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Abstract

In this paper, we propose an accelerated stochastic variance reduction gradient method

with a trust-region-like framework, referred as the NMSVRG-TR method. Based on

NMSVRG, we incorporate a Katyusha-like acceleration step into the stochastic trust region

scheme, which improves the convergence rate of the SVRG methods. Under appropriate

assumptions, the linear convergence of the algorithm is provided for strongly convex objec-

tive functions. Numerical experiment results show that our algorithm is generally superior

to some existing stochastic gradient methods.
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1. Introduction

In this paper, we consider stochastic optimization problems, in which random variables are

used to describe uncertainties in the objective function. The general stochastic optimization

model can be summarized as follows:

min
x∈Rn

f(x) = Eξ[f(x; ξ)], (1.1)

where ξ is a random variable and Eξ[] represents the mathematical expectation of ξ. In many

practical applications, due to the real distribution of ξ is unknown, we generally use ξ empirical

distribution instead of the actual distribution. Specifically, we assume that there are n samples

ξ1, ξ2, . . . , ξn, let fi(x) = f(x; ξi), and then obtain a finite-sum structure

min
x∈Rn

f(x) =
1

n

n
∑

i=1

fi(x), (1.2)

where x is the decision variable, n is the sample size, and each fi : R
n → R is a loss function

that corresponds to the i-th data sample. In machine learning and statistics, many regularized

empirical risk minimization (ERM) problems are commonly expressed as a finite-sum structure

[3, 5, 13]. We assume fi is convex with a Lipschitz continuous gradient, and the function f(x)

is smooth and strongly convex.
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In many applications, it is challenging to compute the full gradient∇f(x) when the collected

sample size n is enormous. Therefore, in recent years, how to solve the problems (1.2) more

efficiently has attracted widespread attention from many scholars.

Stochastic gradient descent (SGD) can be traced back to the pioneering work of [19]. Uti-

lizing the separable structure of f(x), SGD estimates the full gradient ∇f(x) of the current

iteration by utilizing only one component of the gradient ∇fit(x), it is a uniformly randomly

selected metric from {1, 2, . . . , n}. The iteration format is as follows:

xt+1 = xt − αt∇fit(xt), (1.3)

where αt > 0 denotes the step size and ∇fit(xt) is defined as the stochastic gradient at xt. In

most cases, the cost of each iteration of the SGD method is 1/n of the full gradient descent

method [9], which shows that the complexity of each iteration of the stochastic gradient descent

method is significantly lower than that of full gradient descent. Therefore, SGD scales well in

data sample size, which is important in some machine learning applications because there are

many large data samples.

The more common form in practical calculations is the mini-batch stochastic gradient

method. It has the following iteration format:

xt+1 = xt −
αt

|It|

∑

i∈It

∇fi(xt), (1.4)

where It is an index chosen uniformly at random from It ∈ {1, 2, . . . , n}, and |It| represents

the number of elements in the It.

Nonetheless, it is essential to note that the variance estimate linked to the stochastic gradi-

ent, produced by the stochastic gradient descent, persists throughout the iterations. This shows

that SGD needs to reduce the step size to achieve convergence, as discussed in reference [4].

Even in the convex case, this algorithm can only show the sublinear convergence rate, as de-

scribed in reference [24]. As a result, the optimization community has shown a keen interest in

strategies to decrease the variance and accelerate the convergence rate.

The stochastic average gradient (SAG) method, proposed by Roux et al. [14], records all

previously obtained stochastic gradients. These gradients are subsequently averaged with the

concurrently updated stochastic gradient, serving as the gradient estimation for the next iter-

ation. The iteration format is as follows:

xt+1 = xt − αt

(

1

n

(

∇fit(xt)− gt−1
it

)

+
1

n

n
∑

i=1

gt−1
i

)

, (1.5)

where gti is updated by

gti =

{

∇fit(xt), if i = it,

gt−1
i , otherwise.

(1.6)

SAG is linearly convergent with respect to smooth strongly convex functions. It is crucial to

acknowledge that the SAG gradient estimation is biased. Subsequently, Defazio [8] modified

SAG and proposed SAGA algorithm. This method employs an unbiased gradient estimation for

the update direction and converges at the same rate as SAG. The SAGA gradient estimation

method can be understood as retaining a history of n past stochastic gradients and updating

these stored gradients

xt+1 = xt − αt

(

∇fit(xt)− gt−1
it

+
1

n

n
∑

i=1

gt−1
i

)

. (1.7)


