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Abstract

In this paper, we consider the numerical solution of decoupled mean-field forward back-

ward stochastic differential equations with jumps (MFBSDEJs). By using finite differ-

ence approximations and the Gaussian quadrature rule, and the weak order 2.0 Itô-Taylor

scheme to solve the forward mean-field SDEs with jumps, we propose a new second order

scheme for MFBSDEJs. The proposed scheme allows an easy implementation. Some nu-

merical experiments are carried out to demonstrate the stability, the effectiveness and the

second order accuracy of the scheme.
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1. Introduction

To characterise the jumps in a Lévy process on a given probability space (Ω,F , P ), we

introduce the Poisson random measure µ on E× [0, T ]

µ : Ω× E × [0, T ] → N,

(ω,A, [0, t]) → µ(A× [0, t]),

where E = R
q\{0} and E is its Borel field. For given t ∈ [0, T ] and A ∈ E , µ(A×[0, t]) is a random

variable counting the number of jumps occurring in [0, t] whose jump sizes belong to A. We

usually suppress ω in µ for simplicity.

We call the measure ν : E × [0, T ] defined by ν(A × [0, t]) = E[µ(A × [0, t])] the intensity

measure of µ. Suppose that ν(de, dt) = λ(de)dt with λ being a Lévy measure on (E, E) satisfying
∫

E
(1 ∧ |e|2)λ(de) < +∞, then the compensated Poisson random measure is defined as

µ̃(de, dt) = (µ− ν)(de, dt) = µ(de, dt)− λ(de)dt

such that {µ̃(A× [0, t])}0≤t≤T is a martingale for any A ∈ E with λ(A) < ∞. Moreover, let F

and ρ be the distribution and the probability density function of the jump size e, respectively,

then it holds that

λ(de) = λF (de) = λρ(e)de,
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where λ = λ(E) is the intensity of µ. For more details of the Poisson random measure, the

readers are referred to [6, 18].

Then we can get a complete filtered probability space (Ω,F ,F, P ) by letting F = {Ft}0≤t≤T

be the filtration generated by the mutually independent m-dimensional Brownian motion Wt

and the Poisson random measure µ, that is Ft = F0
t+ ∨ F0, where F0

t+ =
⋂

s≥t F0
s with

F0
s = σ

{

Wr, µ(A× [0, r])
∣

∣A ∈ E , r ≤ s
}

, s ∈ [0, T ],

and the σ-field F0 ⊂ F satisfies:

• The Brownian motion Wt and the measure µ are independent of F0.

• Np ⊂ F0 with Np being the set of all P -null subset of F .

Now we consider decoupled mean-field forward backward stochastic differential equations

with jumps on (Ω,F ,F, P )

X0,X0

t = X0 +

∫ t

0

E
[

b
(

t,X0,x0

t , x
)]

∣

∣

∣

x=X
0,X0
s

ds+

∫ t

0

E
[

σ
(

t,X0,x0

t , x
)]

∣

∣

∣

x=X
0,X0
s

dWs

+

∫ t

0

∫

E

E
[

c
(

s,X0,x0

s− , x, e
)]

∣

∣

∣

x=X
0,X0
s−

µ̃(de, ds),

Y 0,X0

t = E
[

Φ
(

X0,x0

T , x
)]

∣

∣

∣

x=X
0,X0
T

+

∫ T

t

E
[

f
(

s,Θ0,x0

s , θ
)]

∣

∣

∣

θ=Θ
0,X0
s

ds−
∫ T

t

Z0,X0

s dWs

−
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(1.1)

where t ∈ [0, T ], x0, X0 ∈ F0 is the initial values of mean-field forward stochastic differential

equations with jumps (MSDEJs) and E[Φ(X0,x0

T , x)]|
x=X

0,X0
T

∈ FT with Φ : Ωd = R
d×R

d → R
p

is the terminal condition of mean-field backward stochastic differential equations with jumps

(MBSDEJs); b : [0, T ] × Ωd → R
d, σ : [0, T ] × Ωd → R

d×m, and c : [0, T ]× Ωd × E → R
d are

the drift, diffusion and jump coefficients of MSDEJs, respectively; f : [0, T ]× Ωf → R
p is the

so called generator of MBSDEJs with Ωf = R
d ×R

p ×R
p×m ×R

p ×R
d ×R

p ×R
p×m ×R

p; the

term Θ0,x
s = (X0,x

s , Y 0,x
s , Z0,x

s ,Γ0,x
s ) with x = x0 or X0, and

Γ0,x
s =

∫

E

U0,x
s (e)η(e)λ(de)

for some Borel function η : E → R satisfying supe∈E |η(e)| < ∞. We call a quadruplet

(X0,X0

t , Y 0,X0

t , Z0,X0

t , U0,X0

t ) an L2-adapted solution of (1.1) if it is Ft-adapted, square inte-

grable and satisfies (1.1). In general, initial values x0 and X0 are different, and

(

X0,x0

t , Y 0,x0

t , Z0,x0

t , U0,x0

t

)

=
(

X0,X0
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)∣

∣
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.

In this paper, we shall numerically solve the solutions (X0,X0

t , Y 0,X0

t , Z0,X0

t ,Γ0,X0

t ) instead of

(X0,X0

t , Y 0,X0

t , Z0,X0

t , U0,X0

t ). Here the MFBSDEJs (1.1) is called decoupled because the coef-

ficients of MSDEJs do not depend on the solutions of MBSDEJs.

In 2009, Buckdahn et al. [4] first studied the existence and uniqueness of the solutions of

mean-field forward backward stochastic differential equations (MFBSDEs) in a general Marko-

vian setting. Then based on those researches, Li [12] further proved the existence and unique-


