
Journal of Computational Mathematics

Vol.43, No.2, 2025, 315–344.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2208-m2022-0035

A STOCHASTIC AUGMENTED LAGRANGIAN METHOD FOR
STOCHASTIC CONVEX PROGRAMMING*

Jiani Wang

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Email: wjiani@lsec.cc.ac.cn

Liwei Zhang1)

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Email: lwzhang@dlut.edu.cn

Abstract

In this paper, we analyze the convergence properties of a stochastic augmented La-

grangian method for solving stochastic convex programming problems with inequality

constraints. Approximation models for stochastic convex programming problems are con-

structed from stochastic observations of real objective and constraint functions. Based on

relations between solutions of the primal problem and solutions of the dual problem, it

is proved that the convergence of the algorithm from the perspective of the dual prob-

lem. Without assumptions on how these random models are generated, when estimates

are merely sufficiently accurate to the real objective and constraint functions with high

enough, but fixed, probability, the method converges globally to the optimal solution al-

most surely. In addition, sufficiently accurate random models are given under different

noise assumptions. We also report numerical results that show the good performance of

the algorithm for different convex programming problems with several random models.

Mathematics subject classification: 49N15, 90C15, 90C25.

Key words: Stochastic convex optimization, Stochastic approximation, Augmented La-

grangian method, Duality theory.

1. Introduction

In this paper, we consider the following stochastic convex optimization problem:

min
x∈X0

f(x) = E[F (x, ξ)]

s.t. gi(x) = E[Gi(x, ξ)] ≤ 0, i = 1, . . . , p.
(1.1)

HereX0 ⊂ Rn is a nonempty bounded closed convex set, ξ : Ω → Ξ is a random vector defined on

a given probability space (Ω,F ,P) and F : O×Ξ → R, Gi : O×Ξ → R, i=1, . . . , p, where O⊃X0

is an open convex set and Ξ is a measurable space. Without loss of generality, we assume that

expectations E[F (x, ξ)] and E[Gi(x, ξ)] are well defined and finite valued for every x ∈ O and

the expected value function f(·) and gi(·) are continuous and convex on O. Any algorithm for

solving problem (1.1) has to be faced with the difficulty that the full evaluations of expectations

E[F (x, ξ)] and E[Gi(x, ξ)] are either impossible or expensive in practice. There are two types

of methods to resolve this problem: the sample average approximation (SAA) method and the
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stochastic approximation (SA). The SAA method usually solves the random approximation

model through sample averaging estimators of random variables. Let ξ1, · · · , ξN be an i.i.d.

sample of realizations of random vector ξ of size N and the average sample approximation

model is defined as

min
x∈X0

1

N

N
∑

m=1

F (x, ξm)

s.t.
1

N

N
∑

m=1

Gi(x, ξm) ≤ 0, i = 1, . . . , p.

(1.2)

Usually, the convergence of SAA depends on the special choice of parameters and the expensive

iteration cost, like [18,26,28]. However, so far no study has applied sample averaging methods

to the case of biased noise for stochastic convex optimization problem (1.1).

On the other hand, the stochastic approximation, in most studies (for example, [17, 31]), is

to generate stochastic oracles Ftk : Rn×Ξ → R and G
sk
i : Rn×Ξ → R of the stochastic function

values of f and gi. More specifically, the random approximation model of (1.1) is defined as

min
x∈X0

F
tk(x)

s.t. G
sk
i (x) ≤ 0, i = 1, . . . , p,

(1.3)

where Ftk and G
sk
i are function which are constructed by one or mini-batches of random samples

tk, sk of stochastic function [5, 29]. For each k,Ftk and G
sk
i are continuous on x ∈ O. Obvi-

ously, the iterate xk+1 = xk+1(ξ[k]) can be seen as a function of the history ξ[k] := (ξ1, · · · , ξk)

of the generated random process. The above two random models are considered as the noisy

computable version of the real optimization problem (1.1) and the convergence of both methods

relies on zero-mean noise with bounded variance (or even with decreasing variance), so estima-

tors in these random models need to be carefully chosen [1, 30]. To the best of our knowledge,

no study so far has mentioned the convergence of the stochastic convex programming with

inequality constraints under the above two methods, for the case of biased noise. Regardless of

the random approximation model (1.2) or (1.3), we propose a stochastic augmented Lagrange

method and prove that when the random models are merely sufficiently close to the real op-

timization problems with high enough, but fixed, probability, the sequence generated by the

stochastic algorithm converges to the optimal solution almost surely. In this paper, we consider

a general random approximation model of (1.1) as follows:

min
x∈X0

fk(x)

s.t. Gk(x) ≤ 0.
(1.4)

For each k, fk and Gk =: (gk1 , · · · , g
k
p) are stochastic approximations of f and gi and continuous

on x ∈ O. The augmented Lagrangian function of problem (1.4) is defined by

Lk
r (x, λ) = fk(x) +

1

2r

[

∥

∥ΠR
p
+

(

λ+ rGk(x)
)
∥

∥

2
− ‖λ‖2

]

, ∀ (x, λ) ∈ R
n × R

p, (1.5)

where ΠR
p
+
(y) represents the projection of y onto R

p
+ for any y ∈ R

p. In the following we denote

[y]+ := ΠR
p

+
(y). The stochastic augmented Lagrangian method for solving (1.1) with the help

of the random model (1.4) can be described as Algorithm 1.1.

The augmented Lagrangian method for solving the optimization problem with constraints

can be traced back to the pioneering paper by Rockafellar [23]. Since the augmented Lagrangian


