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Abstract

Stochastic gradient descent (SGD) methods have gained widespread popularity for solv-

ing large-scale optimization problems. However, the inherent variance in SGD often leads

to slow convergence rates. We introduce a family of unbiased stochastic gradient esti-

mators that encompasses existing estimators from the literature and identify a gradient

estimator that not only maintains unbiasedness but also achieves minimal variance. Com-

pared with the existing estimator used in SGD algorithms, the proposed estimator demon-

strates a significant reduction in variance. By utilizing this stochastic gradient estimator

to approximate the full gradient, we propose two mini-batch stochastic conjugate gradi-

ent algorithms with minimal variance. Under the assumptions of strong convexity and

smoothness on the objective function, we prove that the two algorithms achieve linear con-

vergence rates. Numerical experiments validate the effectiveness of the proposed gradient

estimator in reducing variance and demonstrate that the two stochastic conjugate gradient

algorithms exhibit accelerated convergence rates and enhanced stability.
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1. Introduction

Consider the empirical risk minimization (ERM) problem

min
ω∈Rd

f(ω) =
1

n

n∑

i=1

fi(ω), (1.1)
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where ω ∈ R
d represents the decision vector, fi(ω) : R

d → R is the loss function for the i-th

sample, n is the number of samples. This problem is widely raised from machine learning for

building and training models to minimize some loss on a training dataset.

In the case when the number of samples n is extremely large, the calculating of full gradients

∇f(ω) becomes expensive. Stochastic gradient descent, proposed in the seminal work [23],

randomly generates one sample of the loss function to update the iteration. As the gradient

direction oscillates in the SGD method, the mini-batch SGD was introduced in [19,25], which is

to select some subset of samples instead of a single sample at each iteration. This technique is

able to reduce gradient variance and hence increases the stability of the method. The stochastic

average gradient (SAG) method [24] needs to store the gradient of each sample and utilizes

the average of historical gradients to reduce variance. The SAG method achieves a linear

convergence rate in strongly convex problems, which is much faster than SGD. The stochastic

variance reduced gradient (SVRG) [15] does not need to maintain all gradients in memory,

but performs gradient replacement every m iterations and achieves the linear convergence as

well. The stochastic average gradient amélioré (SAGA) method [6], like SAG, needs to store

the gradients of all samples, yet retains unbiasedness. It is worth noting that, although the

variance produced by the gradient estimation in SAG is 1/n2 times that of SAGA, this reduction

in variance comes at the expense of introducing a non-zero bias [6]. Other variants of variance

reduction algorithms, as well as through adaptive learning rates, can be found in [7, 16, 20, 26,

28, 30, 32–34]. For more SGD algorithms, we refer to [2, 18, 27, 29] and the references therein.

This leads us to focus on how to estimate the gradients in the best way. We believe that

an ideal gradient estimator should be unbiased and exhibit low variance. Therefore, this paper

mainly focuses on designing unbiased stochastic gradient estimators that minimize variance, and

applies them to stochastic conjugate gradient algorithms, aligning with our research interests.

Recalling the classical conjugate gradient method, it is widely used for large-scale optimiza-

tion problems due to its fast convergence and low storage requirement. Well-known formu-

las for the conjugate gradient parameter are Fletcher-Reeves (FR) [8], Polak-Ribière-Polyak

(PRP) [21, 22], Hestenes-Stiefel (HS) [12], and Dai-Yuan (DY) [5] ones. A range of hybrid

conjugate gradient methods have been developed, including the TAS method by Touati-Ahmed

and Storey [31], the PRP-FR method (a hybrid version of PRP and FR) proposed by Hu and

Storey [13], and the GN method by Gilbert and Nocedal [9]. These hybrid methods combine

the properties of standard conjugate gradient methods to acquire new characteristics, facili-

tating rapid convergence to the solution [1]. By exploring the second-order information and

analyzing the relationship between conjugate gradient directions and quasi-Newton directions,

more efficient conjugate gradient methods have been developed in Dai and Kou [4], and Hager

and Zhang [10, 11]. For more details on conjugate gradient methods, we refer to [1, 3].

Applying the conjugate gradient algorithms to solve ERM problem (1.1), two stochastic

conjugate gradient algorithms, the conjugate gradient with variance reduction (CGVR) [14]

and the stochastic conjugate gradient algorithm (SCGA) [17], have been proposed. It is found

that these stochastic conjugate gradient methods demonstrate a faster decrease in the objective

function value compared to SGD. Motivated by these findings, in the second part of this paper,

we introduce two stochastic conjugate gradient algorithms with minimal variance by integrating

the new proposed gradient estimator.

The rest of this paper is organized as follows. Section 2 proposes a new family of stochastic

gradient estimators with unbiasedness and a new stochastic gradient estimator with minimal

variance. Section 3 describes the details of the two stochastic conjugate gradient algorithms


