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Abstract

This paper presents various acceleration techniques tailored for the traditional 3D topol-

ogy optimization problem. Firstly, the adoption of the finite difference method leads to

a sparser stiffness matrix, resulting in more efficient matrix-vector multiplication. Addi-

tionally, a fully matrix-free technique is proposed, which only assembles stiffness matrices

at the coarsest grid level and does not require complex node numbering. Moreover, an in-

novative N-cycle multigrid (MG) algorithm is proposed to act as a preconditioner within

conjugate gradient (CG) iterations. Finally, to further enhance the optimization process

on high-resolution grids, a progressive strategy is implemented. The numerical results con-

firm that these acceleration techniques are not only efficient, but also capable of achieving

lower compliance and reducing memory consumption. MATLAB codes complementing the

article can be downloaded from Github.
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1. Introduction

Structural topology optimization (TO) is a mathematical method used for designing the

layout of materials or structures. It aims to find the most efficient material distribution within

a given design space, considering load conditions and constraints. This method is used in various

engineering fields, such as aerospace, automotive, mechanical engineering, architecture [6,9,27],

heat sinks [23, 33], and flow networks [16].

The origins of TO trace back to Michell’s work in 1904, which derived a solution method for

classic Michell truss structures [20]. Over time, various methods have been proposed to establish

a stable and efficient numerical algorithm for solving TO, which are applicable in engineering

practice. Depending on the description of the density function, methods such as the solid

isotropic material with penalization (SIMP), level set methods [29], isogeometric analysis [31],

moving morphable components [36], and phase field techniques [11] have emerged. Among

these methods, SIMP is widely adopted. This method translates the topology optimization
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problem into a nonlinear programming problem with multiple variables, thereby avoiding the

need for methods that require second-order derivatives. Commonly used algorithms for solving

TO include the optimality criteria method [6, 38], method of moving asymptotes (MMA) [28],

sequential linear programming [26], and threshold dynamic method [8, 15, 16].

Topology optimization has seen rapid development over the past two decades, numerous

review articles have emerged [6, 9, 17, 27, 30, 35]. However, it has surprisingly not yet gained

mainstream acceptance among structural engineers. A key challenge in topology optimization

is handling large-scale or high-dimensional design problems that may involve millions to bil-

lions of degrees of freedom [2]. The most expensive step in topology optimization algorithms

is the computation of the objective function, which involves solving a linear system at each

iteration. High-performance computing approaches have been successful in addressing these

challenges [1, 2, 37]; however, they require substantial computational resources and do not re-

duce computational demands. Strategies have been applied to reduce the cost of computation,

such as reanalysis [25], reduced-order models [12, 32], and multigrid methods [3, 4, 24].

Various acceleration strategies for large-scale problems are discussed in [13,21,22,31,32,34].

In this paper, we employ a simple two-stage approach [18], where the optimal results from the

first stage with a coarse mesh is used as the initial design for the second stage with a finer

mesh. The optimized result from the first stage can accelerate the convergence of the second

stage. By recursively applying the two-stage approach, the main optimization process occurs

on the coarse mesh. Performing most of the optimization on the coarse grid and only a few

optimization loops on the fine grid significantly enhances efficiency.

This paper aims to provide a robust and efficient algorithm for solving 3D problems by

integrating existing technologies with new strategies thereby achieving higher quality solutions.

Our goals include running 3D topology optimization problems efficiently on personal computers

and promoting integration with computer-aided design (CAD) software. The various acceler-

ation strategies proposed in this paper are based on the multigrid preconditioned conjugate

gradient (MGCG) method. A new N-cycle algorithm, similar to the V-cycle and W-cycle

multigrid methods, offers the acceleration benefits of the CG method. The use of the finite

difference method, as opposed to finite elements, accelerates matrix-vector multiplication and

results in lower compliance. The numerical equivalence between finite difference and finite ele-

ment methods has been established, which allows for straightforward algorithm implementation

by simply replacing the stiffness matrix. One of the most efficient acceleration techniques is

the fully matrix-free approach, which aims to reduce storage requirements and boost computa-

tional efficiency. As this approach obviates the need to assemble large-scale matrices, it enables

high-resolution problems to be executed on personal computers.

The remainder of this paper is organized as follows. Section 2 introduces the 3D linear

elasticity problem and the topology optimization problem. Section 3 details various acceleration

strategies. Section 4 verifies the effectiveness of these acceleration strategies with numerical

examples.

2. Model Problem

2.1. Linear elasticity problem

The classic 3D linear elasticity problem can be formulated as the following equilibrium

equation with boundary conditions:


