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Abstract

We design and analyze an iterative two-grid algorithm for the finite element discretiza-

tions of strongly nonlinear elliptic boundary value problems in this paper. We propose

an iterative two-grid algorithm, in which a nonlinear problem is first solved on the coarse

space, and then a symmetric positive definite problem is solved on the fine space. The

main contribution in this paper is to establish a first convergence analysis, which requires

dealing with four coupled error estimates, for the iterative two-grid methods. We also

present some numerical experiments to confirm the efficiency of the proposed algorithm.
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1. Introduction

Two-grid methods are first proposed for nonselfadjoint problems and indefinite elliptic prob-

lems [6, 10]. Then, two-grid methods are extended to solve semilinear elliptic problems [7],

quasi-linear and nonlinear elliptic problems [8,9], respectively. Especially, for nonlinear elliptic

problems, the basic idea of two-grid methods is to first obtain a rough solution by solving the

original problem in a coarse mesh with mesh size H , and then correct the rough solution by

solving a symmetric positive definite (SPD) system in a fine mesh with mesh size h. Noticing

the coarse mesh could be extremely coarse in contrast to the fine mesh, it is not difficult to

solve an original problem in coarse mesh. Therefore, two-grid methods reduce the computa-

tional complexity of solving the original problem to solving a SPD problem and dramatically

improve the computational speed. Recently, Bi et al. [1] presented a two-grid algorithm to

solve the strongly nonlinear elliptic problems and provided a posteriori error estimator for the

two-grid methods. It is noted that the literature mentioned above is all about non-iterative

two-grid methods.

As is well-known, the mesh size H of coarse mesh and h of fine mesh should satisfy a certain

relationship for the optimal convergence order in non-iterative two-grid methods. The iterative

two-grid methods have the advantage over the non-iterative two-grid methods in that, the

distance between the mesh sizes H and h can be enlarged by increasing the iteration counts

with the same accuracy. However, there is only a small amount of literature on iterative
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two-grid methods of conforming finite element discretization for elliptic problems. Xu [9] first

proposed and analyzed an iterative two-grid method for non-symmetric positive definite elliptic

problems. Zhang et al. [11] designed some iterative two-grid algorithms for semilinear elliptic

problems and provided the corresponding convergence analysis. To our knowledge, there is

not any published literature on the iterative two-grid algorithm of conforming finite element

discretization for strongly nonlinear elliptic boundary value problems.

In this paper, an iterative two-grid algorithm for solving strongly nonlinear elliptic problems

is studied. The discrete system of strongly nonlinear elliptic problems is presented at first. And

then, an iterative two-grid algorithm is proposed for the discrete system, which is obtained by

applying a non-iterative two-grid algorithm of [8] in a successive fashion. Finally, a challenging

convergence analysis of the proposed algorithm is provided. Despite the fact that our algorithm

is simply obtained by [8], the convergence analysis of the non-iterative two-grid algorithm could

not be directly applied to the iterative two-grid algorithm. Here we complete this challenging

convergence analysis by mathematical induction which can also be used in solving semilinear

elliptic problems by iterative two-grid algorithms in [11]. However, we must emphasize that the

convergence analysis of our algorithm is significantly different from the one of [11]. Compared

with the current work [11], our convergence analysis is far more difficult and complex, and

specific challenges could be reflected in:

(1) the higher order derivative component of our model problem is still nonlinear,

(2) the coupled error estimates cause formidable obstacles for the convergence analysis (see the

proof of Lemma 4.5).

To avoid the repeated use of generic but unspecified constants, x.y is used to denote x≤Cy,

where C are some positive constants which do not depend on the mesh size. Furthermore

the constants C may denote different values under different circumstances. For some specific

constants, we use the constant C with some subscript to denote.

The rest of the paper is organized as follows. In Section 2, the discrete scheme of strongly

nonlinear elliptic problems, as well as the corresponding well-posedness and a priori error es-

timates, are introduced. In Section 3, an iterative two-grid algorithms is proposed. And then

some preliminaries and the convergence analysis of the proposed algorithms are provided in

Section 4. Finally, some numerical experiments are presented to verify the efficiency of the

proposed algorithm in Section 5.

2. Model Problems and Discrete Systems

In this section, we present the continuous and discrete variational problems of strongly

nonlinear elliptic problems, and provide the corresponding well-posedness and a priori error

estimates.

Given a bounded convex polygonal domain Ω ⊂ R
2 with the boundary ∂Ω. We denote

Wm,p(Ω) as the standard Sobolev space with norm ‖ · ‖m,p,Ω and seminorm | · |m,p,Ω, where the

integersm ≥ 0 and p ≥ 1. For convenience, we also denoteHm(Ω) = Wm,2(Ω), ‖·‖m = ‖·‖m,2,Ω

and H1
0 (Ω) := {u ∈ H1(Ω) : u|∂Ω = 0}.

We consider the following strongly nonlinear elliptic problem:

{

−∇ · a(x, u,∇u) + f(x, u,∇u) = 0 in Ω,

u = 0 on ∂Ω,
(2.1)


