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Abstract

This paper presents three regularized models for the logarithmic Klein-Gordon equa-

tion. By using a modified Crank-Nicolson method in time and the Galerkin finite element

method (FEM) in space, a fully implicit energy-conservative numerical scheme is con-

structed for the local energy regularized model that is regarded as the best one among the

three regularized models. Then, the cut-off function technique and the time-space error

splitting technique are innovatively combined to rigorously analyze the unconditionally op-

timal and high-accuracy convergence results of the numerical scheme without any coupling

condition between the temporal step size and the spatial mesh width. The theoretical

framework is uniform for the other two regularized models. Finally, numerical experiments

are provided to verify our theoretical results. The analytical techniques in this work are

not limited in the FEM, and can be directly extended into other numerical methods. More

importantly, this work closes the gap for the unconditional error/stability analysis of the

numerical methods for the logarithmic systems in higher dimensional spaces.
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1. Introduction

In this paper, we consider the Klein-Gordon equation with the logarithmic nonlinear term

(LogKGE)

utt(x, t)−∆u(x, t) + u(x, t) + λu(x, t)f
(
|u(x, t)|2

)
= 0, (x, t) ∈ Ω× (0, T ], (1.1a)

u(x, 0) = φ0(x), ut(x, 0) = φ1(x), x ∈ Ω, (1.1b)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (1.1c)

where u(x, t) is a real valued scalar field, λ is a parameter measuring the force of the nonlinear

interaction, φ0(x) and φ1(x) are given sufficiently smooth functions, Ω ⊂ Rd (d = 1, 2, 3) is

a bounded convex polygonal or polyhedral domain fixed on a Lipschitz continuous boundary

∂Ω, and

f(ρ) = ln ρ, ρ = |u(x, t)|2 > 0. (1.2)
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The LogKGE (1.1) admits the law of energy conservation defined by

E(t) =

∫

Ω

(
|ut(x, t)|2 + |∇u(x, t)|2 + |u(x, t)|2 + λF

(
|u(x, t)|2

))
dx ≡ E(0), t ∈ [0, T ], (1.3)

where u(·, t) ∈ H1(Rd), ut(·, t) ∈ L2(Rd) and

F (ρ) =

∫ ρ

0

f(s)ds =

∫ ρ

0

ln sds = ρ ln ρ− ρ, ρ > 0. (1.4)

The logarithmic nonlinearity is widely used in various physical models for different fields of

research, such as the logarithmic Schrödinger equation (LogSE) established in quantum me-

chanics or quantum optics [15, 16], the logarithmic Korteweg-de Vries equation and logarith-

mic Kadomtsev-Petviashvili equation applied to characterize oceanography and fluid dynam-

ics [22, 45], the Cahn-Hilliard equation with logarithmic potentials [18, 20] studied in material

sciences, and so on. Additionally, the LogKGE is regarded as the relativistic version of the

LogSE [13], which has been introduced into the quantum field theory by Rosen [37]. This

equation has attracted widespread attention due to its fundamental importance in the study of

quantum field theory and its connection to various physical phenomena.

In the past decades, many scholars have devoted themselves to studying the well-posedness

of the Cauchy problem for LogKGEs. Bartkowski et al. [13] proved the existence and uniqueness

of weak solutions and classical solutions for one-dimensional LogKGE. Later, Natali et al. [35]

gave the orbital stability results of periodic standing waves of one-dimensional LogKGE. By

employing the auxiliary equation method, Alzaleq et al. [2] found new bounded and unbounded

exact traveling wave solutions for LogKGE with three different forms. In [46], the author

indicated that LogKGE possessed Gaussons: Solitary wave solutions of Gaussian shape. Since

the analytical solutions of most nonlinear Klein-Gordon equations are not easy to find, a series

of numerical methods have been considered, including finite difference methods (FDMs) [8,

11, 12, 14, 30, 50], FEMs [17, 24, 44], spectral methods [9], exponential wave integrator [8] and

operator splitting [10] Fourier pseudospectral methods, and so on. However, due to the blow-up

of the logarithmic nonlinear term near the origin, these numerical methods cannot be directly

applied to logarithmic equations.

In order to avoid the blow-up, Bao et al. [5,6] proposed a regularized FDM and a regularized

splitting method for LogSE, and established their error bound. Li et al. [27] applied the FDM

to solve the numerical solutions of the regularized LogSE in an unbounded domain. Later,

for the LogKGE, two energy-conservative regularized FDMs were employed and their error

estimates were obtained [48, 49]. It is well known that logarithmic function will only appear

numerical blow-up when ρ → 0+, and this phenomenon will not occur when the value of ρ is

large. Therefore, Bao et al. [7] recently presented an energy regularized logarithmic Schrödinger

equation (ERLogSE) through local energy regularization (LER) technique, that is, a sequence

of polynomials approximation to the interaction energy density F (ρ) at near origin. Inspired

by above works, Yan et al. [47] extended the LER technique to the LogKGE. A conservative

Crank-Nicolson FDM and an explicit FDM were raised for the obtained ERLogKGE. Through

the above analysis and our knowledge, it is found that there exists no research focusing on

the FEM for the LogKGE. However, we must emphasize that the finite element discretization

allows us to work in a very low regularity states, which cannot be done by spectral methods

or FDMs. Additionally, the FEM exhibits excellent adaptability to complex geometric regions

and boundary conditions. In this work, we aim to bridge this gap by developing an energy-

conservative FEM for the LogKGE (1.1).


