Ann. Appl. Math. doi: 10.4208/aam.OA-2024-0018

Time Decay Estimates for Fourth-Order Schrödinger Operators in Dimension Three

Ping Li¹, Zijun Wan², Hua Wang³ and Xiaohua Yao^{4,*}

- ¹ School of Informations and Mathematics, Yangtze University, Jingzhou, Hubei 434000, China
- ² School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China
- ³ Department of Mathematics and Hubei Province Key Laboratory of Mathematical Physics, Central China Normal University, Wuhan, Hubei 430079, China
- ⁴ Department of Mathematics and Key Laboratory of Nonlinear Analysis and Applications (Ministry of Education), Central China Normal University, Wuhan, Hubei 430079, China

Received 21 July 2024; Accepted (in revised version) 2 September 2024

Dedicated to the celebration of the 70th birthday of Professor Avy Soffer

Abstract. This paper is concerned with the time decay estimates of the fourth order Schrödinger operator $H = \Delta^2 + V(x)$ in dimension three, where V(x) is a real valued decaying potential. Assume that zero is a regular point or the first kind resonance of H, and H has no positive eigenvalues, we established the following time optimal decay estimates of e^{-itH} with a regular term $H^{\alpha/4}$:

$$||H^{\alpha/4}e^{-itH}P_{ac}(H)||_{L^1-L^\infty} \lesssim |t|^{-\frac{3+\alpha}{4}}, \quad 0 \leq \alpha \leq 3.$$

When zero is the second or third kind resonance of H, their decay will be significantly changed. We remark that such improved time decay estimates with the extra regular term $H^{\alpha/4}$ will be interesting in the well-posedness and scattering of nonlinear fourth order Schrödinger equations with potentials.

AMS subject classifications: 58J50, 42B15, 35P15, 42B20, 47F05

 $\label{liping@whu.edu.cn} Emails: {\tt liping@whu.edu.cn} \ (P.\ Li), {\tt zijunwan@mails.ccnu.edu.cn} \ (Z.\ Wan), {\tt wanghua_math@liping@whu.edu.cn} \ (X.\ Yao)$

 $^{^*}$ Corresponding author.

Key words: Fourth order Schrödinger equation, asymptotic expansions, L^1-L^∞ decay estimate, resonances.

1 Introduction

1.1 Backgrounds

In this paper, we will consider the time decay estimates of solution to the following fourth order Schrödinger equations in dimension three:

$$\begin{cases}
iu_t = \Delta^2 u + V(x)u, & (t, x) \in \mathbb{R} \times \mathbb{R}^3, \\
u(0, x) = u_0 \in L^2(\mathbb{R}^3),
\end{cases}$$
(1.1)

where V(x) is a real valued potential on \mathbb{R}^3 satisfying $|V(x)| \lesssim (1+|x|)^{-\beta}$ for some $\beta > 0$. It was well-known that the fourth order Schrödinger operator $H := \Delta^2 + V(x)$ is self-adjoint on $L^2(\mathbb{R}^3)$ by Kato-Rellich's theorem, and then the solution of Eq. (1.1) is given by $u(t) = e^{-itH}u_0$ by Stone's theorem.

As V=0, it follows that the free solution $u(t,x)=e^{-it\Delta^2}u_0$ can be expressed by Fourier transform :

$$e^{-it\Delta^2}u_0 = \mathfrak{F}^{-1}(e^{-it|\xi|^4}\widehat{u_0}) = \int_{\mathbb{R}^n} I_0(t, x - y)u_0(y)dy, \tag{1.2}$$

where \hat{f} (or $\mathfrak{F}(f)$) denotes Fourier transform of f, $\mathfrak{F}^{-1}(f)$ denotes its inverse Fourier transform, and $I_0(t,x) = \mathfrak{F}^{-1}(e^{-it|\xi|^4})(x)$ is the kernel of $e^{-it\Delta^2}$. It was well-known that the kernel $I_0(t,x)$ satisfies the following optimal estimates for any $\alpha \in \mathbb{N}^n$ (see e.g., [2]):

$$|D^{\alpha}I_0(t,x)| \lesssim |t|^{-\frac{n+|\alpha|}{4}} \left(1+|t|^{-\frac{1}{4}}|x|\right)^{-\frac{n-|\alpha|}{3}}, \quad |t| \neq 0, \quad x \in \mathbb{R}^n,$$
 (1.3)

where $D = (\partial_{x_1}, \dots, \partial_{x_n})$. Therefore by the (1.2) and Young's inequality, the (1.3) immediately implies that the following decay estimates hold:

$$||D^{\alpha}e^{-it\Delta^{2}}||_{L^{1}(\mathbb{R}^{n})\to L^{\infty}(\mathbb{R}^{n})} \lesssim |t|^{-\frac{n+|\alpha|}{4}}, \quad |\alpha| \leq n.$$

$$(1.4)$$

Moreover, the regular term D^{α} of the inequality (1.4) can be replaced by fractional power $(-\Delta)^{\alpha/2}$ for any $0 \le \alpha \le n$ (see e.g., [4]). It should be noticed that the decay estimates (1.4) with regular term D^{α} have played important roles in the