Optimal and Pressure-Independent $L^2$ Velocity Error Estimates for a Modified Crouzeix-Raviart Stokes Element with BDM Reconstructions

Authors

  • C. Brennecke Eidgenössische Technische Hochschule Zürich, Departement Mathematik, Rämistr. 101, 8092 Zürich, Switzerland
  • A. Linke Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
  • C. Merdon Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
  • J. Schöberl TU Wien, Institut f¨ur Analysis und Scientific Computing, Wiedner Hauptstr. 8-10/101,1040 Wien, Austria

DOI:

https://doi.org/10.4208/jcm.1411-m4499

Keywords:

Variational crime, Crouzeix-Raviart finite element, Divergence-free mixed method, Incompressible Navier-Stokes equations, A priori error estimates.

Abstract

Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the velocity error become pressure-dependent, while divergence-free mixed finite elements deliver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modified Crouzeix-Raviart element, obeying an optimal pressure-independent discrete $H^1$ velocity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure-independent $L^2$ velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.

Published

2018-08-22

Issue

Section

Articles