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Abstract

In this paper, we study a posteriori error estimates of the L1 scheme for time discretiza-

tions of time fractional parabolic differential equations, whose solutions have generally the

initial singularity. To derive optimal order a posteriori error estimates, the quadratic re-

construction for the L1 method and the necessary fractional integral reconstruction for

the first-step integration are introduced. By using these continuous, piecewise time re-

constructions, the upper and lower error bounds depending only on the discretization

parameters and the data of the problems are derived. Various numerical experiments for

the one-dimensional linear fractional parabolic equations with smooth or nonsmooth exact

solution are used to verify and complement our theoretical results, with the convergence

of α order for the nonsmooth case on a uniform mesh. To recover the optimal convergence

order 2−α on a nonuniform mesh, we further develop a time adaptive algorithm by means

of barrier function recently introduced. The numerical implementations are performed on

nonsmooth case again and verify that the true error and a posteriori error can achieve the

optimal convergence order in adaptive mesh.
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1. Introduction

Adaptive methods have become very popular and powerful tools for certain classes of PDEs.

A posteriori error analysis can provide information about the error introduced by discretization

and is at the base of adaptive computation. Time adaptive algorithms are naturally related to

error control and variable time step-sizes. In this paper we derive a posteriori error estimates
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for time discretization by the L1 method for abstract time fractional parabolic differential

equations (TFPDEs) and construct an adaptive algorithm based on this rigorous a posteriori

error estimates. To do this, we first introduce functional space and corresponding norms.

1.1. Functional space and norms

Let H be a Hilbert space with inner product (· , ·). We identify H with its dual. Let A:

D(A) → H be a positive definite, self-adjoint, linear operator on H with domain D(A) being

dense in H . Let V := D(A1/2) and denote the norms in H and V by ‖ · ‖ and ‖ · ‖1, ‖v‖1 =

‖A1/2v‖ = (Av, v)1/2, respectively. Let V ∗ be the dual of V , and denote by ‖·‖−1 the dual norm

on V ∗, ‖v‖−1 = ‖A−1/2v‖ = (v,A−1v)1/2. We still denote by (· , ·) the duality pairing between

V ∗ and V . In a natural way the Lebesgue spaces Lp(J ;X) with a time interval J = [t∗, t
∗] and

Banach space X (here, X = H,V or V ∗), 1 ≤ p < ∞, consist of all those functions u(t) that

take values in X for almost every t ∈ J such that the Lp norm of ‖u(t)‖X , i.e.

‖u‖Lp(J;X) =

(∫

J

‖u(t)‖pXdt

) 1

p

is finite. For p = ∞, L∞(J ;X) is the space of (classes of) measurable functions from J into X

which are essentially bounded, the space is Banach for the norm

‖u‖L∞(J;X) := ess sup
t∈J

‖u(t)‖X .

Note that for continuous function u(t), we have ‖u‖L∞(J;X) = maxt∈J ‖u(t)‖X . For simplicity,

we will write Lp(0, t;X) for Lp((0, t);X).

Let ∂α
t denote the Caputo fractional derivative of order α (0 < α < 1) with respect to t

defined by

∂α
t u(t) :=

∫ t

0

ω1−α(t− s)u′(s)ds, ωα(t) =
tα−1

Γ(α)
,

where Γ(z) is the Gamma function,

Γ(z) :=

∫ ∞

0

sz−1e−sds, ℜ(z) > 0.

We define the Riemann-Liouville fractional integral operator of order β (β ≥ 0) as

Iβt u(t) =

∫ t

0

ωβ(t− s)u(s)ds, t > 0

with I0t u(t) = u(t) [44]. Then we recall the relationship between the Riemann-Liouville frac-

tional derivative and Caputo fractional derivative

∂α
t u(t) =

d

dt

{
I1−α
t [u(t)− u(0)]

}
=

d

dt

{∫ t

0

ω1−α(t− s)[u(s)− u(0)]ds

}
,

and the relationship of the Riemann-Liouville fractional integral and Riemann-Liouville frac-

tional derivative [54]

∂−α
t u(t) = Iαt u(t) =

∫ t

0

ωα(t− s)u(s)ds, t > 0. (1.1)


