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Abstract

Fractional Klein-Kramers equation can well describe subdiffusion in phase space. In

this paper, we develop the fully discrete scheme for time-fractional Klein-Kramers equa-

tion based on the backward Euler convolution quadrature and local discontinuous Galerkin

methods. Thanks to the obtained sharp regularity estimates in temporal and spatial di-

rections after overcoming the hypocoercivity of the operator, the complete error analyses

of the fully discrete scheme are built. It is worth mentioning that the convergence of the

provided scheme is independent of the temporal regularity of the exact solution. Finally,

numerical results are proposed to verify the correctness of the theoretical results.
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1. Introduction

Subdiffusion is ubiquitous in the nature world [18]. Microscopically, it can be modeled by

Langevin dynamics with long-tailed trapping [19]. To describe how the presence of the trapping

events leads to the macroscopic observation of subdiffusion, the authors establish the fractional

Klein-Kramers equation [17, 19]. This paper is concerned with the regularity estimate and

numerical analysis for the time-fractional Klein-Kramers equation, i.e.
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(1.1)

with the initial condition

G(x, v, 0) = G0, (x, v) ∈ Ω,

and the boundary conditions

G(x, 0, t) = G(x, 1, t) = 0, (x, t) ∈ (0, 1)× (0, T ],

G(0, v, t) = 0, (v, t) ∈ (0, 1)× (0, T ].
(1.2)

Here Ω = {(x, v) | 0 < x < 1, 0 < v < 1}, T denotes the fixed terminal time, f is source term,

v is the velocity, η is the friction constant, m is the mass of the particle, γ is the ratio of the
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intertrapping time scale and the internal waiting time scale, and β is a variable related to the

temperature and Boltzmann’s constant, without loss of generality, we take η = β = m = γ = 1

in the following, 0∂
1−α
t is the Riemann-Liouville fractional derivative with α ∈ (0, 1) defined

by [21]
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1
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∂
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∫ t

0

(t− ξ)α−1G(ξ)dξ. (1.3)

In the past few years, there have been some discussions for solving fractional Klein-Kramers

equation numerically [6, 10, 13, 20]. In [6], the authors consider the finite difference scheme

for the time-fractional Klein-Kramers equation and provide the corresponding error analyses.

Reference [20] provides a hybrid algorithm using the local radial basis functions based on finite

difference to obtain the numerical solution of the time-fractional Klein-Kramers equation; the

authors use finite difference scheme to solve space-fractional Klein-Kramers equation with Riesz

fractional derivative in [13]. From the above works, it can be noted that the corresponding

numerical discussions in Galerkin framework for fractional Klein-Kramers equation are rare.

In this paper, we first build the regularity of the Eq. (1.1), and then present the robust

numerical scheme and complete error analyses. As for the regularity estimates, to overcome

the challenges caused by the hypocoercivity of the operator (v(∂/∂x)− (∂/∂v)v − ∂2/∂v2), we

introduce a new operator L (one can refer to (2.1)) and provide the corresponding resolvent

estimate (see Lemma 2.1); with the help of equivalent form of (1.1) and resolvent estimate, we

find

‖G(t)‖L2(Ω) ≤ C‖G0‖L2(Ω) + C‖f(0)‖L2(Ω) + C
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Next we use backward Euler convolution quadrature to discretize the temporal derivative and

an O(τ) convergence rate is obtained without any regularity assumptions on the exact solution.

At last, we use local discontinuous Galerkin method to discretize spatial derivative; to obtain

the stability and the convergence of the fully-discrete scheme, we build a new discrete Grönwall’s

inequality (see Lemma 4.1 for the details).

The plan of the paper is as follows. Next, we provide the regularity of the time-fractional

Klein-Kramers equation in temporal and spatial directions, respectively. In Section 3, the time

semi-discrete scheme is built by backward Euler convolution quadrature and the resulting error

analysis is also provided. Then we use the local discontinuous Galerkin method to discretize

the space operator and the error estimate is obtained in Section 4. Section 5 validates the

effectiveness of the algorithm by extensive numerical experiments. We conclude the paper with

some discussions in the last section. Throughout the paper, C is a positive constant, whose

value may differ at different places, ‖ · ‖ stands for the operator norm from L2(Ω) to L2(Ω),

and “̃ ” means Laplace transform.

2. Regularity of the Solution

Here we first provide some notations, and then present the solution and discuss its regularity.

Define Γθ,κ for κ > 0 and θ ∈ (π/2, π) as

Γθ,κ =
{
re−iθ : r ≥ κ

}
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}
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}
,


