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Abstract

This work focuses on the temporal average of the backward Euler-Maruyama (BEM)

method, which is used to approximate the ergodic limit of stochastic ordinary differential

equations (SODEs). We give the central limit theorem (CLT) of the temporal average

of the BEM method, which characterizes its asymptotics in distribution. When the de-

viation order is smaller than the optimal strong order, we directly derive the CLT of the

temporal average through that of original equations and the uniform strong order of the

BEM method. For the case that the deviation order equals to the optimal strong order,

the CLT is established via the Poisson equation associated with the generator of original

equations. Numerical experiments are performed to illustrate the theoretical results. The

main contribution of this work is to generalize the existing CLT of the temporal average

of numerical methods to that for SODEs with super-linearly growing drift coefficients.
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1. Introduction

Ergodic theory is a powerful tool to investigate the long-time dynamics and statistical prop-

erties of stochastic systems, which is widely applied in physics, biology and chemistry (see

e.g. [8, 13, 30, 33]). A crucial problem in ergodic theory is to determine the ergodic measure

and ergodic limit. Since explicit expressions of them are generally unavailable, one usually

resorts to numerical methods to obtain their approximations. There have been lots of numer-

ical methods which inherit the ergodicity or approximate the ergodic limit of original systems

(see [1, 12, 14, 24, 27, 31] and references therein). In the aforementioned work, main efforts are

made to analyze the error between the numerical invariant measure and the original one, and

that between numerical temporal average and the ergodic limit.

Besides the convergence of the numerical temporal average in the moment sense, the asymp-

totics of its distribution is also an essential property. In recent several work, the central limit

theorem (CLT) of the temporal average of some numerical methods is given, which character-

izes the fluctuation of the numerical temporal average around ergodic limits of original systems

in the sense of distribution. In [26], the CLT of the temporal average of the Euler-Maruyama

(EM) method with decreasing step-size for ergodic stochastic ordinary differential equations

(SODEs) is given. In addition, [23] proves the CLT and moderate deviation of the EM method
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with a fixed step-size for SODEs. For a class of ergodic stochastic partial differential equations

(SPDEs), [6] shows that the temporal average of a full discretization with fixed temporal and

spatial step-sizes satisfies the CLT.

In the existing work, the CLT of numerical temporal average is established provided that

coefficients of original equations are Lipschitz continuous. Compared with the Lipschitz case,

stochastic systems with non-Lipschitz coefficients have more extensive applications in reality

(see e.g. [3, 7, 9, 11] and references therein). For example, consider the overdamped Langevin

equation

dq(t) = −∇V
(

q(t)
)

dt+
√

2β−1 dW (t), (1.1)

where {W (t), t ≥ 0} is a D-dimensional standard Brownian motion defined on a complete

filtered probability space (Ω,F , {Ft}t≥0,P), and β−1 is the Boltzmann constant times the

absolute temperature. The potential V is smooth and satisfies lim|q|→+∞ V (q) = +∞ (for

example, one can take D = 1 and V (q) = q4/4+q2/2, q ∈ R). The Langevin equation describes

the noise-induced transport in stochastic ratchets and dissipative particle dynamics. When the

inertia of the particle is negligible compared with the damping force due to the friction, the

trajectory of the Langevin equation is approximately described by (1.1) (see e.g. [17,28,29]). It

is known that (1.1) admits a unique invariant measure (thus is ergodic) π(dq) = Z−1e−βV (q)dq

with Z =
∫

R
e−βV (q)dq. Since the drift coefficient of (1.1) is non-Lipschitz, the existing results

on the CLT of the numerical temporal average are not applicable to (1.1). In view of the above

consideration, we are devoted to investigating the CLT of the numerical temporal average for

general SODEs with non-Lipschitz coefficients.

In this work, we consider the following SODE:

dX(t) = b
(

X(t)
)

dt+ σ
(

X(t)
)

dW (t), t > 0, (1.2)

where W is the same one defined in (1.1). Here, b : Rd → R
d satisfies the strong dissipation

condition and is allowed to grow super-linearly, and σ : Rd → R
d×D is bounded and Lipschitz

continuous (see Section 2 for the detailed assumptions on b and σ). Then, (1.2) admits a unique

strong solution on [0,+∞) for any given deterministic initial value X(0) ∈ R
d. It is shown

in [20, Theorem 3.1] that (1.2) admits a unique invariant measure π and is thus ergodic, due to

the strong dissipation condition on b. Our main purpose is to study the CLT of the temporal

average of the backward Euler-Maruyama (BEM) method applied to (1.2). The reasons for the

choice of the BEM method are as follows:

(1) The CLT of the numerical temporal average characterizes the long-time behavior of

numerical solutions. Thus, one preference in the choice of the numerical method is that it

should possess the long-time stability. The Euler–Maruyama (EM) method and the BEM

method are used most frequently when simulating SODEs (see e.g. [10, p. 453]). Similar to the

deterministic case, the BEM method shows a more excellent long-time stability than the EM

method.

(2) When applied to SODEs with super-linearly growing coefficients, the EM method is

known to diverge [15]. Other explicit numerical methods based on the Itô-Taylor expansion

could suffer from the same fate, for SODEs with super-linearly growing coefficients [10]. Thus,

as is pointed out by [21], for SODEs with super-linearly growing coefficients, one usually adopts

implicit numerical methods or modified explicit numerical methods such as the adaptive time

step size method, tamed method and the truncated method.


