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Abstract. This paper is concerned with the time decay estimates of the fourth
order Schrödinger operator H = ∆2+V (x) in dimension three, where V (x) is
a real valued decaying potential. Assume that zero is a regular point or the
first kind resonance of H, and H has no positive eigenvalues, we established the
following time optimal decay estimates of e−itH with a regular term Hα/4:

‖Hα/4e−itHPac(H)‖L1−L∞. |t|−
3+α
4 , 0≤α≤3.

When zero is the second or third kind resonance of H, their decay will be
significantly changed. We remark that such improved time decay estimates
with the extra regular term Hα/4 will be interesting in the well-posedness and
scattering of nonlinear fourth order Schrödinger equations with potentials.
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1 Introduction

1.1 Backgrounds

In this paper, we will consider the time decay estimates of solution to the following
fourth order Schrödinger equations in dimension three:{

iut=∆2u+V (x)u, (t,x)∈R×R3,

u(0,x)=u0∈L2(R3),
(1.1)

where V (x) is a real valued potential on R3 satisfying |V (x)|. (1+|x|)−β for some
β>0. It was well-known that the fourth order Schrödinger operator H :=∆2+V (x) is
self-adjoint on L2(R3) by Kato-Rellich’s theorem, and then the solution of Eq. (1.1)
is given by u(t)=e−itHu0 by Stone’s theorem.

As V =0, it follows that the free solution u(t,x)=e−it∆
2
u0 can be expressed by

Fourier transform :

e−it∆
2

u0 =F−1(e−it|ξ|
4

û0)=

∫
Rn
I0(t,x−y)u0(y)dy, (1.2)

where f̂ (or F(f)) denotes Fourier transform of f , F−1(f) denotes its inverse Fourier
transform, and I0(t,x) =F−1(e−it|ξ|

4
)(x) is the kernel of e−it∆

2
. It was well-known

that the kernel I0(t,x) satisfies the following optimal estimates for any α∈Nn (see
e.g., [2]):

|DαI0(t,x)|. |t|−
n+|α|

4

(
1+|t|−

1
4 |x|
)−n−|α|

3 , |t| 6=0, x∈Rn, (1.3)

where D= (∂x1 ,··· ,∂xn). Therefore by the (1.2) and Young’s inequality, the (1.3)
immediately implies that the following decay estimates hold:

‖Dαe−it∆
2‖L1(Rn)→L∞(Rn). |t|−

n+|α|
4 , |α|≤n. (1.4)

Moreover, the regular term Dα of the inequality (1.4) can be replaced by fractional
power (−∆)α/2 for any 0≤ α≤ n (see e.g., [4]). It should be noticed that the
decay estimates (1.4) with regular term Dα have played important roles in the
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well-posedness and scattering theory of the following the nonlinear fourth order
Schrödinger equations:{

iut=∆2u+λ|u|p−1u, (t,x)∈R×Rn,

u(0,x)=u0∈H2(Rn),
(1.5)

where 1<p<∞, λ=+1 denotes the defocusing equation, λ=−1 is the focusing one,
see e.g., Pausder [21, 22], Miao, Xu and Zhao [19, 20] and references therein. Here
inspired by (1.4), we will consider the decay estimates of eitH with regular term
H

α
4 (0≤α≤3) in dimension three.
Recently, there exist several works devoted to the time decay estimates of the

fourth order Schrödinger operator H = ∆2+V (x). Feng et al. [10] firstly gave the
asymptotic expansion of the resolvent RV = (H−z)−1 around zero threshold when
zero is a regular point of H for n≥5 and n=3. Then they proved that Kato-Jensen
type decay estimate of e−itH is (1+|t|)−n/4 for n≥5 and the L1→L∞ decay estimate
is O(|t|−1/2) for n=3 in the regular case. Since then, Erdogăn, Green and Toprak [8]
for n=3 and Green-Toprak [11] for n=4 derived the asymptotic expansion of RV (z)
near zero with the presence of resonance or eigenvalue, and established the L1−L∞
estimates for each kind of zero resonance. More recently, for dimension n=1, Soffer,
Wu and Yao [24] proved the L1→L∞ estimate of e−itH is O(|t|− 1

4 ) whatever zero is
a regular point or resonance. It’s worth mentioning that different types of resonance
don’t change the optimal time decay rate of e−itH in dimension one just at the cost
of faster decay rate of the potential. Moreover, Li, Soffer and Yao [16] have obtained
the L1−L∞ estimate of e−itH in dimension two.

Furthermore, we also notice that there exist some interesting works on the Lp

bounds of wave operators of the fourth order Schrödinger operator, see [13] for n=3
and [7] for n> 5 in the regular case, also see [17] for n= 1 in the zero regular or
resonance cases.

1.2 Main results

We use the notation a± :=a±ε for some small but fixed ε>0. For a,b∈R+, a. b
(or a& b) means that there exists some constant c>0 such that a≤ cb (or a≥ cb).
Moreover, if a.b and b.a, then we write a∼b.

Now we will present our main results on the decay estimates in the presence of
zero resonance or eigenvalue. At first, we recall the definitions of zero resonances,
also see Definition 3.1 below.

Let 〈·〉=(1+|·|)1/2, and define the weighted L2 spaces L2
s(R3)=

{
f : 〈·〉sf∈L2(R3)

}
.

We say that zero is the first kind resonance of H if there exists some nonzero
φ∈L2

−σ(R3) for some σ> 3
2

but nonzero φ∈L2
−σ(R3) for any σ> 1

2
such that Hφ=0 in
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the distributional sense; zero is the second kind resonance of H if there exists some
nonzero φ∈L2

−σ(R3) for some σ> 1
2

but no nonzero φ∈L2(R3) such that Hφ= 0;
zero is the third kind resonance of H (i.e., eigenvalue) if there exists some nonzero
φ∈L2(R3) such that Hφ= 0. We remark that such resonance solutions of Hφ= 0
also can be characterized in the form of Lp spaces, see e.g., [8].

Now our main results are summarized in the theorem below.

Theorem 1.1. Let |V (x)|. (1+|x|)−β (x∈R3) with some β>0. Assume that H=
∆2+V (x) has no positive embedded eigenvalues. Let Pac(H) denote the projection
onto the absolutely continuous spectrum space of H. Then the following statements
hold:

(i). If zero is a regular point of H and β>7, then

‖H
α
4 e−itHPac(H)‖L1→L∞. |t|−

3+α
4 , 0≤α≤3. (1.6)

(ii). If zero is the first kind resonance of H and β>11, then

‖H
α
4 e−itHPac(H)‖L1→L∞. |t|−

3+α
4 , 0≤α≤3. (1.7)

(iii). If zero is the second kind resonance of H and β>19, or the third kind resonance
of H and β>23, then there is a time-dependent operator Fα,t satisfying

‖Fα,t‖L1→L∞. |t|−
1+α
4 , 0≤α≤3,

such that

‖H
α
4 e−itHPac(H)−Fα,t‖L1→L∞. |t|−

3+α
4 , 0≤α≤3. (1.8)

In particular, as 0≤α≤3, we have

‖H
α
4 e−itHPac(H)‖L1→L∞.

{
|t|− 3+α

4 , if |t|≤1,

|t|− 1+α
4 , if |t|>1.

(1.9)

Remark 1.1. Some comments on Theorem 1.1 are given as follows:

(i). When V =0, the estimate (1.6) can be reduced into the following decay esti-
mates: ∥∥|∇|αe−it∆2∥∥

L1(R3)→L∞(R3)
. |t|−

3+|α|
4 , 0≤α≤3, (1.10)

which are actually sharp in view of the estimates (1.4). When V 6=0 and α=0,
Theorem 1.1 are due to Erdoğan, Green and Toprak [8]. In order to deal with
the cases with regular terms Hα/4, The extra efforts are needed to establish the
desired time decay bounds, we have used more detailed asymptotic expansions
of the resolvent RV (λ4) for λ near zero (see Theorem 3.1 below), and then used
Littlewood-Paley method and oscillatory integral theory.



P. Li, Z. Wan, H. Wang and X. Yao / Ann. Appl. Math., 41 (2025), pp. 1-41 5

(ii). In additional, we also remark that time decay of H
α
4 e−itHPac(H) in high en-

ergy part is always |t|− 3+α
4 for 0≤α≤ 3 for all resonances cases. Hence the

obstructions to improved estimates are from lower energy part in the second
and third and of resonance cases.

(iii). For the second kind of resonance case, we can get that

Fα,t=Kα,t+O(|t|−
2+α
4 ),

as 0≤α≤3 (see (3.39) below), where Kα,t is a time-dependent operator defined
in (3.33), which satisfies that

‖Kα,t‖L1→L∞∼|t|−
1+α
4 , |t|>1.

It implies that the decay estimate (3.14) of H
α
4 e−itHPac(H) is also optimal in

general. Similarly, for the third kind of resonance we also have the analogous
comments.

(iv). Recently, Goldberg and Green [13] have showed that the following wave oper-
ators

W±=W±(H,∆2) :=s− lim
t→±∞

eitHe−it∆
2

(1.11)

are bounded on Lp(R3) for 1<p<∞ if zero is regular point of H = ∆2+V .
However, due to the absence of the L1 and L∞ boundednesses of wave operators
W± above in [13], also see [18] for the counterexamples of the endpoint cases.
Therefore the time decay estimates in Theorem 1.1(i) can not be obtained by
wave operator methods.

In Theorem 1.1, we assume that H=∆2+V has no any positive eigenvalues em-
bedded into the absolutely continuous spectrum, which has been the indispensable
condition in dispersive estimates. For Schrödinger operator −∆+V , Kato in [15]
showed the absence of positive eigenvalues for H=−∆+V with the decay potentials
V = o(|x|−1) as |x|→∞. For the four order Schrödinger operator H= ∆2+V , the
situations seem to be subtle because there exist examples even with compactly sup-
ported smooth potentials such that the positive eigenvalues appear (see, e.g., [9]).
On the other hand, more interestingly, a simple criterion has been proved in [9] that
H = ∆2+V has no any eigenvalues assume that the potential V is bounded and
satisfies the repulsive condition (i.e., (x·∇)V ≤0). Besides, we also notice that for a
general selfadjoint operator H on L2(Rn), even if H has a simple embedded eigen-
value, Costin and Soffer in [5] have proved that H+εV can kick off the eigenvalue
located in a small interval under certain small perturbation of potential.
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In order to obtain the decay estimates in Theorem 1.1, we will use the following
Stone’s formula for 0≤α≤3,

H
α
4 e−itHPac(H)f(x)=

2

πi

∫ ∞
0

e−itλ
4

λ3+α[R+
V (λ4)−R−V (λ4)]f(x)dλ. (1.12)

Note that the difference of the perturbed resolvents provides the spectral measure,
hence we need to study carefully the resolvent operators RV (z)=(H−z)−1 by pertur-
bations of the free resolvent R0(z) which have the following representation (see [10]):

R0(z) :=
(
(−∆)2−z

)−1
=

1

2z
1
2

(
R(−∆;z

1
2 )−R(−∆;−z

1
2 )
)
, z∈C\[0,∞). (1.13)

Here the resolvent
R(−∆;z

1
2 ) :=(−∆−z

1
2 ).

For λ∈R+, we define the limiting resolvent operators by

R±0 (λ) :=R±0 (λ±i0)=lim
ε→0

(
∆2−(λ±iε)

)−1
, (1.14a)

R±V (λ) :=R±V (λ±i0)=lim
ε→0

(
H−(λ±iε)

)−1
. (1.14b)

By using the representation (1.13) for R0(z) with z=w4 for w in the first quadrant
of the complex plane, and taking limits as w→λ and w→ iλ, we have

R±0 (λ4)=
1

2λ2

(
R±(−∆;λ2)−R(−∆;−λ2)

)
, λ>0. (1.15)

It is well-known that by the limiting absorption principle (see e.g., [1]), R±(−∆;λ2)
are well-defined as the bounded operators of B(L2

s,L
2
−s) for any s> 1/2, therefore

R±0 (λ4) are also well-defined between these weighted spaces. This property is ex-
tended to R±V (λ4) for λ>0 for certain decay bounded potentials, see [10].

The paper is organized as follows. In Section 2, we establish the dispersive
bounds in the free case. In Section 3, we first recall the resolvent expansions when
λ is near zero, then by Stone’s formula, Littlewood-Paley method and oscillation
integral we establish the low energy decay bounds of Theorem 1.1. In Section 4, we
prove Theorem 1.1 in high energy.

2 The decay estimates for the free case

In this section, we are devote to establishing the decay bounds of the free case by
Littlewood-Paley method and oscillatory integral theory.
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Choosing a fixed even function ϕ∈C∞c (R) such that ϕ(s) = 1 for |s| ≤ 1
2

and
ϕ(s)=0 for |s|≥1. Let

ϕN(s)=ϕ(2−Ns)−ϕ(2−N+1s), N ∈Z.

Then ϕN(s)=ϕ0(2−Ns), suppϕ0⊂ [1
4
,1] and

∞∑
N=−∞

ϕ0(2−Ns)=1, s∈R\{0}. (2.1)

By using Stone’s formula, we have

(−∆)
α
2 e−it∆

2

f=
2

πi

∫ ∞
0

e−itλ
4

λ3+α[R+
0 (λ4)−R−0 (λ4)]fdλ

=
2

πi

∞∑
N=−∞

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)[R+
0 (λ4)−R−0 (λ4)]fdλ.

Therefore, in order to obtain the L1−L∞ decay estimate of the (−∆)
α
2 e−it∆

2
, it

suffices to estimate the following integral kernel for each N :∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)R±0 (λ4)(x,y)dλ.

We first give a lemma which plays an important role in estimating our integrals
mentioned in this paper. Since its proof is similar to Lemma 3.3 in [16], here we
omit the details.

Lemma 2.1. Let A be some subset of Z. Suppose that Φ(s,z) is a function on R×Rm

which is smooth for the first variable s, and satisfies for any (s,z)∈ [1/4,1]×Rm,

|∂ksΦ(2Ns,z)|.1, k=0,1, N ∈A∈Z.

Suppose that ϕ0(s) be a smoothing function of R defined in (2.1), Ψ(z) is a nonneg-
ative function on Rm. Let

N0 =

[
1

3
log2

Ψ(z)

|t|

]
for each z∈Rm, l∈R and t 6=0,

we have∣∣∣∫ ∞
0

e−it2
4Ns4e±i2

NsΨ(z)slϕ0(s)Φ(2Ns,z)ds
∣∣∣.{(1+|t|24N)−

1
2 , if |N−N0|≤2,

(1+|t|24N)−1, if |N−N0|>2.
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Throughout this paper, ΘN0,N(t) always denotes the following function:

ΘN0,N(t) :=

{
(1+|t|·24N)−

3
2 , if |N−N0|≤2,

(1+|t|·24N)−2, if |N−N0|>2,
(2.2)

where N0 =
[

1
3
log2

Ψ(z)
|t|

]
and Ψ(z) is a nonnegative real value function on Rm.

Before we give the decay estimates of the operators (−∆)α/2eit∆
2
, we first recall

that the free resolvent kernel of Laplacian −∆ in R3 (see [12]) is

R±(−∆;λ2)(x,y)=
e±iλ|x−y|

4π|x−y|
, (2.3)

hence by using the identity (1.15), it follows that

R±0 (λ4)(x,y)=
1

2λ2

( e±iλ|x−y|
4π|x−y|

− e−λ|x−y|

4π|x−y|

)
. (2.4)

Proposition 2.1. Let ΘN0,N(t) be the function defined in (2.2) with Ψ(z)= |x−y|
and z=(x,y)∈R6. Then for each x 6=y and 0≤α≤3, we have∣∣∣∫ ∞

0

e−itλ
4

λ3+αϕ0(2−Nλ)R±0 (λ4)(x,y)dλ
∣∣∣.2(3+α)NΘN0,N(t). (2.5)

Moreover,

sup
x,y∈R3

∣∣∣∫ ∞
0

e−itλ
4

λ3+αR±0 (λ4)(x,y)dλ
∣∣∣. |t|− 3+α

4 . (2.6)

As a consequence, we obtain that

‖(−∆)
α
2 e−it∆

2‖L1→L∞. |t|−
3+α
4 . (2.7)

Proof. We write

K±0,N(t,x,y) :=

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)R±0 (λ4)(x,y)dλ.

Let F±(p)= e±ip−e−p
p

, p≥0, by the identity (2.4), we have

R±0 (λ4)(x,y)=
1

8πλ
F±(λ|x−y|). (2.8)

Let 2Ns=λ, then

K±0,N(t,x,y)=
2(3+α)N

8π

∫ ∞
0

e−it2
4Ns4s2+αϕ0(s)F±(2Ns|x−y|)ds.
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Note that s∈suppϕ0⊂ [1/4,1], by using integration by parts, we have

|K±0,N(t,x,y)|. 2(3+α)N

1+|t|24N

∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−1+αϕ0(s)F±(2Ns|x−y|)

)
ds
∣∣∣

.
2(3+α)N

1+|t|24N

(∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−1+αϕ0(s)

)
F±(2Ns|x−y|)ds

∣∣∣
+
∣∣∣∫ ∞

0

e−it2
4Ns4s−1+αϕ0(s)∂s

(
F±(2Ns|x−y|)

)
ds
∣∣∣)

:=
2(3+α)N

1+|t|24N

(∣∣E±01,N(t,x,y)
∣∣+∣∣E±02,N(t,x,y)

∣∣). (2.9)

For E±02,N(t,x,y). Let r= |x−y|, since

∂sF
±(2Nsr)=s−12Nsr(F±)′(2Nsr) :=e±i2

Nsrs−1F±1 (2Nsr),

where

F±1 (p)=pe∓ip(F±)′(p)=
(±ip−1)+(p+1)e−p∓ip

p
.

Then we have

E±02,N(t,x,y)=

∫ ∞
0

e−it2
4Ns4e±i2

Ns|x−y|s−2+αϕ0(s)F±1 (2Ns|x−y|)ds.

Note that

|∂ksF±1 (2Ns|x−y|)|.1, k=0,1,

by Lemma 2.1 with z=(x,y), Ψ= |x−y| and Φ(2Ns,z)=F±1 (2Ns|x−y|), we obtain
that E±02,N is bounded by (1+|t|24N)ΘN0,N(t).

Using similar processes, we obtain the same bounds for E±01,N . Furthermore, by

(2.9) we get that K±0,N is bounded by 2(3+α)NΘN0,N(t). Thus we obtain that the
estimate (2.7) holds.

Finally, in order to obtain (2.6), it’s suffices to prove that for any x 6=y,

+∞∑
N=−∞

|K±0,N(t,x,y)|. |t|−
3+α
4 . (2.10)

In fact, for t 6=0, there exists N ′0∈Z such that 2N
′
0∼|t|− 1

4 . If 0≤α<3, then for any
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x 6=y,

+∞∑
N=−∞

|K±0,N(t,x,y)|.
+∞∑

N=−∞

2(3+α)N(1+|t|24N)−
3
2

.
N ′0∑

N=−∞

2(3+α)N+
+∞∑

N=N ′0+1

2(3+α)N(|t|24N)−
3
2 . |t|−

3+α
4 . (2.11)

If α=3, then for any x 6=y,

+∞∑
N=−∞

|K±0,N(t,x,y)|.
∑

|N−N0|≤2

26N(1+|t|24N)−
3
2 +

∑
|N−N0|>2

26N(1+|t|24N)−2

.|t|−
3
2 +

N ′0∑
N=−∞

26N+
+∞∑

N=N ′0+1

26N(|t|24N)−2. |t|−
3
2 . (2.12)

Hence, we obtain (2.10), which gives (2.6). Furthermore, the estimate (2.7) holds.
This completes the proof.

3 Low energy decay estimates

In this section, we are devote to establishing the decay estimates of H
α
4 e−itHPac(H)

for 0≤α≤3 for low energy part. We first recall that the asymptotic expansions of
the perturbed resolvent RV (λ4) as λ near zero (see [8]), then by stone’s formula we
obtain the decay bounds of Theorem 1.1 for low energy part.

3.1 Asymptotic expansions of resolvent near zero

In this subsection, we recall that the asymptotic expansions of the perturbed resol-
vent RV (λ4) when λ near zero, see [8] and also see [10] for the regular case.

By using the free resolvent kernel R±0 (λ4)(x,y) in (2.4), we have the following
expression:

R±0 (λ4)(x,y)=
a±

λ
I(x,y)+G0(x,y)+a±1 λG1(x,y)+a±3 λ

3G3(x,y)

+λ4G4(x,y)+
N∑
k=5

a±k λ
kGk(x,y)+O

(
λN+1|x−y|N+2

)
, (3.1)
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where

G0(x,y)=−|x−y|
8π

, G1(x,y)= |x−y|2, G3(x,y)= |x−y|4, (3.2a)

G4(x,y)=−|x−y|
5

4π ·6!
, Gk(x,y)= |x−y|k+1, k≥5, (3.2b)

and the coefficients

a±=
1±i
8π

, a±1 =
1∓i
8π ·3!

, a±3 =
1±i
8π ·5!

, a±k =
(−1)k+1+(±i)k+2

8π ·(k+2)!
, (k≥5).

In the sequel, we also denote by Gk operators with the integral kernels Gk(x,y)
above. In particular, G0 =(∆2)−1.

Let U(x)=sign
(
V (x)

)
and v(x)= |V (x)|1/2, then we have V =Uv2 and the fol-

lowing symmetric resolvent identity

R±V (λ4)=R±0 (λ4)−R±0 (λ4)v(M±(λ))−1vR±0 (λ4), (3.3)

where

M±(λ)=U+vR±0 (λ4)v.

Hence, we need to obtain the expansions for (M±(λ))−1.
Let T =U+vG0v, and P =‖V ‖−1

L1 v〈v,·〉 denotes the orthogonal projection onto
the span space by v. Now we introduce the type of resonances that may occur at
the zero energy as follows.

Definition 3.1. Let Q=I−P and T =U+vG0v.

(i). If QTQ is invertible on QL2, then we say that zero is a regular point of H. In
this case, we define D0 =(QTQ)−1 as an operator on QL2.

(ii). Assume that QTQ is not invertible on QL2. Let S1 be the Riesz projection
onto the kernel of QTQ. Then QTQ+S1 is invertible on QL2. In this case,

we define D0 =
(
QTQ+S1

)−1
as an operator on QL2, which doesn’t conflict

with the previous definition since S1 =0 when zero is a regular point. We say
that zero is the first kind resonance of H if

T1 :=S1TPTS1−
‖V ‖L1

3·(8π)2
S1vG1vS1 (3.4)

is invertible on S1L
2. We define D1 =T−1

1 as an operator on S1L
2.
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(iii). Assume that T1 is not invertible on S1L
2. Let S2 be the Riesz projection onto

the kernel of T1. Then T1+S2 is invertible on S1L
2. In this case, we define

D1 =
(
T1+S2

)−1
as an operator on S1L

2, which doesn’t conflict with previous
definition since S2 = 0 when zero is the first kind of resonance. We say that
zero is the second kind resonance of H if

T2 :=S2vG3vS2+
10

3‖V ‖L1

S2(vG1v)2S2−
10

3‖V ‖L1

S2vG1vTD1TvG1vS2 (3.5)

is invertible on S2L
2. We define D2 =T−1

2 as an operator on S2L
2.

(iv). Finally if T2 is not invertible on S2L
2, we say that zero is the third kind

resonance of H. In this case, the operator T3 :=S3vG4vS3 is always invertible
on S3L

2 where S3 be the Riesz projection onto the kernel of T2, let D3 =T−1
3

as an operator on S3L
2. We define D2 =(T2+S3)−1 as an operator on S2L

2.

From the definition above, we have S1L
2⊇S2L

2⊇S3L
2, which describe the zero

energy resonance types of H as follows:

• zero is a regular point of H if and only if S1L
2 ={0};

• zero is the first kind resonance of H if and only if S1L
2 6={0} and S2L

2 ={0};

• zero is the second kind resonance of H if and only if S2L
2 6={0} and S3L

2={0};

• zero is an eigenvalue of H (i.e., the third kind resonance) if and only if S3L
2 6=

{0}.

Note that these spectral subspaces SjL
2 (j=1,2,3) can be characterized by the

distributional solution of Hφ=0 in [8], hence we also have the following statements:

• zero is the first kind resonance of H if there exists some nonzero φ∈L2
−σ(R3)

for σ> 3
2

but no any nonzero φ∈L2
−σ(R3) with σ> 1

2
such that Hφ=0 in the

distributional sense;

• zero is the second kind resonance of H if there exists some nonzero φ∈L2
−σ(R3)

for σ> 1
2

but no any nonzero φ∈L2 such that Hφ=0 in the distributional sense;

• zero is the third kind resonance (i.e., eigenvalue) of H if there exists some
nonzero φ∈L2(R3) such that Hφ=0 in the distributional sense;

• zero is a regular point of H if zero is neither a resonance nor an eigenvalue of
H.
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In the following, we will give the specific characterizations of projection spaces
SjL

2 (j=1,2,3) by the orthogonality of these projection operators Sj (j=1,2,3), see
also [8].

Lemma 3.1. Let Sj (j=1,2,3) be the projection operators given by Definition 3.1.
Then

(i). f ∈S1L
2 if and only if f ∈ker(QTQ). Moreover, QTS1 =S1TQ=0.

(ii). f ∈S2L
2 if and only if

f ∈ker(T1)=ker(S1TPTS1)∩ker(S1vG1vS1)

={f ∈S1L
2
∣∣PTf=0, 〈xiv, f〉=0, j=1,2,3}.

In particular, TS2 =S2T =0, QvG1vS2 =S2vG1vQ=0.

(iii). f ∈S3L
2 if and only if

f ∈ker(T2)={f ∈S2L
2
∣∣〈xixjv, f〉=0, i,j=1,2,3}.

Furthermore, note that vG0v is a Hilbert-Schmidt operator, and T=U+vG0v is
the compact perturbation of U (see e.g., [6,11]). Hence S1 is a finite-rank projection
by the Fredholm alternative theorem. Notice that S3 ≤ S2 ≤ S1, then all Sj(j =
1,2,3) are finite-rank operators. Hence the dimensions of these spaces (S1−S2)L2,
(S2−S3)L2 and S3L

2 corresponding to each zero resonance type, are finite. Moreover,
by the definitions of Sj (j=1,2,3), we have that SiDj=DjSi=Si (i≥j) and SiDj=
DjSi=Dj (i<j).

Definition 3.2. We say an operator T :L2(R3)→L2(R3) with kernel T (·,·) is ab-
solutely bounded if the operator with the kernel |T (·,·)| is bounded from L2(R3) into
itself.

We remark that Hilbert-Schmidt and finite-rank operators are absolutely bounded
operators. Moreover, we have the following proposition, see Lemma 4.3 in [8].

Proposition 3.1. Let |V (x)|≤(1+|x|)−7−. Then QD0Q is absolutely bounded.

Now we will give asymptotic expansions of
(
M±(λ)

)−1
as follows:

Theorem 3.1. Let Sj (j=1,2,3) be the operators defined in Definition 3.1. Assume
that |V (x)|. (1+|x|)−β with some β>0. Then we have the following expansions of(
M±(λ)

)−1
in L2(R3) when 0<λ�1.
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(i). If zero is a regular point of H and β>7, then(
M±(λ)

)−1
=QA0

0,1Q+Γ1(λ); (3.6)

(ii). If zero is the first kind resonance of H and β>11, then

(
M±(λ)

)−1
=
S1A

1
−1,1S1

λ
+
(
S1A

1
0,1+A1

0,2S1+QA1
0,3Q

)
+Γ1(λ); (3.7)

(iii). If zero is the second kind resonance of H and β>19, then

(
M±(λ)

)−1
=
S2A

2
−3,1S2

λ3
+
S2A

2
−2,1S1+S1A

2
−2,2S2

λ2
+
S2A

2
−1,1+A2

−1,2S2

λ

+
S1A

2
−1,3S1

λ
+
(
S1A

2
0,1+A2

0,2S1+QA2
0,3Q

)
+Γ1(λ); (3.8)

(iv). If zero is the third kind resonance of H and β>23, then

(
M±(λ)

)−1
=
S3D3S3

λ4
+
S2A

3
−3,1S2

λ3
+
S2A

3
−2,1S1+S1A

3
−2,2S2

λ2
+
S2A

3
−1,1+A3

−1,2S2

λ

+
S1A

3
−1,3S1

λ
+
(
S1A

3
0,1+A3

0,2S1+QA3
0,3Q

)
+Γ1(λ), (3.9)

where Aki,j are λ-independent absolutely bounded operators in L2(R3); Γ1(λ) be a
λ-dependent operator which may vary from line to line, and it satisfies∥∥Γ1(λ)

∥∥
L2→L2 +λ

∥∥∂λΓ1(λ)
∥∥
L2→L2 +λ2

∥∥∂2
λΓ1(λ)

∥∥
L2→L2.λ.

The asymptotic expansions of
(
M±(λ)

)−1
in L2(R3) above can be found in [8].

Here Theorem 3.1 take some different notations and expand more terms for our
applications. see [3] for the details of proof.

3.2 Low energy decay estimates

In this subsection, we are devoting to establishing the low energy decay bounds for
Theorem 1.1.

Below we use the smooth and even cut-off χ given by χ=1 for |λ|<λ0�1 and
χ=0 for |λ|>2λ0, where λ0 is some sufficiently small positive constant. In analysing
the high energy later, we utilize the complementary cut-off χ̃(λ) :=1−χ(λ).
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Using the functional calculus and Stone’s formula, one has

H
α
4 e−itHPac(H)f=

2

πi

∫ ∞
0

e−itλ
4

λ3+α[R+
V (λ4)−R−V (λ4)]fdλ

=
2

πi

∫ ∞
0

χ(λ)e−itλ
4

λ3+α[R+
V (λ4)−R−V (λ4)]fdλ

+
2

πi

∫ ∞
0

χ̃e−itλ
4

λ3+α(λ)[R+
V (λ4)−R−V (λ4)]fdλ, (3.10)

where

χ(λ)=
N ′∑

N=−∞

ϕ0(2−Nλ) and χ̃(λ)=
+∞∑

N=N ′+1

ϕ0(2−Nλ) for N ′<0.

We remark that the choice of the constant N ′ depends on a sufficiently small neigh-
bourhood of λ= 0 in which the expansions of all resonance types in Theorem 3.1
hold.

Theorem 3.2 (Low Energy Dispersive Estimate). Let |V (x)|. (1+|x|)−β (x∈R3)
with some β > 0. Assume that H = (−∆)2+V (x) has no positive embedded eigen-
values. Let Pac(H) denotes the projection onto the absolutely continuous spectrum
space of H

(i). If zero is a regular point and β>7, then

‖H
α
4 e−itHPac(H)χ(H)‖L1→L∞. |t|−

3+α
4 , 0≤α≤3. (3.11)

(ii). If zero is the first kind of resonance and β>11, then

‖H
α
4 e−itHPac(H)χ(H)‖L1→L∞. |t|−

3+α
4 , 0≤α≤3. (3.12)

(iii). If zero is the second kind of resonance and β>19, or the third kind of resonance
and β>23, then there is a time-dependent operator Fα,t satisfying

‖Fα,t‖L1→L∞. |t|−
1+α
4 , 0≤α≤3,

such that

‖H
α
4 e−itHPac(H)χ(H)−Fα,t‖L1→L∞. |t|−

3+α
4 , 0≤α≤3. (3.13)

In particular, for 0≤α≤3,

‖H
α
4 e−itHPac(H)χ(H)‖L1→L∞.

{
|t|− 3+α

4 , if |t|≤1,

|t|− 1+α
4 , if |t|>1.

(3.14)
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Before proving Theorem 3.2, we first give the following lemma, which has a
crucial role in making use of cancellations of projection operators Q, Sj (j=1,2,3)
in the asymptotical expansions of resolvent RV (λ4) as λ near zero, and will be used
frequently to obtain the low energy dispersive estimate.

Lemma 3.2. Assume that x,y∈R3 and λ> 0. We define w=w(x) = x
|x| for x 6= 0

and w(x)=0 for x=0. Let θ∈ [0,1] and |y|cosα=〈y,w(x−θy)〉, where α≡α(x,y,θ)
is the angle between the vectors y and x−θy

(i). If F (p)∈C1(R). Then

F (λ|x−y|)=F (λ|x|)−λ|y|
∫ 1

0

cosαF ′(λ|x−θy|)dθ;

(ii). If F (p)∈C2(R) and F ′(0)=0. Then

F (λ|x−y|)=F (λ|x|)−λ
〈
y,w(x)

〉
F ′(λ|x|)

+λ2|y|2
∫ 1

0

(1−θ)
(

sin2α
F ′(λ|x−θy|)
λ|x−θy|

+cos2αF ′′(λ|x−θy|)
)
dθ;

(iii). If F (p)∈C3(R) and F ′(0)=F ′′(0)=0. Then

F (λ|x−y|)=F (λ|x|)−λ
〈
y,w(x)

〉
F ′(λ|x|)+

λ2

2

[(
|y|2−

〈
y,w(x)

〉2)F ′(λ|x|)
λ|x|

+
〈
y,w(x)

〉2
F ′′(λ|x|)

]
+
λ3|y|3

2

∫ 1

0

(1−θ)2
[
3cosαsin2α

(F ′(λ|x−θy|)
λ2|x−θy|2

−F
′′(λ|x−θy|)
λ|x−θy|

)
−cos3αF (3)(λ|x−θy|)

]
dθ.

Proof. By the similar processes as the proof of Lemma 3.5 in [16], we can prove this
lemma. Here we omit the details.

3.2.1 Regular case

In order to establish the lower energy estimate (3.11), recall that Stone’s formula

H
α
4 e−itHPac(H)χ(H)f=

2

πi

∫ ∞
0

e−itλ
4

χ(λ)λ3+α[R+
V (λ4)−R−V (λ4)]fdλ

=

N ′0∑
N=−∞

∑
±

2

πi

∫ ∞
0

e−itλ
4

ϕ0(2−Nλ)λ3+αR±V (λ4)fdλ. (3.15)
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If zero is a regular point of spectrum of H, using (3.3) and (3.6), we have

R±V (λ4)=R±0 (λ4)−R±0 (λ4)v
(
QA0

0,1Q
)
vR±0 (λ4)−R±0 (λ4)vΓ1(λ)vR±0 (λ4). (3.16)

Combining with Proposition 2.1, in order to obtain (3.11), it suffices to prove the
following Propositions 3.2 and 3.3.

Proposition 3.2. Assume that |V (x)|. (1+|x|)−7−. Let ΘN0,N(t) be a function
defined in (2.2) and N<N ′. Then for each x,y and 0≤α≤3, we have∣∣∣∫ ∞

0

e−itλ
4

λ3+αϕ0(2−Nλ)
[
R±0 (λ4)v(QA0

0,1Q)vR±0 (λ4)
]
(x,y)dλ

∣∣∣.2(3+α)NΘN0,N(t).

As a consequence,

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+α
[
R±0 (λ4)v(QA0

0,1Q)vR±0 (λ4)
]
(x,y)dλ

∣∣∣. |t|− 3+α
4 . (3.17)

Proof. We write

K0,±
1,N(t;x,y) :=

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)
[
R±0 (λ4)vQA1

0,1QvR
±
0 (λ4)

]
(x,y)dλ.

Let

F±(p)=
e±ip−e−p

p
, p≥0,

then

R±0 (λ4)(x,y)=
1

8πλ
F±(λ|x−y|).

By the orthogonality Qv(x)=0 and Lemma 3.2(i), we have

[R±0 (λ4)vQA1
0,1QvR

±
0 (λ4)](x,y)

=
1

64π2λ2

∫
R6

F±(λ|x−u2|)[vQA1
0,1Qv](u2,u1)F±(λ|y−u1|)du1du2

=
1

64π2

∫
R6

∫ 1

0

∫ 1

0

cosα2cosα1(F±)′(λ|x−θ2u2|)(F±)′(λ|y−θ1u1|)dθ1dθ2

·|u1||u2|[vQA1
0,1Qv](u2,u1)du1du2,
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where cosα1 =cosα(y,u1,θ1) and cosα2 =cosα(x,u2,θ2). Furthermore, we have

K0,±
1,N(t;x,y)

=
1

64π2

∫
R6

∫ 1

0

∫ 1

0

(∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)(F±)′(λ|x−θ2u2|)

·(F±)′(λ|y−θ1u1|)dλ
)

cosα2cosα1dθ1dθ2|u1||u2|[vQA1
0,1Qv](u2,u1)du1du2

:=
1

64π2

∫
R6

∫ 1

0

∫ 1

0

E0,±
1,N(t;x,y,θ1,θ2,u1,u2)cosα2cosα1dθ1dθ2

·|u1||u2|[vQA1
0,1Qv](u2,u1)du1du2. (3.18)

Now we begin to estimate E0,±
1,N(t;x,y,θ1,θ2,u1,u2). In fact, let s=2−Nλ, then

E0,±
1,N(t;x,y,θ1,θ2,u1,u2)

=2(4+α)N

∫ ∞
0

e−it2
4Ns4s3+αϕ0(s)(F±)′(2Ns|x−θ2u2|)(F±)′(2Ns|y−θ1u1|)ds.

By using integration by parts, we have

|E0,±
1,N(t;x,y,θ1,θ2,u1,u2)|

.
2(4+α)N

1+|t|24N

(∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
sαϕ0(s)

)
(F±)′(2Ns|x−θ2u2|)(F±)′(2Ns|y−θ1u1|)ds

∣∣∣
+
∣∣∣∫ ∞

0

e−it2
4Ns4sαϕ0(s)∂s

(
(F±)′(2Ns|x−θ2u2|)(F±)′(2Ns|y−θ1u1|)

)
ds
∣∣∣)

:=
2(4+α)N

1+|t|24N

(
|E0,±

1,N (t;x,y,θ1,θ2,u1,u2)|+|E0,±
2,N (t;x,y,θ1,θ2,u1,u2)|

)
. (3.19)

We begin to compute E0,±
2,N . We have

|E0,±
2,N (t;x,y,θ1,θ2,u1,u2)|

.
(∣∣∣∫ ∞

0
e−it2

4Ns4s−1+αϕ0(s)·2Ns|x−θ2u2|(F±)(2)(2Ns|x−θ2u2|)(F±)′(2Ns|y−θ1u1|)ds
∣∣∣

+
∣∣∣∫ ∞

0
e−it2

4Ns4s−1+αϕ0(s)·2Ns|y−θ1u1|(F±)′(2Ns|x−θ2u2|)(F±)(2)(2Ns|y−θ1u1|)ds
∣∣∣

:=|E0,±
21,N (t;x,y,θ1,θ2,u1,u2)|+|E0,±

22,N (t;x,y,θ1,θ2,u1,u2)|. (3.20)

For the first term E0,±
21,N . Since

2Ns|x−θ2u2|(F±)(2)(2Ns|x−θ2u2|)(F±)′(2Ns|y−θ1u1|)
:=e±i2

Ns|x−θ2u2|e±i2
Ns|y−θ1u1|F±2 (2Ns|x−θ2u2|)F±1 (2Ns|y−θ1u1|),
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where

F±1 (p)=e∓ip(F±)′(p)=
(±ip−1)+(p+1)e−p∓ip

p2
,

F±2 (p)=pe∓ip(F±)(2)(p)=
(2∓2ip−p2)−(2+2p+p2)e−p∓ip

p2
.

Hence, we have

E0,±
21,N(t;x,y,θ1,θ2,u1,u2)

=

∫ ∞
0

e−it2
4Ns4e±i2

Ns(|x−θ2u2|+|y−θ1u1|)s−1+αϕ0(s)F±2 (2Ns|x−θ2u2|)F±1 (2Ns|y−θ1u1|)ds.

It is easy to check that∣∣∣∂ks(F±2 (2Ns|x−θ2u2|)F±1 (2Ns|y−θ1u1|)
)∣∣∣.1, k=0,1.

By Lemma 2.1 with z=(x,y,θ1,θ2,u1,u2) and

Ψ(z)= |x−θ2u2|+|y−θ1u1|, Φ(2Ns;z)=F±2 (2Ns|x−θ2u2|)F±1 (2Ns|y−θ1u1|),

we obtain that E0,±
21,N is bounded by (1+|t|24N)ΘN0,N(t). Similarly, we obtain that

E0,±
22,N is controlled by the same bound. Hence we get that E0,±

2,N is bounded by

(1+|t|24N)ΘN0,N(t).
Similarly, we obtain that E0,±

1,N is controlled by the same bound. By (3.19) we
have

|E0,±
1,N(t;x,y,θ1,θ2,u1,u2)|.2(4+α)NΘN0,N(t). (3.21)

Since |V (x)|.(1+|x|)−7−, by using Hölder’s inequality, (3.18) and (3.21), we obtain
that

|K0,±
1,N(t;x,y)|.2(4+α)N

(
‖u1v(u1)‖L2‖QA0

0,1Q‖L2→L2‖u2v(u2)‖L2

)
ΘN0,N(t)

.2(3+α)NΘN0,N(t).

Finally, by the same summing way with the proof of (2.10), we get (3.17).

Proposition 3.3. Assume that |V (x)|. (1+|x|)−7−. Let ΘN0,N(t) be a function
defined in (2.2) and N<N ′. Then for each x,y and 0≤α≤3,∣∣∣∫ ∞

0

e−itλ
4

λ3+αϕ0(2−Nλ)
[
R±0 (λ4)vΓ1(λ)vR±0 (λ4)

]
(x,y)dλ

∣∣∣
.2(3+α)NΘN0,N(t). (3.22)

Moreover,

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+α
[
R±0 (λ4)vΓ1(λ)vR±0 (λ4)

]
(x,y)dλ

∣∣∣. |t|− 3+α
4 . (3.23)
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Proof. To get (3.22), it’s equivalent to show that

K0,±
2,N(t;x,y)

:=

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)
〈
[vΓ1(λ)v]

(
R±0 (λ4)(∗,y)

)
(·), (R±0 )∗(λ4)(x,·)

〉
dλ

is bounded by 2(3+α)NΘN0,N(t).

Let F±(p)= e±ip−e−p
p

, p≥0, Then

R±0 (λ4)(x,y)=
1

8πλ
F±(λ|x−y|).

Thus we have 〈
[vΓ1(λ)v]

(
R±0 (λ4)(∗,y)

)
(·), R∓0 (λ4)(x,·)

〉
=

1

64π2λ2

〈
[vΓ1(λ)v]

(
F±(λ|∗−y|)

)
(·), F∓(λ|x−·|)

〉
:=

1

64π2λ2
E0,±

2 (λ;x,y).

Let 2Ns=λ, then

K0,±
2,N(t;x,y)=

2(2+α)N

64π2

∫ ∞
0

e−it2
4Ns4s1+αϕ0(s)E0,±

2 (2Ns;x,y)ds.

Since s∈suppϕ0⊂ [1
4
,1], by using integration by parts we have

|K0,±
2,N(t;x,y)|. 2(2+α)N

1+|t|24N

(∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−2+αϕ0(s)

)
E0,±

2 (2Ns;x,y)ds
∣∣∣

+
∣∣∣∫ ∞

0

e−it2
4Ns4s−2+αϕ0(s)∂s

(
E0,±

2 (2Ns;x,y)
)
ds
∣∣∣)

:=
2(2+α)N

1+|t|24N

(
|E0,±

1,N (t;x,y)|+|E0,±
2,N (t;x,y)|

)
. (3.24)

We first estimate E0,±
2,N . Note that

∂s
(
E0,±

2 (2Ns;x,y)
)

=
〈
[v∂sΓ1(2Ns)v]

(
F±(2Ns|∗−y|)

)
(·), F∓(2Ns|x−·|)

〉
+
〈
[vΓ1(2Ns)v]

(
∂sF

±(2Ns|∗−y|)
)
(·), F∓(2Ns|x−·|)

〉
+
〈
[vΓ1(2Ns)v]

(
F±(2Ns|∗−y|)

)
(·), ∂sF∓(2Ns|x−·|)

〉
:=E0,±

21 (2Ns;x,y)+E0,±
22 (2Ns;x,y)+E0,±

23 (2Ns;x,y).
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Then

E0,±
2,N (t;x,y)=

∫ ∞
0

e−it2
4Ns4s−2+αϕ0(s)

(
E0,±

21 (2Ns;x,y)

+E0,±
22 (2Ns;x,y)+E0,±

23 (2Ns;x,y)
)
ds

:=E0,±
21,N(t;x,y)+E0,±

22,N(t;x,y)+E0,±
23,N(t;x,y).

At first, we deal with the first term E0,±
21,N(t;x,y). Since

λ‖∂λΓ1(λ)‖L2→L2 +λ2‖∂2
λΓ1(λ)‖L2→L2.λ,

then ∥∥∂ks (∂sΓ1(2Ns)
)∥∥

L2→L2.2N , k=0,1.

We can check that ∣∣∂ks (E0,±
21 (2Ns;x,y)

)∣∣.2N , k=0,1.

By integration by parts, we obtain that E0,±
21,N(t;x,y) is bounded by 2N(1+|t|24N)−1.

Next we deal with E0,±
22,N(t;x,y). Let

F∓0 (p)=
1−e−pe±ip

p
,

then F∓(p)=e∓ipF∓0 (p). Since

∂sF
±(2Ns|∗−y|)=2N |∗−y|(F±)′(2Ns|∗−y|) :=e±i2

Ns|∗−y|s−1F±1 (2Ns|∗−y|),

where

F±1 (p)=pe∓ip(F±)′(p)=
(±ip−1)+(p+1)e−pe∓ip

p
.

Moreover,

E0,±
22 (2Ns;x,y)=e±i2

Ns(|x|+|y|)s−1
〈

[vΓ1(2Ns)v]
(
e±i2

Ns(|∗−y|−|y|)F±1 (2Ns|∗−y|)
)
(·),

e∓i2
Ns(|x−·|−|x|)F∓0 (2Ns|x−·|)

〉
:=e±i2

Ns(|x|+|y|)s−1Ẽ0,±
22 (2Ns;x,y).

Hence, we have

E0,±
22,N(t;x,y)=

∫ ∞
0

e−it2
4Ns4e±i2

Ns(|x|+|y|)s−3+αϕ0(s)
(
2−N Ẽ0,±

22 (2Ns;x,y)
)
ds.
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Note that ∣∣∂ks (e±i2Ns(|∗−y|−|y|)F±1 (2Ns|∗−y|)
)∣∣.2kN〈∗〉.〈∗〉, k=0,1,∣∣∂ks (e∓i2Ns(|x−·|−|x|)F∓0 (2Ns|x−·|)
)∣∣.2kN〈·〉.〈·〉, k=0,1.

Since |V (x)|.(1+|x|)−7−, by Hölder’s inequality, we have∣∣∂ks Ẽ0,±
22 (2Ns;x,y)

∣∣. 1∑
k=0

∥∥v(·)〈·〉1−k
∥∥2

L2

∥∥∂ksΓ1(2Ns)
∥∥
L2→L2.2N .

By Lemma 2.1 with

z=(x,y), Ψ(z)= |x|+|y| and Φ(2Ns;z)= Ẽ0,±
22 (2Ns;x,y),

we obtain that E0,±
22,N is bounded by 2N(1+|t|24N)ΘN0,N(t). Similar to get that

E0,±
23,N is controlled by the same bound. Hence we obtain that E0,±

2,N is bounded by

2N(1+|t|24N)ΘN0,N(t).
Similarly, we obtain that E0,±

1,N is controlled by the same bounds. By (3.24), we

immediately obtain that K0,±
2,N is bounded by 2(3+α)NΘN0,N(t). Hence we obtain that

(3.22) holds.
Finally, by the same argument with the proof of (2.10), we immediately get

(3.23).

3.2.2 The first kind of resonance

If zero is the first kind of resonance of H, by using (3.3) and (3.7) one has

R±V (λ4)=R±0 (λ4)−R±0 (λ4)v
(
λ−1S1A

1
−1,1S1

)
vR±0 (λ4)

−R±0 (λ4)v
(
S1A

1
0,1+A1

0,2S1+QA1
0,3Q

)
vR±0 (λ4)

−R±0 (λ4)vΓ1(λ)vR±0 (λ4). (3.25)

In order to obtain the estimates (3.12), compared with the analysis of regular case,
it is enough to estimate to prove the following proposition.

Proposition 3.4. Assume that |V (x|).(1+|x|)−11−. Then for 0≤α≤3,

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αϕ0(2−Nλ)λ−1
[
R±0 (λ4)vS1A

1
−1,1S1vR

±
0 (λ4)

]
(x,y)dλ

∣∣∣
. |t|−

3+α
4 ,

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αϕ0(2−Nλ)
[
R±0 (λ4)vS1A

1
0,1vR

±
0 (λ4)

]
(x,y)dλ

∣∣∣
. |t|−

3+α
4 .
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Proof. Here we use the orthogonality S1v=0, by the same argument with the proof
of Proposition 3.2, we obtain that this proposition holds.

3.2.3 The second kind of resonance

If zero is the second kind of resonance of H, using (3.3) and (3.8) one has

R±V (λ4)=R±0 (λ4)−R±0 (λ4)v
(
λ−3S2A

2
−3,1S2

)
vR±0 (λ4)−R±0 (λ4)v

(
λ−2S2A

2
−2,1S1

+λ−2S1A
2
−2,2S2

)
vR±0 (λ4)−R±0 (λ4)v

(
λ−1S2A

2
−1,1+λ−1A2

−1,2S2

+λ−1S1A
2
−1,3S1

)
vR±0 (λ4)−R±0 (λ4)v

(
S1A

2
0,1+A2

0,2S1+QA2
0,3Q

)
vR±0 (λ4)

−R±0 (λ4)vΓ1(λ)vR±0 (λ4). (3.26)

In order to prove Theorem 3.2(iii), combining with the proof of regular case and
the first kind resonance, it is enough to estimate integrals with the following three
terms:

Ω2,1(λ) :=R±0 (λ4)v
(
λ−3S2A

2
−3,1S2

)
vR±0 (λ4), (3.27a)

Ω2,2(λ) :=R±0 (λ4)v
(
λ−2S2A

2
−2,1S1

)
vR±0 (λ4), (3.27b)

Ω2,3(λ) :=R±0 (λ4)v
(
λ−1S2A

2
−1,1

)
vR±0 (λ4). (3.27c)

Since (F±)′(0) 6=0, where

R±0 (λ4)(x,y)=
1

8πλ
F±(λ|x−y|),

so it doesn’t satisfy the condition of Lemma 3.2(ii), hence we can’t make full use of
the orthogonality of S2 (i.e., S2xiv= 0, i= 1,2,3). In order to using orthogonality
S2xjv = 0 to improve the time decay of Hα/4e−itHPac(H), we will subtract some
specific operator to satisfy the conditions of Lemma 3.2(ii). Then we can make full
use of the orthogonality of S2.

Let

F̃±(p)=
e±ip−e−p

p
+p, p∈R.

Recall that G0 = |x−y|
8π

, then

R±0 (λ4)(x,y)−G0 =
1

8πλ
F̃±(λ|x−y|), (3.28)

F̃±(p)∈C2(R) and (F̃±)′(0) = 0. Hence F̃±(p) satisfies the condition of Lemma
3.2(ii). We now begin to estimates the terms Ω2,i(λ) (i=1,2,3) in (3.27).
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Firstly, we deal with the first term Ω2,1(λ) in (3.27). We have

Ω2,1(λ)=
(
R±0 (λ4)−G0

)
v(λ−3S2A

2
−3,1S2)v

(
R±0 (λ4)−G0

)
+
(
R±0 (λ4)−G0

)
v(λ−3S2A

2
−3,1S2)×vG0

+G0v(λ−3S2A
2
−3,1S2)v

(
R±0 (λ4)−G0

)
+G0v(λ−3S2A

2
−3,1S2)vG0

:=Γ2
−3,1(λ)+Γ2

−3,2(λ)+Γ2
−3,3(λ)+Γ2

−3,4(λ). (3.29)

Proposition 3.5. Assume |V (x)|.(1+|x|)−19−. Let Γ2
−3,j(λ) (j=1,2,3) be operators

defined in (3.29). Then

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αΓ2
−3,1(λ)(x,y)dλ

∣∣∣. |t|− 3+α
4 , 0≤α≤3, (3.30a)

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αΓ2
−3,j(λ)(x,y)dλ

∣∣∣. |t|− 2+α
4 , 0≤α≤4, j=2,3. (3.30b)

Proof. (i) We first show the first integral estimates. We write

K̃2,±
1,N(t;x,y)

=

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)
[(
R±0 (λ4)−G0

)
v(λ−3S2A

2
−3,1S2)v

(
R±0 (λ4)−G0

)]
(x,y)dλ.

Recall that

R±0 (λ4)(x,y)−G0 =
1

8πλ
F̃±(λ|x−y|)

in (3.28), then by Lemma 3.2(ii) and the orthogonality S2xjv(x) =S2v(x) = 0 (j=
1,2,3), we have

[(
R±0 (λ4)−G0

)
v(λ−3S2A

2
−3,1S2)v

(
R±0 (λ4)−G0

)]
(x,y)

=
1

64π2λ5

∫
R6

F̃±(λ|x−u2|)v(u2)(S2A
2
−3,1S2)(u2,u1)v(u1)F̃±(λ|y−u1|)du1du2

=
1

64π2λ

∫
R6

∫ 1

0

∫ 1

0
(1−θ1)(1−θ2)

((F̃±)′(λ|x−θ2u2|)
λ|x−θ2u2|

sin2α2+(F̃±)(2)(λ|x−θ2u2|)cos2α2

)
×
((F̃±)′(λ|y−θ1u1|)

λ|y−θ1u1|
sin2α1+(F̃±)(2)(λ|y−θ1u1|)cos2α1

)
dθ1dθ2|u1|2|u2|2v(u2)v(u1)

×(S2A
2
−3,1S2)(u2,u1)du1du2.
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Furthermore,

K̃2,±
1,N(t;x,y)

=
1

64π2

∫
R6

∫ 1

0

∫ 1

0

[∫ ∞
0

e−itλ
4

λ2+αϕ0(2−Nλ)
((F̃±)′(λ|x−θ2u2|)

λ|x−θ2u2|
sin2α2

+(F̃±)(2)(λ|x−θ2u2|)cos2α2

)((F̃±)′(λ|y−θ1u1|)
λ|y−θ1u1|

sin2α1+(F̃±)(2)(λ|y−θ1u1|)

×cos2α1

)
dλ
]
(1−θ1)(1−θ2)|u1|2|u2|2v(u2)v(u1)(S2A

2
−3,1S2)(u2,u1)dθ1dθ2du1du2.

Let

Ẽ2,±
1,N(t;x,y,θ1,θ2,u1,u2)

=

∫ ∞
0

e−itλ
4

λ2+αϕ0(2−Nλ)
((F̃±)′(λ|x−θ2u2|)

λ|x−θ2u2|
sin2α2+(F̃±)(2)(λ|x−θ2u2|)cos2α2

)
×
((F̃±)′(λ|y−θ1u1|)

λ|y−θ1u1|
sin2α1+(F̃±)(2)(λ|y−θ1u1|)cos2α1

)
dλ,

then

∣∣K̃2,±
1,N(t;x,y)

∣∣.∫
R6

∫ 1

0

∫ 1

0

∣∣Ẽ2,±
1,N(t;x,y,θ1,θ2,u1,u2)

∣∣|u1|2|u2|2|v(u2)v(u1)|

×|(S2A
2
−3,1S2)(u2,u1)|dθ1dθ2du1du2. (3.31)

Let

s=2−Nλ, r1 =2N |y−θ1u1| and r2 =2N |x−θ2u2|,

then

Ẽ2,±
1,N(t;x,y,θ1,θ2,u1,u2)

=2(3+α)N

∫ ∞
0

e−it2
4Ns4s2+αϕ0(s)

((F̃±)′(2Ns|x−θ2u2|)
2Ns|x−θ2u2|

sin2α2+(F̃±)(2)(2Ns|x−θ2u2|)

×cos2α2

)((F̃±)′(2Ns|y−θ1u1|)
2Ns|y−θ1u1|

sin2α1+(F̃±)(2)(2Ns|y−θ1u1|)cos2α1

)
ds

=2(3+α)N

∫ ∞
0

e−it2
4Ns4s2+αϕ0(s)

2∏
j=1

((F̃±)′(rjs)

rjs
sin2αj+(F̃±)(2)(rjs)cos2αj

)
ds.
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By integration by parts, we obtain that

|Ẽ2,±
1,N (t;x,y,θ1,θ2,u1,u2)|

.
2(3+α)N

1+|t|24N

(∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−1+αϕ0(s)

) 2∏
j=1

((F̃±)′(rjs)

rjs
sin2αj+(F̃±)(2)(rjs)cos2αj

)
ds
∣∣∣

+
∣∣∣∫ ∞

0
e−it2

4Ns4s−1+αϕ0(s)∂s

2∏
j=1

((F̃±)′(rjs)

rjs
sin2αj+(F̃±)(2)(rjs)cos2αj

)
ds
∣∣∣)

:=
2(3+α)N

1+|t|24N

(
|E2,±

1,N (t;x,y,θ1,θ2,u1,u2)|+|E2,±
2,N (t;x,y,θ1,θ2,u1,u2)|

)
. (3.32)

We first estimate the term E2,±
2,N (t;x,y,θ1,θ2,u1,u2). Let

∂s

2∏
j=1

((F̃±)′(rjs)

rjs
sin2αj+(F̃±)(2)(rjs)cos2αj

)
:=e±ir1se±ir2ss−1F̃±α1,α2

(r1s,r2s),

then ∣∣E2,±
2,N (t;x,y,θ1,θ2,u1,u2)

∣∣.∣∣∣∫ ∞
0

e−it2
4Ns4e±i2

Ns(|x−θ2u2|+|y−θ1u1|)s−2+αϕ0(s)

×F̃±α1,α2
(2Ns|x−θ2u2|,2Ns|y−θ1u1|)

∣∣∣.
Note that ∣∣∂ks F̃±α1,α2

(2Ns|x−θ2u2|,2Ns|y−θ1u1|).1, k=0,1,

by Lemma 2.1 with z=(x,y,θ1,θ2,u1,u2) and

Ψ(z)= |x−θ2u2|+|y−θ1u1|, Φ(2Ns,z)= F̃±α1,α2
(2Ns|x−θ2u2|,2Ns|y−θ1u1|),

we obtain that E2,±
2,N is bounded by (1+|t|24N)ΘN0,N(t). Similarly, we get that E2,±

1,N is

controlled by the same bound. Hence Ẽ2,±
1,N is bounded by by (1+|t|24N)ΘN0,N(t). By

(3.32) and Hölder’s inequality we obtain that K̃2,±
1,N is bounded by 2(3+α)NΘN0,N(t).

By the same summing way with the proof of (2.10), we immediately obtain (3.30a).
For the term Γ2

−3,2(λ). We use the orthogonality S2xiv=0, i=1,2,3 for the left
hand of Γ2

−3,2(λ) and S2v=0 for the right hand of Γ2
−3,2(λ), by the same argument

with the proof of the term Γ2
−3,1(λ), we immediately obtain the desired conclusion.

Similarly, we also get the desired integral estimate for the term Γ2
−3,3(λ).

Proposition 3.6. Assume that |V (x)|. (1+|x|)−19−. Let Γ2
−3,4(λ) be an operator

defined in (3.29). Suppose that

Kα,t(x,y) :=

∫ ∞
0

χ(λ)e−itλ
4

λ3+αΓ2
−3,4(λ)(x,y)dλ, (3.33)
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is the integral kernel of the operator Kα,t. Then for any 0≤α≤3,

sup
x,y∈R3

∣∣Kα,t(x,y)
∣∣. |t|− 1+α

4 .

In particular, if G0vS2A
2
−3,1S2vG0 6=0, then

‖Kα,t‖L1→L∞∼|t|−
1+α
4 , |t|>1.

Proof. Note that

Γ2
−3,4(λ)=G0v(λ−3S2A

2
−3,1S2)vG0 and G0 =−|x−y|

8π
,

then

Kα,t(x,y)=

∫ ∞
0

χ(λ)e−itλ
4

λα[G0vS2A
2
−3,1S2vG0](x,y)dλ

=
1

64π2

(∫ ∞
0

χ(λ)e−itλ
4

λαdλ
)∫

R6

|x−u1|v(u1)(S2A
2
−3,1S2)(u1,u2)v(u2)

×|y−u2|du1du2.

Referring to Stein’s book [23, p. 356], one has∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λαdλ
∣∣∣∼|t|− 1+α

4 , |t|>1.

By the orthogonality S2v=0 and Hölder’s inequality, we obtain that∣∣G0vS2A
2
−3,1S2vG0(x,y)

∣∣
=

1

64π2

∣∣∣∫
R6

(|x−u1|−|x|)v(u1)(S2A
2
−3,1S2)(u1,u2)v(u2)×(|y−u2|−|y|)du1du2

∣∣∣
.
∥∥|u1|v(u1)‖L2

∥∥S2A
2
−3,1S2‖L2→L2

∥∥|u2|v(u2)
∥∥
L2.1.

Hence,

sup
x,y∈R3

∣∣Kα,t(x,y)
∣∣. |t|− 1+α

4 ,

which gives

‖Kα,t‖L1→L∞. |t|−
1+α
4 .

Next, assume that there exists σ>0 such that

‖Kα,t‖L1→L∞. |t|−
1+α+σ

4 , |t|>1.
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According to the hypothetical condition G0vS2A
2
−3,1S2vG0 6= 0, there exist f,g ∈

L1(R3) with ‖f‖L1 =‖g‖L1 =1 and constant D>0 such that∣∣〈Kα,tf,g〉
∣∣= ∣∣∣(∫ ∞

0

χ(λ)e−itλ
4

λαdλ
)
·
〈
G0vS2A

2
−3,1S2vG0f,g

〉∣∣∣>D|t|− 1+α
4 .

Then
D|t|−

1+α
4 . |t|−

1+α+σ
4 ⇒ D. |t|−

σ
4 .

As a result, we obtain that D=0 as |t|→∞, which is a contradiction. Hence,

‖Kα,t‖L1→L∞∼|t|−
1+α
4 , |t|>1.

Thus the proof of this proposition is completed.

Secondly, we estimate the second term Ω2,2(λ) in (3.27). We have

Ω2,2(λ)=(R±0 (λ4)−G0)v(λ−2S2A
2
−2,1S1)vR±0 (λ4)+G0v(λ−2S2A

2
−2,1S1)vR±0 (λ4)

:=Γ2
−2,1(λ)+Γ2

−2,2(λ). (3.34)

Proposition 3.7. Assume that |V (x)|. (1+|x|)−19−. Let Γ2
−2,j(λ) (j = 1,2) be a

family of operators defined in (3.34). Then

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αΓ2
−2,1(λ)(x,y)dλ

∣∣∣. |t|− 3+α
4 , 0≤α≤3, (3.35a)

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αΓ2
−2,2(λ)(x,y)dλ

∣∣∣. |t|− 2+α
4 , 0≤α≤3. (3.35b)

Proof. By Lemma 3.2(i) and (ii), using the same method with the proof of Propo-
sition 3.5, we obtain (3.35a). By using Lemma 3.2(i), by the same arguments with
the proof of Proposition 3.2, we immediately obtain (3.35b).

Finally, we deal with the term Ω2,3(λ) in (3.27). We have

Ω2,3(λ)=(R±0 (λ4)−G0)v(λ−1S2A
2
−1,1)vR±0 (λ4)+G0v(λ−1S2A

2
−1,1)vR±0 (λ4)

:=Γ2
−1,1(λ)+Γ2

−1,2(λ). (3.36)

Similar to the proof of Proposition 3.7, we obtain the following proposition.

Proposition 3.8. Assume that |V (x)|. (1+|x|)−19−. Let Γ2
−1,j(λ) (j=1,2) be op-

erators defined in (3.36). Then

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αΓ2
−1,1(λ)(x,y)dλ

∣∣∣. |t|− 3+α
4 , 0≤α≤3, (3.37a)

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+αΓ2
−1,2(λ)(x,y)dλ

∣∣∣. |t|− 2+α
4 , 0≤α≤3. (3.37b)
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Combining with Propositions 3.5-3.8 and the proof of the first kind resonance,
we immediately obtain that for 0≤α≤3,∥∥H α

4 e−itHPac(H)χ(H)
∥∥
L1→L∞. |t|

− 2+α
4 .

Let Fα,t be an operator with the integral kernel

Fα,t(x,y)=Kα,t(x,y)+

∫ ∞
0

χ(λ)e−itλ
4

λ3+α
[
Γ2
−3,2(λ)+Γ2

−3,3(λ)

+Γ2
−2,2(λ)+Γ2

−1,2(λ)
]
(x,y)dλ, (3.38)

where Kα,t, Γ2
−3,i(λ) (i=2,3), Γ2

−2,2(λ) and Γ2
−1,2(λ) are operators defined in (3.33),

(3.29), (3.34) and (3.36). By using the estimates (3.30b), (3.33), (3.35b) and (3.37b),
we obtain that

Fα,t=Kα,t+O
(
|t|−

2+α
4

)
, 0≤α≤3, (3.39)

and

‖Fα,t‖L1→L∞. |t|−
1+α
4 , 0≤α≤3. (3.40)

Combining with Propositions 3.5-3.8 and the proof of the first kind resonance again,
we immediately obtain that for 0≤α≤3,

‖H
α
4 e−itHPac(H)χ(H)−Fα,t‖L1→L∞. |t|−

3+α
4 , (3.41)

which gives (3.14).
Hence the proof of Theorem 3.2(iii) in the second kind resonance is completed.

3.2.4 The third kind of resonance

If zero is the third kind of resonance of H, then using (3.3) and (3.9) one has

R±V (λ4)=R±0 (λ4)−R±0 (λ4)v
(
λ−4S3D3S3

)
vR±0 (λ4)

−R±0 (λ4)v
(
λ−3S2A

3
−3,1S2

)
vR±0 (λ4)

−R±0 (λ4)v
(
λ−2S2A

3
−2,1S1+λ−2S1A

3
−2,2S2

)
vR±0 (λ4)

−R±0 (λ4)v
(
λ−1S2A

3
−1,1+λ−1A3

−1,2S2+λ−1S1A
3
−1,3S1

)
vR±0 (λ4)

−R±0 (λ4)v
(
S1A

3
0,1+A3

0,2S1+QA3
0,3Q

)
vR±0 (λ4)

−R±0 (λ4)vΓ1(λ)vR±0 (λ4). (3.42)
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In order to prove Theorem 3.2(iii) in the third kind resonance, we need to analyze
what contribution the term λ−4S3D3S3 has in Stone’s formula (3.10). By a simple
calculation, we obtain that

R+
0 (λ4)v

(
λ−4S3D3S3

)
vR+

0 (λ4)−R−0 (λ4)v
(
λ−4S3D3S3

)
vR−0 (λ4)

=
(
R+

0 (λ4)−R−0 (λ4)
)
v
(
λ−4S3D3S3

)
vR+

0 (λ4)

+R−0 (λ4)v
(
λ−4S3D3S3

)
v
(
R+

0 (λ4)−R−0 (λ4)
)
.

Proposition 3.9. Let |V (x)|.(1+|x|)−23−. Then for any x,y∈R3 and 0≤α≤3,∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+α
[(
R+

0 (λ4)−R−0 (λ4)
)
v
(
λ−4S3D3S3

)
vR+

0 (λ4)
]
(x,y)dλ

∣∣∣. |t|− 2+2α
4 ,∣∣∣∫ ∞

0

χ(λ)e−itλ
4

λ3+α
[
R−0 (λ4)v

(
λ−4S3D3S3

)
v
(
R+

0 (λ4)−R−0 (λ4)
)]

(x,y)dλ
∣∣∣. |t|− 2+2α

4 .

Proof. We only estimate the first integral, similarly for the second integral. We
write

K3,±
1,N(t;x,y) :=

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)
[(
R+

0 (λ4)−R−0 (λ4)
)

·v
(
λ−4S3D3S3

)
vR+

0 (λ4)
]
(x,y)dλ. (3.43)

Let

R̄0(p)=
eip−e−ip

p
and F±(p)=

e±ip−e−p

p
.

Then

R+
0 (λ4)−R−0 (λ4)=

1

8πλ
R̄0(λ|x−y|), R±0 (λ4)=

1

8πλ
F±(λ|x−y|).

Note that R̄0∈C5(R) and (R̄0)′(p)=0, but

(R̄0)(2)(p)=−2i

3
6=0.

Let

F̄ (p)=R̄0(p)+
2i

3
p2, F̄ (p)=

eip−e−ip

p
+
ip2

3
.

Hence, F̄ ∈C5(R) and (F̄ )(k)(p) = 0, k= 1,2. By the orthogonality S3v=S3xiv=
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S3xixjv=0 (i,j=1,2,3), one has[(
R+

0 (λ4)−R−0 (λ4)
)
v
(
λ−4S3D3S3

)
vR+

0 (λ4)
]
(x,y)

=
1

64π2λ6

∫
R6

R̄0(λ|x−u2|)v(u2)(S3D3S3)(u2,u1)v(u1)F+(λ|y−u1|)du1du2

=
1

64π2λ6

∫
R6

(
R̄0(λ|x−u2|)+

2i

3
λ2|x−u2|2

)
v(u2)(S3D3S3)(u2,u1)v(u1)

×F+(λ|y−u1|)du1du2

=
1

64π2λ6

∫
R6

F̄ (λ|x−u2|)v(u2)(S3D3S3)(u2,u1)v(u1)F+(λ|y−u1|)du1du2.

By Lemma 3.2(iii), one has[(
R+

0 (λ4)−R−0 (λ4)
)
v
(
λ−4S3D3S3

)
vR+

0 (λ4)
]
(x,y)

=− 1

128π2λ2

∫
R6

∫ 1

0

∫ 1

0

(1−θ2)2
[( F̄ ′(λ|x−θ2u2|)

λ2|x−θ2u2|2
− F̄

(2)(λ|x−θ2u2|)
λ|x−θ2u2|

)
3cosα2sin2α2

−F̄ (3)(λ|x−θ2u2|)cos3α2

]
(F+)′(λ|y−θ1u1|)cosα1dθ1θ2

×|u2|3v(u2)v(u1)|u1|(S3D3S3)(u2,u1)du1du2.

Furthermore, we have

K3,±
1,N(t;x,y)

=− 1

128π2

∫
R6

∫ 1

0

∫ 1

0

[∫ ∞
0

e−itλ
4

λ1+αϕ0(2−Nλ)
[( F̄ ′(λ|x−θ2u2|)

λ2|x−θ2u2|2
− F̄

(2)(λ|x−θ2u2|)
λ|x−θ2u2|

)
×3cosα2sin2α2−F̄ (3)(λ|x−θ2u2|)cos3α2

]
(F+)′(λ|y−θ1u1|)cosα1dλ

]
(1−θ2)2dθ1θ2

×|u2|3|u1|v(u2)v(u1)(S3D3S3)(u2,u1)du1du2

:=− 1

128π2

∫
R6

∫ 1

0

∫ 1

0

E3,+
1,N(t;x,y,θ1,θ2,u1,u2)(1−θ2)2dθ1θ2|u2|3|u1|v(u2)v(u1)

×(S3D3S3)(u2,u1)du1du2. (3.44)

Let s=2−Nλ, then

E3,+
1,N =2(2+α)N

∫ ∞
0

e−it2
4Ns4s1+αϕ0(s)

[( F̄ ′(2Ns|x−θ2u2|)
(2Ns)2|x−θ2u2|2

− F̄
(2)(2Ns|x−θ2u2|)
2Ns|x−θ2u2|

)
×3cosα2sin2α2−F̄ (3)(2Ns|x−θ2u2|)cos3α2

]
(F+)′(2Ns|y−θ1u1|)cosα1ds.
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Let

r1 =2N |y−θ1u1| and r2 =2N |x−θ2u2|.

Then by using integration by parts,

|E3,+
1,N .

2(2+α)N

1+|t|24N

(∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−2+αϕ0(s)

)(( F̄ ′(r2s)

(r2s)2
− F̄

(2)(r2s)

r2s

)
3cosα2sin2α2

−F̄ (3)(r2s)cos3α2

)
(F+)′(r1s)cosα1ds

∣∣∣+∣∣∣∫ ∞
0

e−it2
4Ns4s−2+αϕ0(s)

×∂s
[(( F̄ ′(r2s)

(r2s)2
− F̄

(2)(r2s)

r2s

)
3cosα2sin2α2−F̄ (3)(r2s)cos3α2

)
(F+)′(r1s)cosα1

]
ds
∣∣∣)

:=
2(2+α)N

1+|t|24N

(∣∣E3,+
1,N (t;x,y,θ1,θ2,u1,u2)

∣∣+∣∣E3,+
2,N (t;x,y,θ1,θ2,u1,u2)

∣∣).
For E3,+

2,N . Note that

∂s

[(( F̄ ′(r2s)

(r2s)2
− F̄

(2)(r2s)

r2s

)
3cosα2sin2α2−F̄ (3)(r2s)cos3α2

)
(F+)′(r1s)cosα1

]
:=eir1seir2ss−1F̄α1,α2(r1s,r2s),

then we have∣∣E3,+
2,N

∣∣. ∣∣∣∫ ∞
0

e−it2
4Ns4ei(r1+r2)ss−3+2αϕ0(s)F̄α1,α2(r1s,r2s)ds

∣∣∣.
Since ∣∣∂ks F̄α1,α2(2

Ns|x−θ2u2|, 2Ns|y−θ1u1|)
∣∣.1, k=0,1,

by Lemma 2.1 with z=(x,y,θ1,θ2,u1,u2) and

Ψ(z)=r1+r2 = |x−θ2u2|+|y−θ1u1|,
Φ(2Ns,z)= F̄α1,α2(2

Ns|x−θ2u2|,2Ns|y−θ1u1|),

we obtain that E3,+
2,N is bounded by (1+|t|24N)ΘN0,N(t). Similar to obtain that E3,+

1,N is

controlled by the same bound. Hence E3,+
1,N is bounded by 2(2+α)NΘN0,N(t). By (3.44)

and Hölder’s inequality we obtain that K3,±
1,N is bounded by 2(2+α)NΘN0,N(t).

In the proof of Proposition 3.9, for the projection operator S3 in the right hand
of the integral (3.43), we only use the orthogonality S3v=0. As a result, we don’t
get the same decay estimate as in the regular case. Similarly in the second kind of
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resonance case, we will subtract a specific operator to get the same decay estimate
rate as the regular case. Note that

R+
0 (λ4)v(λ−4S3D3S3)vR+

0 (λ4)−R−0 (λ4)v(λ−4S3D3S3)vR−0 (λ4)

=
(
R+

0 (λ4)−R−0 (λ4)
)
v(λ−4S3D3S3)vR+

0 (λ4)

+R−0 (λ4)v(λ−4S3D3S3)v
(
R+

0 (λ4)−R−0 (λ4)
)

=
(
R+

0 (λ4)−R−0 (λ4)
)
v(λ−4S3D3S3)v

(
R+

0 (λ4)−G0

)
+(R+

0 (λ4)−R−0 (λ4))v(λ−4S3D3S3)vG0

+
(
R−0 (λ4)−G0

)
v(λ−4S3D3S3)v

(
R+

0 (λ4)−R−0 (λ4)
)

+G0v(λ−4S3D3S3)v
(
R+

0 (λ4)−R−0 (λ4)
)

:=Γ3
−4,1(λ)+Γ3

−4,2(λ)+Γ3
−4,3(λ)+Γ3

−4,4(λ). (3.45)

Hence, in order to complete the proof of Theorem 3.2(iii) in the third kind resonnace,
combining with the analysis of the second kind of resonance case, it suffices to show
the following proposition.

Proposition 3.10. Assume that |V (x)|. (1+|x|)−23−. Let Γ3
−3,j(λ) (j=1,··· ,4) be

operators defined in (3.45). Then

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+2αΓ3
−4,j(λ)(x,y)dλ

∣∣∣. |t|− 3+2α
4 , 0≤α≤3, j=1,3,

sup
x,y∈R3

∣∣∣∫ ∞
0

χ(λ)e−itλ
4

λ3+2αΓ3
−4,j(λ)(x,y)dλ

∣∣∣. |t|− 2+2α
4 , 0≤α≤3, j=2,4.

Proof. By the same argument with the proof of Proposition 3.5 and Proposition 3.9,
we obtain that this proposition holds. Here we omit these details.

We write

F̃α,t(x,y)=Fα,t(x,y)+

∫ ∞
0

χ(λ)e−itλ
4

λ3+α
[
Γ3
−3,1(λ)+Γ3

−3,3(λ)
]
(x,y)dλ.

By using the estimate (3.40) and Proposition 3.10, we obtain that

‖F̃α,t‖L1→L∞. |t|−
1+α
4 , 0≤α≤3.

Combining with Propositions 3.5-3.10 and the proof of the second kind resonance
again, we immediately obtain that for 0≤α≤3,

‖H
α
4 e−itHPac(H)χ(H)−F̃α,t‖L1→L∞. |t|−

3+α
4 .

Thus the proof of Theorem 3.2(iii) is completed. �
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4 High energy dispersive estimates

In this subsection, we are devoted to establishing the decay bounds of Theorem 1.1
for high energy. Furthermore, it suffices to prove the following theorem.

Theorem 4.1 (High Energy Dispersive Estimate). Let |V (x)|.〈x〉−4−. Assume that
H=∆2+V (x)(x∈R3) has no positive embedding eigenvalues and Pac(H) denotes the
projection onto absolutely continuous spectrum space of H. Then

‖H
α
4 e−itHPac(H)χ̃(H)‖L1→L∞. |t|−

3+α
4 , 0≤α≤3. (4.1)

To complete the proof of Theorem 4.1, we will use the following Stone’s formula,

H
α
4 e−itHPac(H)χ̃(H)f=

+∞∑
N=N ′0+1

∑
±

2

πi

∫ ∞
0

e−itλ
4

ϕ0(2−Nλ)λ3+αR±V (λ4)fdλ, (4.2)

and the resolvent identity,

R±V (λ4)=R±0 (λ4)−R±0 (λ4)V R±0 (λ4)+R±0 (λ4)V R±V (λ4)V R±0 (λ4). (4.3)

Combining with Proposition 2.1, it is enough to establish the following Propositions
4.1 and 4.2.

Proposition 4.1. Assume that |V (x)|. (1+|x|)−3−. Let ΘN0,N(t) be a function
defined in (2.2) and N>N ′. Then for each x, y and 0≤α≤3,∣∣∣∫ ∞

0

e−itλ
4

λ3+αϕ0(2−Nλ)
[
R±0 (λ4)V R±0 (λ4)

]
(x,y)dλ

∣∣∣.2(3+α)NΘN0,N(t).

Moreover,

sup
x,y∈R3

∣∣∣∫ ∞
0

χ̃(λ)e−itλ
4

λ3+α
[
R±0 (λ4)V R±0 (λ4)

]
(x,y)dλ

∣∣∣. |t|− 3+α
4 .

Proof. We write

L±1,N(t;x,y) :=

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)
[
R±0 (λ4)V R±0 (λ4)

]
(x,y)dλ.

Then ∫ ∞
0

χ̃(λ)e−itλ
4

λ3+α
[
R±0 (λ4)V R±0 (λ4)

]
(x,y)dλ=

∞∑
N=N ′+1

L±1,N(t;x,y).
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Let F±(p)= e±ip−e−p
p

, then

R±0 (λ4)(x,y)=
1

8πλ
F±(λ|x−y|).

Set s=2−Nλ, one has

L±1,N(t;x,y)

=

∫
R3

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)R±0 (λ4)(x,u1)V (u1)R±0 (λ4)(u1,y)dλdu1

=
2(2+α)N

64π2

∫
R3

∫ ∞
0

e−it2
4Ns4s1+αϕ0(s)F±(2Ns|x−u1|)F±(2Ns|y−u1|)dsV (u1)du1

:=
1

64π2

∫
R3

E±1,N(t;x,y,u1)V (u1)du1.

By using integration by parts, we have

|E±1,N |.
2(2+α)N

1+|t|24N

(∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−2+αϕ0(s)

)
F±(2Ns|x−u1|)F±(2Ns|y−u1|)ds

∣∣∣
+
∣∣∣∫ ∞

0

e−it2
4Ns4s−2+αϕ0(s)∂s

(
F±(2Ns|x−u1|)F±(2Ns|y−u1|)

)
ds
∣∣∣)

:=
2(2+α)N

1+|t|24N

(
|E±1,N(t;x,y,u1)|+|E±2,N(t;x,y,u1)|

)
. (4.4)

For E±2,N . Since

∂s

(
F±(2Ns|x−u1|)F±(2Ns|y−u1|)

)
:=s−1e±i2

Ns(|x−u1|+|y−u1|)

×
(
F±1 (2Ns|x−u1|)F±0 (2Ns|y−u1|)+F±0 (2Ns|x−u1|)F±1 (2Ns|y−u1|)

)
,

where

F±1 (p)=pe∓ip(F±)′(p)=
(±ip−1)+(p+1)e−p∓ip

p
, F±0 (p)=

1−e−p∓ip

p
.

Then we have

|E±2,N |.
∣∣∣∫ ∞

0

e−it2
4Ns4e±i2

Ns(|x−u1|+|y−u1|)s−3+2αϕ0(s)
(
F±1 (2Ns|x−u1|)

×F±0 (2Ns|y−u1|)+F±0 (2Ns|x−u1|)F±1 (2Ns|y−u1|)
)
ds
∣∣∣.
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Since N>N ′0, then

|E±2,N(t;x,y)|.
∣∣∣∫ ∞

0

e−it2
4Ns4e±i2

Ns(|x−u1|+|y−u1|)s−3+2αϕ0(s)
(
F±1 (2Ns|x−u1|)

×F±0 (2Ns|y−u1|)+F±0 (2Ns|x−u1|)F±1 (2Ns|y−u1|)
)
ds
∣∣∣.

Noting that for k=0,1,∣∣∂ks (F±1 (2Ns|x−u1|)F±0 (2Ns|y−u1|)
)∣∣.1,∣∣∂ks (F±0 (2Ns|x−u1|)F±1 (2Ns|y−u1|)
)∣∣.1,

then by Lemma 2.1 with z=(x,y,u1), Ψ(z)= |x−u1|+|y−u1|, and

Φ(2Ns;z)=
(
F±1 (2Ns|x−u1|)F±0 (2Ns|y−u1|)+F±0 (2Ns|x−u1|)F±1 (2Ns|y−u1|)

)
,

we obtain that E±2,N is bounded by (1+|t|24N)ΘN0,N(t). Similarly, E±1,N is controlled

by the same bound. By (4.4), we obtain that E±1,N is bounded by 2(3+α)NΘN0,N(t).
Hence we have

|L±1,N(t;x,y)|.2(3+α)NΘN0,N(t)

∫
R3

|V (u1)|du1.2(3+α)NΘN0,N(t).

Finally, by the same summing way with the proof of (2.10), we immediately obtain
the desired conclusion.

In order to deal with the term R±0 (λ4)V R±V (λ4)V R±0 (λ4), we need to give a lemma
as follows, see [10].

Lemma 4.1. Let k≥ 0 and |V (x)|. (1+|x|)−k−1− such that H = ∆2+V has no
embedded positive eigenvalues. Then for any σ>k+ 1

2
, R±V (λ)∈B

(
L2
σ(R3),L2

−σ(R3)
)

are Ck-continuous for all λ>0. Furthermore,∥∥∂kλR±V (λ)
∥∥
L2
σ(R3)→L2

−σ(R3)
=O

(
|λ|

−3(k+1)
4

)
as λ→+∞.

Proposition 4.2. Assume that |V (x)|. (1+|x|)−4−. Let ΘN0,N(t) be a function
defined in (2.2) and N>N ′. Then for each x,y and 0≤α≤3,∣∣∣∫ ∞

0

e−itλ
4

λ3+αϕ0(2−Nλ)
[
R±0 (λ4)V R±V (λ4)V R±0 (λ4)

]
(x,y)dλ

∣∣∣
.2(3+α)NΘN0,N(t). (4.5)

Moreover,

sup
x,y∈R3

∣∣∣∫ ∞
0

χ̃(λ)e−itλ
4

λ3+α
[
R±0 (λ4)V R±V (λ4)V R±0 (λ4)

]
(x,y)dλ

∣∣∣. |t|− 3+α
4 . (4.6)
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Proof. In order to get (4.5), it’s equivalent to prove that

L±2,N(t;x,y) :=

∫ ∞
0

e−itλ
4

λ3+αϕ0(2−Nλ)
〈
V R±V (λ4)V

(
R±0 (λ4)(∗,y)

)
(·),(

R±0 (λ4)
)∗

(x,·)
〉
dλ

is bounded by 2(3+α)NΘN0,N(t).

In fact, let F±(p)= e±ip−e−p
p

, then

R±0 (λ4)(x,y)=
1

8πλ
F±(λ|x−y|).

Hence 〈
V R±V (λ4)V (R±0 (λ4)(∗,y))(·), R∓0 (λ)(x,·)

〉
=

1

64π2λ2

〈
V R±V (λ4)V

(
F±(λ|∗−y|)

)
(·), F∓(λ|x−·|)

〉
:=

1

64π2λ2
EL,±

2 (λ;x,y).

Let s=2−Nλ, then

L±2,N(t;x,y) :=
2(2+α)N

64π2

∫ ∞
0

e−it2
4Ns4s1+αϕ0(s)EL,±

2 (2Ns;x,y)ds.

By using integration by parts, we have

|L±2,N(t;x,y)|. 2(2+α)N

1+|t|24N

(∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−2+αϕ0(s)

)
∂sE

L,±
2 (2Ns;x,y)ds

∣∣∣
+
∣∣∣∫ ∞

0

e−it2
4Ns4s−2+αϕ0(s)∂s

(
EL,±

2 (2Ns;x,y)
)
ds
∣∣∣)

:=
2(2+α)N

1+|t|24N

(
|EL,±1,N (t;x,y)|+|EL,±2,N (t;x,y)|

)
. (4.7)

For EL,±2,N . Since

∂s
(
EL,±

2 (2Ns;x,y)
)

=
〈
V ∂s

(
RV (2Ns4)

)
V
(
F±(2Ns|∗−y|)

)
(·), F∓(2Ns|x−·|)

〉
+
〈
V RV (2Ns4)V

(
∂sF

±(2Ns|∗−y|)
)
(·), F∓(2Ns|x−·|)

〉
+
〈
V RV (2Ns4)V

(
F±(2Ns|∗−y|)

)
(·), ∂sF∓(2Ns|x−·|)

〉
:=EL,±

21 (2Ns;x,y)+EL,±
22 (2Ns;x,y)+EL,±

23 (2Ns;x,y),



38 P. Li, Z. Wan, H. Wang and X. Yao / Ann. Appl. Math., 41 (2025), pp. 1-41

then we have

EL,±2,N (t;x,y)=

∫ ∞
0

e−it2
4Ns4s−2+αϕ0(s)

(
EL,±

21 +EL,±
22 +EL,±

23

)
(2Ns;x,y)ds

:=E±,L21,N(t;x,y)+E±,L22,N(t;x,y)+E±,L23,N(t;x,y). (4.8)

We first deal with the first term E±,L21,N . Let σ>k+1+ 1
2
, then

∣∣∂λEL,±
21 (2Ns;x,y)

∣∣. 1∑
k=0

∥∥V (·)〈·〉σ
∥∥2

L2

∥∥∂k+1
s R±V (24Ns4)

∥∥
L2
σ→L2

−σ

.2−N.1, k=0,1.

Note that s∈suppϕ0⊂ [1
4
,1], by using integration by parts again, we obtain that

∣∣E±,L21,N(t;x,y)
∣∣. 1

1+|t|24N

∣∣∣∫ ∞
0

e−it2
4Ns4∂s

(
s−5+2αϕ0(s)EL,±

21 (2Ns;x,y)
)
ds
∣∣∣

.
1

1+|t|24N
. (4.9)

Next, we deal with the second term E±,L22,N . Let

F∓(p) :=e∓ipF∓0 (p), F∓0 (p)=
1−e−pe±ip

p
,

then

∂sF
±(2Ns|∗−y|)=2N |∗−y|(F±)′(2Ns|∗−y|) :=e±i2

Ns|∗−y|s−1F±1 (2Ns|∗−y|),

where

F±1 (p)=pe∓ip(F±)′(p)=
(±ip−1)+(p+1)e−pe∓ip

p
.

Thus

EL,±
22 (2Ns;x,y)=e±i2

Ns(|x|+|y|)s−1
〈
V RV (2Ns)V

(
e±i2

Ns(|∗−y|−|y|)F±1 (2Ns|∗−y|)
)
(·),

e∓i2
Ns(|x−·|−|x|)F∓0 (2Ns|x−·|)

〉
:=e±i2

Ns(|x|+|y|)s−1ẼL,±
22 (2Ns;x,y).

Furthermore,

E±,L22,N(t;x,y)=
2(2+α)N

1+|t|24N

∫ ∞
0

e−it2
4Ns4e±i2

Ns(|x|+|y|)s−3+αϕ0(s)ẼL,±
22 (2Ns;x,y)ds.
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Note that ∣∣∂ks (e±i2Ns(|∗−y|−|y|)F±1 (2Ns|∗−y|)
)∣∣.2kN〈∗〉, k=0,1,∣∣∂ks (e∓i2Ns(|x−·|−|x|)F∓0 (2Ns|x−·|)
)∣∣.2kN〈·〉, k=0,1.

Since |V (x)|.(1+|x|)−4−, then by Hölder’s inequality, we have

∣∣∂sẼL,±
22 (2Ns;x,y)

∣∣. 1∑
k=0

2(1−k)N
∥∥V (·)〈·〉σ+1−k∥∥2

L2

∥∥∂ksR±V (24Ns4)
∥∥
L2
σ→L2

−σ

.2−2N.1.

By Lemma 2.1 with z=(x,y) and

Ψ(z)= |x|+|y|,Φ(2Ns;z)= ẼL,±
22,N(2Ns;x,y),

we get that E±,L22,N is bounded by (1+|t|24N)ΘN0,N(t). By the same argument we get

that E±,L23,N is bounded by (1+|t|24N)ΘN0,N(t). By (4.8), we have

|E±,L2,N (t;x,y)|. 1

1+|t|24N
+(1+|t|24N)ΘN0,N(t).(1+|t|24N)ΘN0,N(t).

Similarly, we obtain that E±,L1,N is bounded by (1+|t|24N)ΘN0,N(t). By (4.7), we obtain

that L±2,N is bounded by 2(2+α)NΘN0,N(t). Thus L±2,N is bounded by 2(3+α)NΘN0,N(t).

Finally, by the same summing way with the proof of (2.10), we immediately
obtain the desired conclusion (4.6).
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