
Journal of Computational Mathematics

Vol.43, No.3, 2025, 569–587.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2311-m2023-0047

NUMERICAL METHODS FOR APPROXIMATING STOCHASTIC
SEMILINEAR TIME-FRACTIONAL RAYLEIGH-STOKES

EQUATIONS*

Mariam Al-Maskari

Department of Mathematics, Sultan Qaboos University, Muscat, Oman

Email: m.almaskari@squ.edu.om

Abstract

This paper investigates a semilinear stochastic fractional Rayleigh-Stokes equation fea-

turing a Riemann-Liouville fractional derivative of order α ∈ (0, 1) in time and a fractional

time-integral noise. The study begins with an examination of the solution’s existence,

uniqueness, and regularity. The spatial discretization is then carried out using a finite

element method, and the error estimate is analyzed. A convolution quadrature method

generated by the backward Euler method is employed for the time discretization resulting

in a fully discrete scheme. The error estimate for the fully discrete solution is considered

based on the regularity of the solution, and a strong convergence rate is established. The

paper concludes with numerical tests to validate the theoretical findings.
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1. Introduction

We investigate the following semilinear stochastic fractional order Rayleigh-Stokes problem:

ut(t, x) +
(
1 + ∂1−αt

)
Au(t, x) = f

(
u(t, x)

)
+ ∂−γt Ẇ (t), t ∈ (0, T ], x ∈ D, (1.1a)

u(t, x) = 0, t ∈ (0, T ], x ∈ ∂D, (1.1b)

u(0, x) = u0, x ∈ D, (1.1c)

where 0 < α < 1, 0 ≤ γ ≤ 1 and T > 0 is a fixed time. Here, A = −∆ denotes the negative

Laplace operator with its domain D(A) = H2(D)∩H1
0 (D) and D ⊂ R

d, d ≤ 3, is an open convex

polygonal domain with a boundary ∂D. The operator ∂−γt denotes the Riemann-Liouville time-

fractional integral operator defined by

∂−γt ϕ(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1ϕ(s) ds,

where Γ(·) is the usual Gamma function. The operator ∂1−αt := ∂t∂
−α
t denotes the Riemann-

Liouville time-fractional derivative, where ∂t = ∂/∂t. In the model (1.1), the function f : R → R

satisfies the global Lipschitz condition

|f(t)− f(s)| ≤ L|t− s|, ∀ t, s ∈ R, L > 0. (1.2)
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The noise {W (t)}t≥0 is an L2(D)-valued Wiener process with a covariance operator Q

with respect to a normal filtration {Ft}t≥0 on a probability space (Ω,F ,P, {Ft}t≥0), Ẇ (t) :=

dW (t)/dt is its formal derivative. The initial data u0 is an F0-measurable random variable with

values in L2(D).

The stochastic Rayleigh-Stokes problem is a model used to describe the dynamic behavior

of non-Newtonian fluids, where the time-fractional derivative ∂1−αt is utilized to capture fluid

elasticity (as noted in [1, 4, 5] and related references). The numerical approximation of linear

time-fractional stochastic evolution equations has been extensively studied, with several works

including [7, 9, 10, 13, 14, 17]. Jin et al. [10] analyzed the strong and weak convergence of a nu-

merical scheme for subdiffusion equations with fractionally integrated Gaussian noise, which

was created using the Galerkin finite element method for the spatial aspect and convolution

quadrature for the fractional derivative. In [17], the focus was on a stochastic subdiffusion

problem driven by integrated space-time white noise, with the L1 scheme and Lubich’s first

order convolution quadrature formula being used to approximate the time-fractional derivative

and time-fractional integral, respectively. The study established a strong convergence rate.

The numerical analysis of semilinear time-fractional stochastic equations has been explored

in recent works such as [3,11]. Kang et al. [11] investigated a stochastic space and time-fractional

subdiffusion problem that included a fractionally integrated additive noise and a globally Lips-

chitz term f(u). The authors regularized the problem and derived error estimates based on the

properties of the Mittag-Leffler functions. More recently, in [3], the authors studied a stochas-

tic time-fractional Allen-Cahn model perturbed by a fractionally integrated Gaussian noise.

The Galerkin finite element method was used for the spatial approximation, and a convolution

quadrature was used to approximate both the fractional derivative and integral. By utilizing

the temporal Hölder continuity property of the solution, strong convergence rates for the error

were derived. In both [3,11], conditions on α and γ were imposed for the well-posedness of the

stochastic time-fractional models.

In this study, the solution is represented in an integral form and global existence and unique-

ness of solution are discussed. The regularity of the solution in both space and time is estab-

lished. The main objective of this work is to prove a strong convergence rate in L2(Ω;L2(D))

for the fully discrete scheme using a semigroup type approach. The spatial discretization is

performed using a Galerkin finite element method, while the noise is approximated by an L2-

projection. Under the condition −α(2− r)/2+ γ > −1/2, where r is defined in (4.6), we derive

error estimates for the semidiscrete scheme. The fully discrete scheme is then obtained by

applying a convolution quadrature generated by the backward Euler method for the fractional

derivative and integral. By exploiting the solution regularity and the globally Lipschitz prop-

erty of the source term f given in (1.2), the error estimate is analyzed and a strong convergence

rate for the fully discrete scheme is proved.

The paper is structured as follows. In Section 2, we introduce notations and recall some

properties of Wiener processes. In Section 3, the representation of the solution is discussed

along with its existence, uniqueness, and regularity. Section 4 deals with the spatial discretiza-

tion and the error analysis of the resulting semi-discrete scheme. In Section 5, error estimates

for the fully discrete scheme are established. Finally, in Section 6, numerical experiments are

conducted to validate the theoretical results.

Throughout the paper, we use c and C to denote generic constants that may change from

one occurrence to another, but are always independent of the mesh size h and time step size τ .

Additionally, we simplify the notation by writing u(t) instead of u(t, x).


