A Linearly-Implicit Structure-Preserving Exponential Time Differencing Scheme for Hamiltonian PDEs

Authors

  • Yayun Fu
  • Dongdong Hu
  • Wenjun Cai
  • Yushun Wang

DOI:

https://doi.org/10.4208/jcm.2302-m2020-0279

Keywords:

Structure-preserving algorithm, Hamiltonian PDE, Energy quadratization method, Exponential time differencing.

Abstract

In the paper, we propose a novel linearly implicit structure-preserving algorithm, which is derived by combing the invariant energy quadratization approach with the exponential time differencing method, to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations (PDEs). The proposed scheme is a linear system, and can be solved more efficient than the original energy-preserving exponential integrator scheme which usually needs nonlinear iterations. Various experiments are performed to verify the conservation, efficiency and good performance at relatively large time step in long time computations.

Published

2024-04-09

Issue

Section

Articles