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Abstract

In this paper, we establish the oracle inequalities of highly corrupted linear observa-

tions b = Ax0 + f0 + e ∈ R
m. Here the vector x0 ∈ R

n with n ≫ m is a (approx-

imately) sparse signal and f0 ∈ R
m is a sparse error vector with nonzero entries that

can be possible infinitely large, e ∼ N (0, σ2
Im) represents the Gaussian random noise

vector. We extend the oracle inequality ‖x̂ − x0‖
2
2 .

∑
i
min{|x0(i)|

2, σ2} for Dantzig se-

lector and Lasso models in [E.J. Candès and T. Tao, Ann. Statist., 35 (2007), 2313–2351]

and [T.T. Cai, L. Wang, and G. Xu, IEEE Trans. Inf. Theory, 56 (2010), 3516–3522]

to ‖x̂−x0‖
2
2+‖f̂−f0‖

2
2 .

∑
i
min{|x0(i)|

2, σ2} +
∑

j
min{|λf0(j)|

2, σ2} for the extended

Dantzig selector and Lasso models. Here (x̂, f̂) is the solution of the extended model, and

λ > 0 is the balance parameter between ‖x‖1 and ‖f‖1, i.e. ‖x‖1 + λ‖f‖1.
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1. Introduction

1.1. Corrupted compressed sensing problem

Over the past twenty years, the idea of compressed sensing has received extensive attention

and has been employed in several potential technologies [8, 10]. It offers an excellent strat-

egy for reconstructing a (approximately) sparse signal from a few observations. In particular,

an s-sparse signal x0 ∈ R
n is evaluated by

b = Ax0 + e, (1.1)

where A ∈ R
m×n with m ≪ n is the sensing matrix, b ∈ R

m denotes the observation vector

and e ∈ R
m is the possible noise vector.

The following optimization problem:

min
x∈Rn

‖x‖0

s.t. Ax− b ∈ C(η)

provides a good estimator for the reconstruction of x0. Here ‖x‖0 = |{i : xi 6= 0}| expresses
the sparsity of x, C(η) is a bounded set with the parameter η > 0 determined by the error
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structure, for example, C(η) = {z : ‖z‖2 ≤ η} or C(η) = {z : ‖A⊤z‖∞ ≤ η} [11]. Here and

following, we use the notation A⊤ ∈ R
n×m denotes the transposition of the matrix A ∈ R

m×n.

There exist some convex methods to solve this optimization problem. The method of basis

pursuit [13, 14] transformed the ℓ0-minimization ‖x‖0 to its relative convex ℓ1-minimization

‖x‖1 (‖x‖1 =
∑

i |xi|), solved the non-deterministic polynomial (NP) hard problem. Candès

and Tao [9] proved that the original signal x0 can be exactly recovered by solving that ℓ1-

minimization problem. Based on this, a number of methods for different noise types have been

proposed, such as Lasso [41], quadratically constrained basis pursuit [18], Dantzig selector [11],

and RLAD [44,47]. Extensive studies appear under different frameworks, such as the null space

property [17, 22, 39], the restricted isometry property (RIP) [5, 15, 16, 49], and the coherence

[4, 19, 28, 29, 42], solving this problem.

When certain unknown items of the observation vector are badly distorted, we can get

a novel method inspired by the above classic compressed sensing issue. In mathematics, we

have

b = Ax0 + f0 + e. (1.2)

Here f0 ∈ R
m is a corrupted error, which is unidentified and cannot be disregarded. Corrupted

compressed sensing is the issue of reconstructing the sparse signal x0 and sparse error f0 from the

observations (1.2). Laska et al. [25] first considered recovering the signal and the corruption from

corrupted measurements and designed an algorithm dubbed Justice Pursuit. They extended

the classical RIP to the generalized restricted isometry property (GRIP) as follows.

Definition 1.1. For any matrix Φ = [A, I] ∈ R
m×(n+m), the (s, t)-GRIP-constant δs,t is de-

fined as the infimum of δ such that

(1− δ)
(
‖x‖22 + ‖f‖22

)
≤
∥∥∥∥Φ
[
x

f

]∥∥∥∥
2

2

≤ (1 + δ)
(
‖x‖22 + ‖f‖22

)

holds for any x ∈ R
n with |supp(x)| ≤ s and f ∈ R

m with |supp(f)| ≤ t.

As a nontrivial extension of compressed sensing, the corrupted compressed sensing problem

has been used in various practical fields, such as super-resolution and inpainting [33], signal

recovery from the impulsive observations [36], signal separation [21].

In recent years, many breakthroughs have been obtained in the research of the corrupted

compressed sensing problem. In the absence of the noise e, Wright and Ma [45] proposed to

recover the signal x0 and the corruption f0 from the observations b in (1.2) by solving the

following problem:

min
x∈Rn,f∈Rm

‖x‖1 + ‖f‖1

s.t. b = Ax+ f .

Considering the general situation with random noise e, being tiny, Lin and Li [31] proposed

to recover the sparse signal from the corrupted observations (1.2) with coherent tight frames

via separation analysis Dantzig selector (SADS)

min
x∈Rn,f∈Rm

‖D⊤x‖1 + ‖Ω⊤f‖1

s.t.
∥∥W⊤[A, I]⊤(Ax+ f − b)

∥∥
∞

≤ η,


