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Abstract

We present a decoupled, linearly implicit numerical scheme with energy stability and

mass conservation for solving the coupled Cahn-Hilliard system. The time-discretization is

done by leap-frog method with the scalar auxiliary variable (SAV) approach. It only needs

to solve three linear equations at each time step, where each unknown variable can be

solved independently. It is shown that the semi-discrete scheme has second-order accuracy

in the temporal direction. Such convergence results are proved by a rigorous analysis of

the boundedness of the numerical solution and the error estimates at different time-level.

Numerical examples are presented to further confirm the validity of the methods.
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1. Introduction

In this paper, we consider the coupled Cahn-Hilliard system

∂u

∂t
= Mu∆

(

− ǫ2u∆u+ f(u, v)
)

, (1.1a)

∂v

∂t
= Mv

[

∆
(

− ǫ2v∆v + g(u, v)
)

− σ(v − v̄)
]

(1.1b)

in Ω× (0, T ] with periodic boundary conditions and following initial conditions:

u(x, 0) = u0(x), v(x, 0) = v0(x), (1.2)

where Ω is a smooth bounded domain in R
d (d = 1, 2, 3), Mu and Mv are the mobility constants

that control the speed of u and v move. ǫu and ǫv represent the interfacial width between

macrophases (described by u) and microphases (described by v). σ is related to the connectivity
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between the two components of the copolymer. v̄ =
∫

Ω
vdx/|Ω| is the mass ratio between two

polymers. f(u, v) = u3−u+αv+βv2 and g(u, v) = v3− v+αu+2βuv are the first variational

derivative of the double welled potential

W (u, v) =
1

4
(u2 − 1)2 +

1

4
(v2 − 1)2 + αuv + βuv2,

where α and β are two coupling parameters. The coupled Cahn-Hilliard system was proposed

to study the phase transition of the mixture of a homopolymer and a copolymer [2, 3]. And it

has been widely used in the study of physics and materials.

Theoretical analysis for the coupled Cahn-Hilliard system has been well done recently. Here

we refer interested readers to [7,8,21] for the existence, uniqueness and regularity of solutions,

weak formulation and the well-posedness of the system, and global existence and decay estimates

to the system. It is noticed that system (1.1) has two distinguishing features. For one thing,

taking the inner product of (1.1a) and (1.1b) with 1, we have

d

dt

∫

Ω

udx =
d

dt

∫

Ω

vdx = 0.

This indicates that the phase variable’s mass are conserved. For another thing, taking the inner

product of (1.1a) and (1.1b) with −(−∆)−1ut and −(−∆)−1vt, respectively, we can obtain the

energy dissipation law

d

dt
E(u, v) =

∫

Ω

[

δE(u, v)

δu
ut +

δE(u, v)

δv
vt

]

dx = − 1

Mu
‖ut‖2−1 −

1

Mv
‖vt‖2−1 ≤ 0 (1.3)

with the energy defined by

E(u, v) =

∫

Ω

ǫ2u
2
|∇u|2 + ǫ2v

2
|∇v|2 +W (u, v)dx+

σ

2
‖(v − v̄)‖2

−1, (1.4)

where ‖ · ‖−1 is the norm defined in H−1
per .

In the past several decades, many efforts have been done to develop energy-stable schemes

for the coupled Cahn-Hilliard system. Typical ways include the convex splitting approach

[9, 10], the stabilized approach [17, 22, 29], the Lagrange multiplier approach [4, 5, 12], the in-

variant energy quadratization approach [32, 33, 36], the scalar auxiliary variable (SAV) ap-

proach [1,11,14,18,25,26,28], the relaxation approach [13,15,16] and so on [6,23,27,34,35,37].

Generally speaking, a class of couple system was obtained by using the usual time-discretization

with the mentioned approaches. For example, Yang and Kim [31] proposed a coupled scheme

by using the Lagrange multiplier approach and the second-order backward difference formula

(BDF2) method. Li et al. [24] presented a linearized implicit and coupled scheme by using the

Crank-Nicolson-type method and a nonlinearly stabilized splitting approach. Li and Mei [20]

developed a family of coupled schemes by using the BDF2 method and the SAV approach. The

coupled schemes required some additional decoupled or iterative methods to get the numerical

approximations.

In recent years, there are some decoupled schemes for solving the coupled Cahn-Hilliard

system. In [19], a linearly implicit scheme was constructed by using an extension of the typical

invariant energy quadratization approach with the Crank-Nicolson method, BDF1 method, and

BDF2 method, respectively. In [30], a linearly implicit scheme was constructed by using BDF2

method and an efficient variant of the SAV approach and the energy relaxation technique.

However, these references have no convergence results of the decoupled schemes.


