345, 0.0689,

4-0.4560,0.1104,0.38834

6

−0.7887,−0.8172,−1.1727,−1.3771,−0.7708,−0.3555,

−12.3029−0.8696,−1.6045,−0.5645,−0.3866,−0.7827,−0.2634,

−1.6595,−0.3375,−1.2053,−1.6415,−1.3345,−1.1356

7

−1.6595,−0.3375,−1.2053,−1.6415,−1.3345,−1.1356

−15.5331−1.1380, 0.5423,−0.1939,−1.1930,−0.3560, 0.2301,

−0.3032, 0.0664, 0.0980

Gas transmission compressor design problem [1]

The main goal of this problem is to estimate the gas transmission parameters lc, λ,D for a gas

pipe line transmission system to minimize the total cost of delivering 100 million cubic ft of gas

per a day, where D is the length of the inside diameter of the gas pipe, lc is the distance between

the two compressors and λ is the compression ratio of the first and the second compressor. The

mathematical model of this application is given by

minTc(lc, λ,D) = 8.61× 105l
1
2
c D

− 2
3λ(λ2 − 1)−

1
2 + 3.69× 104D

+ 7.72× 108l−1
c λ0.219 − 765.43× 106l−1

c ,

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 171

where the variables are bounded as

10 ≤ lc ≤ 55, 1.1 ≤ λ ≤ 2, 10 ≤ D ≤ 40.

The best obtained solution for this problem is (l∗c , λ
∗, D∗) = (53.446709, 1.190100, 24.718578)

for which the objective value is T ∗
c = 2.964375e+06.

Optimal capacity of gas production facilities problem [1]

The main goal of this problem is to obtain the pressure of the compressor pc and optimal

production of oxygen v with minimum cost. The total production cost of gas is given by

min Tc(v, pc) = 61.8 + 5.72v + 0.2623
(

(40− v) ln
(pc
200

))−0.85

+ 0.087(40− v) ln
(pc
200

)

+ 700.23p−0.75
c ,

where the variables are bounded as

17.5 ≤ v ≤ 40, 300 ≤ pc ≤ 600.

The best obtained solution for this problem is (v∗, p∗c) = (17.5000, 600.0000) for which the

objective value is T ∗
c = 1.698437e+02.

8. Conclusion

In this paper we present a method for solving bound-constrained, non-convex global opti-

mization problems where the objective function f is differentiable and without specific smooth-

ness. The proposed method is a combination of two procedures. The main procedure is a limited

memory quasi-Newton method. This procedure is used to try to spot at each iteration a point

that improves upon the value of f . Since this may lead prematurely to a local minimum, such

a point is avoided thanks to a stochastic perturbation procedure which diversifies the search

and guides the algorithm to regions of the feasible domain not yet explored. In order to quicken

the combined algorithm and make sure the perturbations lie within the feasible domain, we

have developed a novel perturbation technique by truncating a multivariate double exponential

distribution to deal with bound-constrained problems. The theoretical study and the simulation

of the developed truncated distribution are also presented. Mathematical results concerning

the convergence to the global minimum are established. Preliminary numerical experiments

indicate that the algorithm is promising and competitive in practice.

References

[1] N. Andrei, Nonlinear Optimization Applications Using the GAMS Technology, Springer, 2013.

[2] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and Algorithms,

Wiley-Interscience, 2006.

[3] J. Brownlee, Clever Algorithms, Nature-Inspired Programming Recipes, LuLu.com, 2011.

[4] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained

optimization, SIAM J. Sci. Comput., 16:5 (1995), 1190–1208.

[5] S. Das and P.N. Suganthan, Problem Definitions and Evaluation Criteria for CEC 2011 Competi-

tion on Testing Evolutionary Algorithms on Real World Optimization Problems, Technical Report,

Jadavpur University, Nanyang Technological University, 2010.

172 R. ZIADI AND A. BENCHERIF-MADANI

[6] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math.

Program., 91 (2002), 201–213.

[7] A. El Mouatasim, R. Ellaia, and E.S. de Cursi, Stochastic perturbation of reduced gradient &

GRG methods for nonconvex programming problems, Appl. Math. Comput., 226 (2014), 198–211.

[8] A. El Mouatasim and A. Ettahiri, Conditional gradient and bisection algorithms for non-convex

optimization problem with random perturbation, Appl. Math. E-Notes, 22 (2022), 142–159.

[9] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, Equilibrium optimizer: A novel

optimization algorithm, Knowl. Based Syst., 191 (2020), 105190.

[10] C.A. Floudas, Deterministic Global Optimization: Theory, Methods and Applications, Springer,

2013.

[11] Z.W. Geem, J.H. Kim, and G.V. Loganathan, A new heuristic optimization algorithm: Harmony

search, Simulation, 76:2 (2001), 60–68.

[12] N. Hansen and A. Ostermeier, Adapting arbitrary normal mutation distributions in evolution

strategies: The covariance matrix adaptation, in: Proceedings of the 1996 IEEE International

Conference on Evolutionary Computation, (1996), 312–317.

[13] D.C. Liu, and J. Nocedal, On the limited memory BFGS method for large scale optimization,

Math. Program., 45:1 (1989), 503–528.

[14] B.J.T. Morgan, Elements of Simulation, Chapman-Hall, 1984.

[15] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput., 35 (1980),

773–782.

[16] M. Ouanes, H.A. Le Thi, T.P. Nguyen, and A. Zidna, New quadratic lower bound for multivariate

functions in global optimization, Math. Comput. Simulation, 109 (2015), 197–211.

[17] M. Overton, HANSO: Hybrid Algorithm for Non-Smooth Optimization 2.2, 2019.

[18] J. Pierezan and L.S. Coelho, Coyote Optimization Algorithm: A new metaheuristic for global op-

timization problems, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC),

(2018), 2633–2640.

[19] V. Plevris and G. Solorzano, A collection of 30 multidimensional functions for global optimization

benchmarking, Data, 7:4 (2022), 46.

[20] M. Pogu and J.S. De Cursi, Global optimization by random perturbation of the gradient method

with a fixed parameter, J. Global Optim., 5:2 (1994), 159–180.

[21] R.G. Regis, Convergence guarantees for generalized adaptive stochastic search methods for con-

tinuous global optimization, European J. Oper. Res., 207:3 (2010), 1187–1202.

[22] B.L. Robertson, C.J. Price, and M. Reale, A CARTopt method for bound-constrained global

optimization, ANZIAM J., 55:2 (2013), 109–128.

[23] R.Y. Rubinstein and D.P. Kroese, Simulation and the Monte Carlo Method, Wiley, 1981.

[24] R. Storn and K. Price, Differential evolution – a simple and efficient heuristic for global optimiza-

tion over continuous spaces, J. Global Optim., 11:4 (1997), 341–359.

[25] M. Zambrano-Bigiarini, M. Clerc and R. Rojas, Standard particle swarm optimisation 2011 at

CEC-2013: A baseline for future PSO improvements, in: Proceedings of the 2013 IEEE Congress

on Evolutionary Computation, (2013), 2337–2344.

[26] R. Ziadi and A. Bencherif-Madani, A covering method for continuous global optimization, Int.

J. Comput. Sci. Math., 13:4 (2021), 369–390.

[27] R. Ziadi and A. Bencherif-Madani, A mixed algorithm for smooth global optimization, J. Math.

Model., 11:2 (2023), 207–228.

[28] R. Ziadi, A. Bencherif-Madani, and R. Ellaia, Continuous global optimization through the gener-

ation of parametric curves, Appl. Math. Comput., 282 (2016), 65–83.

[29] R. Ziadi, A. Bencherif-Madani, and R. Ellaia, A deterministic method for continuous global opti-

mization using a dense curve, Math. Comput. Simulation, 178 (2020), 62–91.

[30] R. Ziadi, R. Ellaia, and A. Bencherif-Madani, Global optimization through a stochastic perturbati-

on of the Polak-Ribière conjugate gradient method, J. Comput. Appl. Math., 317 (2017), 672–684.

A Perturbed Quasi-Newton Algorithm for Bound-Constrained Global Optimization 173

[31] https://github.com/bgranzow/L-BFGS-B

[32] https://cs.nyu.edu/ overton/software/hanso/

[33] http://www.particleswarm.info/Programs

[34] http://www.math.canterbury.ac.nz/ b.robertson/research.html

[35] https://yarpiz.com/231/ypea107-differential-evolution

[36] https://www.mathworks.com/matlabcentral/fileexchange/28850-harmony-search-algorithm

[37] https://github.com/afshinfaramarzi/Equilibrium-Optimizer

[38] https://github.com/jkpir/COA

[39] https://yarpiz.com/235/ypea108-cma-es

