New Error Estimates for Linear Triangle Finite Elements in the Steklov Eigenvalue Problem

Authors

  • Hai Bi School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China
  • Yidu Yang School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China
  • Yuanyuan Yu School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, China
  • Jiayu Han School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, China.

DOI:

https://doi.org/10.4208/jcm.1703-m2014-0188

Keywords:

Steklov eigenvalue problem, Concave polygonal domain, Linear conforming finite element, Nonconforming Crouzeix-Raviart element, Error estimates.

Abstract

This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in $‖·‖_{0,∂Ω}$ for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.

Published

2018-09-17

Issue

Section

Articles