A Full Discrete Stabilized Method for the Optimal Control of the Unsteady Navier-Stokes Equations
DOI:
https://doi.org/10.4208/jcm.1703-m2016-0693Keywords:
Optimal control, Unsteady Navier-Stokes equations, High Reynolds number, Full discrete, Local projection stabilization.Abstract
In this paper, a full discrete local projection stabilized (LPS) method is proposed to solve the optimal control problems of the unsteady Navier-Stokes equations with equal order elements. Convective effects and pressure are both stabilized by using the LPS method. A priori error estimates uniformly with respect to the Reynolds number are obtained, providing the true solutions are sufficiently smooth. Numerical experiments are implemented to illustrate and confirm our theoretical analysis.
Downloads
Published
2018-09-17
Issue
Section
Articles