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Abstract. This paper is concerned with the time decay estimates of the fourth
order Schrodinger operator H = A%2+V (x) in dimension three, where V(z) is
a real valued decaying potential. Assume that zero is a regular point or the
first kind resonance of H, and H has no positive eigenvalues, we established the
following time optimal decay estimates of e ¥ with a regular term H?/%:

| H e~ H Py (H) || pa_ oo S[E 755, 0<a<3.

When zero is the second or third kind resonance of H, their decay will be
significantly changed. We remark that such improved time decay estimates
with the extra regular term H®/* will be interesting in the well-posedness and
scattering of nonlinear fourth order Schrodinger equations with potentials.
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1 Introduction

1.1 Backgrounds

In this paper, we will consider the time decay estimates of solution to the following
fourth order Schrodinger equations in dimension three:

{ iug=A*u+V(x)u, (t,z) ERXR3, (1.1)

u(0,x) =ug € L*(R3),

where V(z) is a real valued potential on R? satisfying |V (z)| < (1+]z|)~? for some
$>0. It was well-known that the fourth order Schrodinger operator H:=A?+V (x) is
self-adjoint on L?(R?) by Kato-Rellich’s theorem, and then the solution of Eq. (1.1)
is given by u(t)=e " "uy by Stone’s theorem.

As V =0, it follows that the free solution u(t,z)=e "*’uy can be expressed by
Fourier transform :

e—z‘m?uO :%v—l<€—it|€\4[[0) :/ Io(t,x—y)uo(y)dy, (1.2)

n

where f (or F(f)) denotes Fourier transform of f, §*(f) denotes its inverse Fourier
transform, and Iy(t,z) = F (e ¢")(2) is the kernel of e~#2*. Tt was well-known
that the kernel Iy(¢,z) satisfies the following optimal estimates for any o€ N"™ (see

e.g., [2]):

nt|al ol

_n=le|
D To(ta) | S5 (Lt 73 fal) ™ * [0, weR, (1.3)
where D = (0,,,++,0,,). Therefore by the (1.2) and Young’s inequality, the (1.3)
immediately implies that the following decay estimates hold:

_iiA2 _n+la]
||DOL€ A ||L1(Rn)_>Loo(Rn)§|t| 4

la] <n. (1.4)

Moreover, the regular term D® of the inequality (1.4) can be replaced by fractional
power (—A)%?2 for any 0 <a <n (see e.g., [4]). It should be noticed that the
decay estimates (1.4) with regular term D® have played important roles in the
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well-posedness and scattering theory of the following the nonlinear fourth order
Schrédinger equations:

up=A*u+NulP~lu,  (t,2) ERXR™,
{zut utMulP~tu,  (t,2) (1.5)

u(0,2) =ug € H*(R™),

where 1 <p<oo, A=+1 denotes the defocusing equation, A=—1 is the focusing one,
see e.g., Pausder [21,22], Miao, Xu and Zhao [19,20] and references therein. Here
inspired by (1.4), we will consider the decay estimates of e with regular term
H7(0<a<3) in dimension three.

Recently, there exist several works devoted to the time decay estimates of the
fourth order Schrodinger operator H=A?+V (z). Feng et al. [10] firstly gave the
asymptotic expansion of the resolvent Ry =(H —z)~! around zero threshold when
zero is a regular point of H for n>5 and n=3. Then they proved that Kato-Jensen
type decay estimate of e~ is (1+]t|)™™* for n>5 and the L' — L decay estimate
is O(|t|~1/2) for n=3 in the regular case. Since then, Erdogan, Green and Toprak 8]
for n=3 and Green-Toprak [11] for n=4 derived the asymptotic expansion of Ry (z)
near zero with the presence of resonance or eigenvalue, and established the L' —L*>
estimates for each kind of zero resonance. More recently, for dimension n=1, Soffer,
Wu and Yao [24] proved the L' — L* estimate of e~ is O(|¢|~1) whatever zero is
a regular point or resonance. It’s worth mentioning that different types of resonance
don’t change the optimal time decay rate of e=® in dimension one just at the cost
of faster decay rate of the potential. Moreover, Li, Soffer and Yao [16] have obtained
the L' — L™ estimate of e~ in dimension two.

Furthermore, we also notice that there exist some interesting works on the L”
bounds of wave operators of the fourth order Schrédinger operator, see [13] for n=3
and [7] for n>5 in the regular case, also see [17] for n=1 in the zero regular or
resonance cases.

1.2 Main results

We use the notation a+:=a=+e for some small but fixed e>0. For a,be R, a<b
(or a2 b) means that there exists some constant ¢>0 such that a <cb (or a>cb).
Moreover, if a <b and b <Sa, then we write a~b.

Now we will present our main results on the decay estimates in the presence of
zero resonance or eigenvalue. At first, we recall the definitions of zero resonances,
also see Definition 3.1 below.

Let (-)=(1+]-[)"/2, and define the weighted L? spaces L?(R*)={f: (-)* fEL*(R?)}.

We say that zero is the first kind resonance of H if there exists some nonzero
¢peL? (R?) for some >3 but nonzero g€ L2 (R?) for any o>1 such that H$=0 in
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the distributional sense; zero is the second kind resonance of H if there exists some
nonzero ¢ € L2 (R?) for some ¢ > 3 but no nonzero ¢ € L*(R*) such that H¢=0;
zero is the third kind resonance of H (i.e., eigenvalue) if there exists some nonzero
¢ € L*(R?) such that H¢p=0. We remark that such resonance solutions of H¢ =0
also can be characterized in the form of L spaces, see e.g., [8].

Now our main results are summarized in the theorem below.

Theorem 1.1. Let |V (z)| S (1+|z|) 7P (x €R3) with some 3>0. Assume that H=
A?+V (z) has no positive embedded eigenvalues. Let P,.(H) denote the projection

onto the absolutely continuous spectrum space of H. Then the following statements
hold:

(1). If zero is a reqular point of H and >7, then

|H S e ™ Pyu(H)|| 1 e SIE75°, 0<a<3, (1.6)
(i1). If zero is the first kind resonance of H and 5>11, then

|H e Pyo(H) || e SJET T, 0<a<3, (1.7)

(111). If zero is the second kind resonance of H and >19, or the third kind resonance
of H and 3>23, then there is a time-dependent operator F,; satisfying

_lta
|Fotlliore SIET 4, 0<a<s3,

such that

3+a

|Hie ™M P, (H)—Fyllpiore S|t 5, 0<a<3. (1.8)
In particular, as 0 <a <3, we have

3+a .
. H=H G <1,
[ e Poc(H) |11 S ‘ 4o f ‘
it~ A [t >1

Remark 1.1. Some comments on Theorem 1.1 are given as follows:

(i). When V' =0, the estimate (1.6) can be reduced into the following decay esti-
mates: .

V7] eita" 1 0<a<s, (1.10)

which are actually sharp in view of the estimates (1.4). When V #£0 and a=0,
Theorem 1.1 are due to Erdogan, Green and Toprak [8]. In order to deal with
the cases with regular terms H*/*, The extra efforts are needed to establish the
desired time decay bounds, we have used more detailed asymptotic expansions
of the resolvent Ry (A1) for A near zero (see Theorem 3.1 below), and then used
Littlewood-Paley method and oscillatory integral theory.

HLl(R3)HL°°(R3) St
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(ii). In additional, we also remark that time decay of H%e *#P,.(H) in high en-
ergy part is always \t]’nga for 0 <a <3 for all resonances cases. Hence the
obstructions to improved estimates are from lower energy part in the second
and third and of resonance cases.

(iii). For the second kind of resonance case, we can get that
Fo =Koy +O(It] %),
as 0<a<3 (see (3.39) below), where K, ; is a time-dependent operator defined
in (3.33), which satisfies that

_lta
[ Kol ~[t]7 75, [t]>1.

It implies that the decay estimate (3.14) of Hie ™ P,.(H) is also optimal in
general. Similarly, for the third kind of resonance we also have the analogous
comments.

(iv). Recently, Goldberg and Green [13] have showed that the following wave oper-
ators
Wi =Wy (H,A%):=s— lim e 4’ (1.11)
t—=o0
are bounded on LP(R3) for 1< p< oo if zero is regular point of H=A2+V.
However, due to the absence of the L! and L*> boundednesses of wave operators
W above in [13], also see [18] for the counterexamples of the endpoint cases.

Therefore the time decay estimates in Theorem 1.1(i) can not be obtained by
wave operator methods.

In Theorem 1.1, we assume that H=A2+V has no any positive eigenvalues em-
bedded into the absolutely continuous spectrum, which has been the indispensable
condition in dispersive estimates. For Schrodinger operator —A+V | Kato in [15]
showed the absence of positive eigenvalues for H=—A+V with the decay potentials
V=o(|z|™) as |#| = oco. For the four order Schrodinger operator H =A2*+V, the
situations seem to be subtle because there exist examples even with compactly sup-
ported smooth potentials such that the positive eigenvalues appear (see, e.g., [9]).
On the other hand, more interestingly, a simple criterion has been proved in [9] that
H = A?+V has no any eigenvalues assume that the potential V' is bounded and
satisfies the repulsive condition (i.e., (z-V)V <0). Besides, we also notice that for a
general selfadjoint operator H on L?(R"), even if H# has a simple embedded eigen-
value, Costin and Soffer in [5] have proved that H+¢V can kick off the eigenvalue
located in a small interval under certain small perturbation of potential.
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In order to obtain the decay estimates in Theorem 1.1, we will use the following
Stone’s formula for 0 <a <3,

o . 2 [ .
Hie "™ p, (H)f(z)="= / e NN RE(AY) = Ry (A f () d. (1.12)
i Jo
Note that the difference of the perturbed resolvents provides the spectral measure,
hence we need to study carefully the resolvent operators Ry (2)=(H —z)~! by pertur-
bations of the free resolvent Ry(z) which have the following representation (see [10]):

Ry(2):= ((—A)Q—z)fl = 2; (R(—A;z%)—R(—A;—z

N|=

), z€C\[0,00). (1.13)

Here the resolvent ) )
R(—A;z2):=(—A—2z2).

For A\e R™, we define the limiting resolvent operators by
RE(N) ::Roi(Aiz‘o):hné(A?—(Aiie))*l, (1.14a)
e—
RE(N) ;zRi(Aim):nn%(H—(Aiie))*l. (1.14Db)
e—

By using the representation (1.13) for Ry(z) with z=w* for w in the first quadrant
of the complex plane, and taking limits as w— A and w— i\, we have

1

R(:)t<)\4) - 2)\2

(RE(—AsA*) —R(—A;=X%)),  A>0. (1.15)
It is well-known that by the limiting absorption principle (see e.g., [1]), R (—A;\?)
are well-defined as the bounded operators of B(L?,L%,) for any s> 1/2, therefore
RSE()\A‘) are also well-defined between these weighted spaces. This property is ex-
tended to RE (A1) for A>0 for certain decay bounded potentials, see [10].

The paper is organized as follows. In Section 2, we establish the dispersive
bounds in the free case. In Section 3, we first recall the resolvent expansions when
A is near zero, then by Stone’s formula, Littlewood-Paley method and oscillation
integral we establish the low energy decay bounds of Theorem 1.1. In Section 4, we
prove Theorem 1.1 in high energy.

2 The decay estimates for the free case

In this section, we are devote to establishing the decay bounds of the free case by
Littlewood-Paley method and oscillatory integral theory.
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Choosing a fixed even function ¢ € C2°(R) such that ¢(s)=1 for |s| <1 and
©(s)=0 for |s|>1. Let

on(s)= @(Q_NS) —g0(2_N+13), NeZ.

Then ¢y (s)=¢o(27"s), supppo C [3,1] and

[e.9]

D> o2 Ns)=1, seR\{0}. (2.1)

N=—o00
By using Stone’s formula, we have

(-ayte sy =2 [Tt Ry () Ry (V) fay

Yy

J— ® i 3ha _ _
=) / e~ N0y (27NN [RE (A — Ry (A)] fd.
N=—00"0

Therefore, in order to obtain the L'—L> decay estimate of the (—A)Ze #4% it
suffices to estimate the following integral kernel for each N:

/ e NN 50 (27N NV RE (A (2,y) dA.
0

We first give a lemma which plays an important role in estimating our integrals
mentioned in this paper. Since its proof is similar to Lemma 3.3 in [16], here we
omit the details.

Lemma 2.1. Let A be some subset of 7. Suppose that ®(s,z) is a function on RxR™
which is smooth for the first variable s, and satisfies for any (s,z) €[1/4,1] x R™,

05®(2Vs,2)|S1, k=0,1, NeAeZ.

Suppose that po(s) be a smoothing function of R defined in (2.1), W(2) is a nonneg-

ative function on R™. Let

v(z)
iz

1
No= {—log2

3 } for each zeR™, [eR and t#0,

we have

S . T+[E24) =2, if IN=Ny|<2,
‘ / 6—1t24N546:tz2Ns\I/(2) SlQOO(S)(I)(QNS,Z)dS’ 5 { ( | | ) f | 0|
0

(L2, i [N Np| >2.



8 P. Li, Z. Wan, H. Wang and X. Yao / Ann. Appl. Math., 41 (2025), pp. 1-41

Throughout this paper, Oy, v(t) always denotes the following function:

(1+]t[-24V)72, if [N—Ny|<2,
Ono,n (1) := N , (2.2)
(1+]¢]-2*¥) =2 if [N—DNy|>2,
Y(z)
It
Before we give the decay estimates of the operators (—A)
that the free resolvent kernel of Laplacian —A in R? (see [12]) is

| and ¥(2) is a nonnegative real value function on R™.
/2 eitA2

where Ny= [%log2

, we first recall

RE(—A;0 i 23
(_ ) )(l'vy)_Ma ( : )
hence by using the identity (1.15), it follows that
1 eiik|$—y| e_A‘x_yl
R () (@.9) = 55 ( = ). 2.4
0 (X)) 222 \dr|x—y| Arw|z—y] (24)

Proposition 2.1. Let Oy, n(t) be the function defined in (2.2) with V(z)=|z—y|
and z=(x,y) ERS. Then for each x#y and 0<a <3, we have

‘ /0 e*iﬂﬁ“%po(z*NA)RgE(A‘*)(x,y)dA‘52<3+Q>N@NO,N@). (2.5)
Moreover,
sugg/o e_it’\4)\3+aR§()\4)(x,y)d)\‘§|t|_3+Ta. (2.6)
x,ye

As a consequence, we obtain that

3+a

I(=2)% e[ ST (2.7)

Proof. We write

Ky (tay) = / eI (27 VN RE(AY) () d .
0

Let F*(p)=<"=<" >0, by the identity (2.4), we have

p Y

R (V) (0.9) = ¢ F* (=) 2.

Let 2Vs=), then
2(3+a)N

oo
/ g2t e () FE(2N s|lz—y|)ds.
0
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Note that s€suppypg C[1/4,1], by using integration by parts, we have

3+a 4N g4 ta
L A X G E e I

3+a 4N G4 ta
|24N (’/ T (s o (8)) FE(2V s|z—y|)ds

1+|t
—it24N g4 —1+o¢ ) Fj: 2]\[ . d
+ e ©o(8)0s (F (2" s|lz—yl))ds
0
2(3+a)N N .
:—1—|—|t|24N (\501,N(t,:c,y)\+ ‘5027N(t,a:,y)‘>. (2.9)

For &g y(t,x,y). Let r=|z—yl, since
O, FF(2Vsr) =512V sp(FH) (2N sr) := 2 s L EE (2N 1),
where

(ip—1)+(p+1)e PP
. :

FiE(p)=pe™(F*)'(p)=

Then we have

Eiaalba)= [ e 0 ) Vs
0

Note that
O FERsle—y )| S1. k=0.1

by Lemma 2.1 with z=(z,y), ¥ =|z—y| and ®(2"s,2)= F*(2Vs|z—y|), we obtain
that &3, v is bounded by (1+[¢[2*")O N, n(t).

Using similar processes, we obtain the same bounds for S(i y- Furthermore, by
(2.9) we get that Ky is bounded by 2¢T®NOy, y(t). Thus we obtain that the
estimate (2.7) holds.

Finally, in order to obtain (2.6), it’s suffices to prove that for any x#y,

—+00

3+o¢
Y Kyt Si- (2.10)

N=—00

In fact, for ¢0, there exists N €Z such that 2o ~ |t|_i. If 0<a <3, then for any
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TFY,
400 +oo s
KNGyl S Y 28N (14 g2t
N=—00 N=—o00

No +00
< )0 BN N gGrN ([N TR Sy (210)
N=—00 N=N}+1

If =3, then for any z#y,

—+00
ST KEtaylS D 2NA[2Y) i DT 28V (1 jtf2tN) 2
N=—c0 |N—Np|<2 |N—No|>2
N§ 400
S D 2N ST 2NN 2SR (212)
N=—00 N=N{j+1

Hence, we obtain (2.10), which gives (2.6). Furthermore, the estimate (2.7) holds.
This completes the proof. n

3 Low energy decay estimates

In this section, we are devote to establishing the decay estimates of Hie P, (H)
for 0 <a <3 for low energy part. We first recall that the asymptotic expansions of
the perturbed resolvent Ry (A\*) as A near zero (see [8]), then by stone’s formula we
obtain the decay bounds of Theorem 1.1 for low energy part.

3.1 Asymptotic expansions of resolvent near zero

In this subsection, we recall that the asymptotic expansions of the perturbed resol-
vent Ry (A*) when A near zero, see [8] and also see [10] for the regular case.

By using the free resolvent kernel R5 (A\*)(z,y) in (2.4), we have the following
expression:

+
a
Ry (XY (z,y) ny(x,y)JrGo(r,y)ﬂLafAGl (2,y)+a; N’G3(z,y)

N
+)\4G4(l’ay)+za;€t)‘ka(ajay)+O<)‘N+1|x_y|N+2>7 (31)

k=5



P. Li, Z. Wan, H. Wang and X. Yao / Ann. Appl. Math., 41 (2025), pp. 1-41 11

where
G ’.flf—y‘ G ]2 G 4
O(xay)_ ST ; 1(1’7y)—|$ y| ) 3($,y)—|l‘ y| ) (328“)
Gileg) =27 G ) =le -y, k25 (3.20)
) 47'['-6! b ) b — )

and the coeflicients

I A A = A 5 ) L N o L
.

C TR T BT g @

8r-(k+2)! (k25).

In the sequel, we also denote by Gy operators with the integral kernels G (x,y)
above. In particular, Go=(A?)""1.

Let U(z)=sign(V(z)) and v(z)=|V(x)|"/?, then we have V =Uv? and the fol-

lowing symmetric resolvent identity
Ry (X) =Ry (\) = Ry (\Ho(M*=(N) "Ry (X), (3.3)

where

M*=(\)=U+vRF(A\*)v.

Hence, we need to obtain the expansions for (M*(\))~L.

Let T'=U+vGov, and P=||V|{v(v,) denotes the orthogonal projection onto
the span space by v. Now we introduce the type of resonances that may occur at
the zero energy as follows.

Definition 3.1. Let Q=1—P and T=U+vGyv.

(i). If QTQ is invertible on QL?, then we say that zero is a regqular point of H. In
this case, we define Dy=(QTQ)™! as an operator on QL?.

(ii). Assume that QTQ is not invertible on QL*. Let S be the Riesz projection
onto the kernel of QT Q. Then QTQ+S, is invertible on QL?. In this case,
we define Dy = (QTQ—I—Sl)fl as an operator on QL?, which doesnt conflict
with the previous definition since S1=0 when zero is a reqular point. We say
that zero is the first kind resonance of H if

Vil
T1 = SITPTSl—%SIUGwSl (34)

is invertible on S1L*. We define D1:T1_1 as an operator on S;L?.
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(iii). Assume that T is not invertible on S;L*. Let Sy be the Riesz projection onto
the kernel of Ty. Then Ti+Ss is invertible on S1L?. In this case, we define
D, = (T1 +SQ)_1 as an operator on S1L?, which doesn’t conflict with previous
definition since So =0 when zero is the first kind of resonance. We say that
zero is the second kind resonance of H if

1
( GIU>2S 0 SQUGlUTDITUGlUSQ (35)

SQ'UG?)/USQ"_ 3||V|| )
L

1
3V [
is invertible on SoL?. We define Dng{1 as an operator on SsL?.

(iv). Finally if Ty is not invertible on SyL?, we say that zero is the third kind
resonance of H. In this case, the operator T3:=S3vG4vS3 is always invertible
on S3L? where S3 be the Riesz projection onto the kernel of Ty, let Ds :T3_1
as an operator on S3L?. We define Dy=(Ty+S3)~! as an operator on S, L>.

From the definition above, we have S; L% D S,L? D S;L?%, which describe the zero
energy resonance types of H as follows:

e zero is a regular point of H if and only if S;L?*={0};
e zero is the first kind resonance of H if and only if S; L?#{0} and Sy L*={0};
e zero is the second kind resonance of H if and only if Sy L?#{0} and S3L*={0};

e zero is an eigenvalue of H (i.e., the third kind resonance) if and only if S3L?#

{0}.

Note that these spectral subspaces S;L? (j=1,2,3) can be characterized by the
distributional solution of H¢=0 in [8], hence we also have the following statements:

e zero is the first kind resonance of H if there exists some nonzero ¢ € L? _(R?)
for o >% but no any nonzero ¢ € L? (R?) with o >% such that Hp=0 in the
distributional sense;

e zero is the second kind resonance of H if there exists some nonzero ¢p€L? _(R?)
for 0’>% but no any nonzero ¢€ L? such that H¢=0 in the distributional sense;

e zero is the third kind resonance (i.e., eigenvalue) of H if there exists some
nonzero ¢ € L?(R3) such that H¢=0 in the distributional sense;

e zero is a regular point of H if zero is neither a resonance nor an eigenvalue of

H.
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In the following, we will give the specific characterizations of projection spaces
S;L* (j=1,2,3) by the orthogonality of these projection operators S; (j=1,2,3), see
also [8].

Lemma 3.1. Let S; (j=1,2,3) be the projection operators given by Definition 3.1.
Then

(i). feS1L* if and only if f€ker(QTQ). Moreover, QT'S;=5,TQ=0.
(ii). fe€SoL? if and only if
f €ker(Th)=ker(S;TPTS))Nker(S1vG1v51)
={feSIL?*|PTf=0, (zv, f)=0, j=1,2,3}.
In particular, T'So= ST =0, QuG1vS5 = S0G1vQ =0.
(iii). fe€SsL? if and only if

f €ker(Ty) :{feSgLZinacjv, f)=0, i,7=1,2,3}.

Furthermore, note that vGgv is a Hilbert-Schmidt operator, and T'=U+vGyv is
the compact perturbation of U (see e.g., [6,11]). Hence S is a finite-rank projection
by the Fredholm alternative theorem. Notice that S5 <S5, <S5, then all S;(j=
1,2,3) are finite-rank operators. Hence the dimensions of these spaces (S;—S3)L?,
(Sy—S3)L? and S3L? corresponding to each zero resonance type, are finite. Moreover,
by the definitions of S; (j=1,2,3), we have that S;D,;=D;S;=S5; (i>j) and S;D;=
DjSi = Dj (Z <])

Definition 3.2. We say an operator T: L*(R3) — L*(R3) with kernel T(-,-) is ab-
solutely bounded if the operator with the kernel |T(-,-)| is bounded from L*(R3) into
itself.

We remark that Hilbert-Schmidt and finite-rank operators are absolutely bounded
operators. Moreover, we have the following proposition, see Lemma 4.3 in [8].

Proposition 3.1. Let |V (z)| < (1+|z|)~"". Then QDyQ is absolutely bounded.
Now we will give asymptotic expansions of (M i()\))_1 as follows:

Theorem 3.1. Let S; (j=1,2,3) be the operators defined in Definition 3.1. Assume
that |V (2)] < (1+]x])=# with some 8>0. Then we have the following expansions of
(M*(\) ™" in L2(R®) when 0 <A< 1.
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(i). If zero is a regular point of H and $>7, then
(ME(N) T =QAY,Q+T1(N); (3.6)

(11). If zero is the first kind resonance of H and 3>11, then

o SlAl_l,lsl

(M) ===

(8140, 443,81 +QALQ) 4T (N); (37)

(111). If zero is the second kind resonance of H and >19, then

_1 _SQAz_gJSQ n SQA2_27181 +51A2_27282 n 52A2—1,1 _‘_142—1,252
o A3 A2 A
+ SlAzl’gsl
A

(M*=(N)
+ (511431 +A2,8, +QA3,3Q) ST (3.8)

(). If zero is the third kind resonance of H and >23, then

-1 SngSg + 52A313,152 + 52A3127151+51A327252 + SZA?iLl +A31’2‘S’2
M A3 A2 A
. SiA%, 45
A

(M)

(81434 43,51+ QA3,0) +T1 (), (3.9)

where A} ; are A-independent absolutely bounded operators in L*(R?); T1(\) be a
A-dependent operator which may vary from line to line, and it satisfies

HFI (>‘) HL2—>L2 —|—)\||8>\F1 ()‘) HL2—>L2 +A? H@ifl <)‘) HL2—>L2 SA

The asymptotic expansions of (M jt()\))f1 in L?(R?) above can be found in [§].
Here Theorem 3.1 take some different notations and expand more terms for our
applications. see [3] for the details of proof.

3.2 Low energy decay estimates

In this subsection, we are devoting to establishing the low energy decay bounds for
Theorem 1.1.

Below we use the smooth and even cut-off y given by y=1 for |A\| <Ay 1 and
x=0 for |A|>2\g, where )\ is some sufficiently small positive constant. In analysing
the high energy later, we utilize the complementary cut-off x(\):=1—x(\).
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Using the functional calculus and Stone’s formula, one has

o . 2 & 2y 4
Hie " Poo(H) [ =— /0 e N NFRE (N = Ry (AY)] fdA
— 2 [ e AR RE (A — Ry (AY)] fdA
T Jo
9 [,
+— e N3N [RE (M) = Ry (AY)] fd, (3.10)
™ Jo
where
N’ 400
=" @) and ¥N= Y @@ YA for N'<O.
N=—o00 N=N'+1

We remark that the choice of the constant N’ depends on a sufficiently small neigh-
bourhood of A=0 in which the expansions of all resonance types in Theorem 3.1

hold.

Theorem 3.2 (Low Energy Dispersive Estimate). Let |V (x)| < (1+|z]) 7 (z €R?)
with some >0. Assume that H=(—A)?>+V(z) has no positive embedded eigen-
values. Let P,.(H) denotes the projection onto the absolutely continuous spectrum
space of H
(1). If zero is a reqular point and 3>7, then
3+a

|He P (H)X(H) || s ST 1, 0<a<s. (3.11)

(11). If zero is the first kind of resonance and >11, then

3+a

|HS e " Poe(H)X(H) |z S5, 0<a<3. (3.12)

(111). If zero is the second kind of resonance and 5>19, or the third kind of resonance
and 3>23, then there is a time-dependent operator F, ; satisfying

_lia
HFathLI_)LOOrS’t‘ T, 0<a<3,

such that
|HS e Poo( H)x(H) = Fayllpiop= S5, 0<a<3, (3.13)
In particular, for 0<a <3,
o =5, i <,
|5 e P (X (D) |oim S0 e (3.14)
[t~ =, if |t >1.
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Before proving Theorem 3.2, we first give the following lemma, which has a
crucial role in making use of cancellations of projection operators @, S; (j=1,2,3)
in the asymptotical expansions of resolvent Ry (A*) as A near zero, and WlH be used
frequently to obtain the low energy dispersive estimate.

Lemma 3.2. Assume that z,y €R® and \>0. We define w=w(z)= for x#0
and w(z)=0 for x=0. Let §€0,1] and |y|cosa= (y,w(zx—0y)), where a a(z,y,0)
is the angle between the vectors y and x—~6y

(i). If F(p)eC*(R). Then
F(Mfﬂ—y|)=F()\!$\)—)\|y\/o cosaF" (Alz—0y[)db

(ii). If F(p)€C*(R) and F'(0)=0. Then
F(Maz—y|)=F(az|) =My w(z)) F'(Az])

1 F/ _
+)\2|y|2/ (1—9)(sin%zw+cos204F”()\|x—0y|)>d@
0 r—vy

(iii). If F(p)€C3(R) and F'(0)=F"(0)=0. Then

POo—y) =F ) ~Aye)) P+~ () =

" Alyl? o (F'(Az—0y[)
+(y,w( >F (A |)} 5 /(1 0)? [3cosasm a<)\2|x——0y|2
_ F'(AJz=0y])

Nz —0y] > cos’aF®) (\|z— 9y|)]

Proof. By the similar processes as the proof of Lemma 3.5 in [16], we can prove this
lemma. Here we omit the details. O
3.2.1 Regular case

In order to establish the lower energy estimate (3.11), recall that Stone’s formula

Hffe‘“HPac(H)><(H)f:i/OOOe_WX(A)X”’*‘j‘[RWV)—1%@4)]J”dA

(X

Z Zm / N oo (27NN RE(AY) fdA. (3.15)

N=—
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If zero is a regular point of spectrum of H, using (3.3) and (3.6), we have
REO) = RN = B (V)0 (QA,Q ) uRE (V) — R (\)eTy (vRg (). (3.16)

Combining with Proposition 2.1, in order to obtain (3.11), it suffices to prove the
following Propositions 3.2 and 3.3.

Proposition 3.2. Assume that |V (x)| < (14+|z|)"". Let Oy, n(t) be a function
defined in (2.2) and N<N’'. Then for each x,y and 0<«a <3, we have

‘/ emIN NI (9N ) [R(T(A4)U(QA871Q)UR§(>\4)](Qi,y)dA‘SQ(SJFQ)N@NO:N@)'
0
As a consequence,

sup
z,y€R3

| e (R (0)(@48, QRS (] (mg)dd| S (347)
0
Proof. We write

K (tz,y) = / e N0 (27NN [R (ANQAG ,QuRG (X)) (w,y)dA.
0

Let

then
1
+/\4 _ + _
REO(9)= ¢ F* Ol —y))

By the orthogonality Qu(z)=0 and Lemma 3.2(i), we have

[Ra (A)vQAG,QuRy ()] (2,y)

1
i [ P Ol QAL Qo] ) P (Al

1 1 1 ) ,
64%2/ / / COS&QCOS&l(Fi) ()"x_92u2‘)(Fi) (Ay—61uq|)db1dby
reJo Jo

Jua |[ua | [vQAG ; QU] (un,uy ) duy dus,
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where cosay =cosa(y,u1,01) and cosay=cosa(x,us,0s). Furthermore, we have

Kfﬁ(m’y

=50 / / / / e NN (2NN (FEY (Mo — Ous])

(FEY(Ny—01uy |)d/\> cosagcosaydfydis|us ||uz|[vQAg QU] (us,ur ) duydus

:647r2 /Rﬁ/o /0 E(l),’zjxtr(t%%91,92,7117U2)Cosagcosa1d91d92

'|U1|‘U2’[UQA(I),1QU](U2,U1)dU1dU2- (3.18)

Now we begin to estimate E?”Jf,(t;x,y,é’l,%,ul,m). In fact, let s=2"V\, then
E?:]:{:f(t;xayﬁla@%ulauﬂ
=gUta)N / it gt () (FEY (2 sl —Oyus ) (F) (2 sly— By |)ds
0
By using integration by parts, we have

|E1 N(t x y7917927u17u2)’
2(4+a)N it N N
<1+|t|24N ‘ Os (5 vol(s ))(F ) (27 |z —Baus| ) (FF)' (27 sy — 91U1|)d=‘3‘

+‘/ =2t o )as((Fi)/(2N8|:E—92u2|)(Fi)/(2Ns|y—91u1|))dsD

W <|5 V(G y,91,92,ul,u2)]+|52N(t,x,y,él,éz,ul,u2)|) (3.19)
We begin to compute 53;?5. We have
9% (t5,,61, 02,01, u5)|
S ‘/o 67#24%4871“@0(5)'2N5|x_92u2’(Fi)(2)(2N5|33—92U2|)(Fi)/(2Né’!y—91U1\)ds‘
] [T e )2l by () (2 Oyl () (2 sl s

|ggliN(t T y’el 92,u1,uQ)\—I—\53;1\,(75;33,%91,92,u1,u2)|, (320)

For the first term SQi%N. Since

2Ns|x—02u2|(Fi)@)(2N3|.r—«92u2|)(Fi)'(2N3|y—91u1|)

:eﬂ:i2Ns|x—02u2\e:l:i2Ns|y—01u1\F2:t(2NS|x_92u2|)F1:|:(2N8|y_91u1|)7
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where
(£ip—1)+(p+1)e PFP
P ’ |
(2F2ip—p*) —(2+2p+p*)e PTP
p? '

Fi*(p)=eT"(F*) (p)=

F5(p) =pe™P(F*)? (p) =

Hence, we have

ggfiN(t;a%y?el;e%ul’uQ)
:/ e_it24N54eii2N5(|:c—92u2\+\y—61u1|)S—1+aw0(S)F2:t(2NS|:E_02u2|)F1:|:(2N8|y_01u1 |)d8
0

It is easy to check that

E(F 2 sla—Oausl) FE(2Vsly—0rui]) ) | S 1, k=0,1.
By Lemma 2.1 with z=(x,y,01,02,u1,us) and
U(z)=|z—0Oyuz|+|y—01uq], <I>(2Ns;z):F;E(2N3|x—92u2])Fli(2Ns|y—91u1|),

we obtain that sng is bounded by (1+]¢|2*¥)Ox, v (t). Similarly, we obtain that

Ex 59 18 controlled by the same bound. Hence we get that 53:; is bounded by
(L+[12%) O (1),
Similarly, we obtain that Sf”ﬁ is controlled by the same bound. By (3.19) we

have
|E N (t2,y,00,00,u1,u9)| S20FONO N w (1), (3.21)

Since |V ()| < (1+4|z|)~", by using Holder’s inequality, (3.18) and (3.21), we obtain
that

[ (,9) | 205N (o) 22| QA Q212 2w () 12 ) O, v (1)
52 (3+a) N@NO,N(t)-
Finally, by the same summing way with the proof of (2.10), we get (3.17). O

Proposition 3.3. Assume that |V (z)| < (1+|z)""". Let Oy, n(t) be a function
defined in (2.2) and N <N'. Then for each x,y and 0<a <3,

‘ /O °°6_m4 A0 (27NN [Ry (Ao (Ao Rg (A)] (x,y)dA‘

<2BTAING v (1), 3.22
~ 0,
Moreover,
sup X (A e N3t REHVTL (M) vREMY ] (2,y)dA| < £~ 3.23
R3 °
z,ye
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Proof. To get (3.22), it’s equivalent to show that
Ky (tz,y)
= [ A ATV (B O 500 () (RS () 5
0

is bounded by 2G3+ONQy y(1).
Let F*(p)= M , >0, Then

Ry (A)(2,y) = — F*(Alz—yl).

87

Thus we have

(I (Vo] (BF (A (=) (), BF(A)(x,))

= g (T O] (F* (A=) (), F¥ (A1)
1
 64m2N?

Let 2Vs=), then

Ey*(Nsa,y).

2(2+a)N

04/,
KZ,N(t"T7y):W

| et B2 s as.
0

Since s €suppyy C [1,1], by using integration by parts we have
0, 24N X igan —2+a 0, (9N
|K2:N(t;xay)| 51+|t|24N ()/ € 85(8 900(8))‘E'27 (2 S;l’7y)d8
0

+‘/ _i9AN g4 _24_04()0 (S)@S(Eg’i(QNS;xay))ds’>

2+a)N

1+|t|24N

(103 )| +1E0 By ). (3:24)

We first estimate 5;’]%. Note that

Os(By ™ (2V s;2,y)) =([vd,T'1 (2N s)v] (F=(2V s|x—y|)) (), FF(2Ns]z—|))
+ ([T (2Vs)v] (8, F = (2N s[x—y)) (-), FT(2Vs|z—-|))
+ ([T 2V s)v] (FH(2Vs[x—y])) (-), O FF(2Vs|z—-|))
=Eor (2Vsw,y)+ By (2N s3m,y)+ By (2Vs3,y).
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Then

Eyn(tiz,y)= / T2 s g (5) (Egii(ZNs;x,y)
0

+E§éi(2Ns;w,y)+E3éi(2N3;x,y)>ds
=7 (b2,) + Eay v (.y) + €3y (Bi2,y).
At first, we deal with the first term ngN(t;m,y). Since
ML (M)l 2222 + X [ORT1 () |25 22 SA,

then

Ha;g (85F1<2NS)) HL2_>L2 §2N, ]C:O,l.

We can check that
|08 (B3 (2N ssa,y)) | S2N, k=01

By integration by parts, we obtain that ngcN(t;a:,y) is bounded by 2V (1+¢[24V)~L.
Next we deal with ngN(t;x,y). Let

1—e Petip
Ff(p)zT,

then F'¥(p)=eFPF; (p). Since
O F* (2N s|x—y[) = 2% |x—y | (F*) (2N s|x—y|):= > s R (2N s |5 —y),

where

+ip—1)+(p+1)e PeF?

Ff(p)zpew(Fi)’(p)z( )

Moreover,
B35 (2 s5.) = ) 51 o (2% 5)o] (2 (11D (25 5 —y)) (),
eﬂFz’2Ns(\x7.|,\g;|)F5F(ZNS’J:_.D>
ZzeiﬂNs(‘leyDS_lEgéi(QNS;JZ,y).

Hence, we have

Exs oy (tim,y) = / e 2N st R sal D g3t g (6) (27N ESE (2N ;) ) ds.
0
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Note that
0% (e*27 VD FE @V s —y)) | S 2V () S (), k=0,1,
|08 (¥ oo PN EF (2N sle— )| S 25V () S (1), k=0,1.
Since |V (z)|<(1+]z])~"", by Holder’s inequality, we have

1
P EY" (2 s12,9) [ S 3 o) () L1051 2V 5) || oy 1o S 2V
k=0
By Lemma 2.1 with
z=(z,y), Y(z)=|z|+]y] and <I>(2Ns;z)zﬁgf(2]vs;x,y),

we obtain that £y is bounded by 2V (1+[¢[2*N)Oy, v (t). Similar to get that
Sgéﬁv is controlled by the same bound. Hence we obtain that 53;?5 is bounded by
2N (1+t2* VYO N, N (1).

Similarly, we obtain that Eﬁ’ﬁ is controlled by the same bounds. By (3.24), we

immediately obtain that ng’f\t, is bounded by 2G+9N@y v (t). Hence we obtain that

(3.22) holds.
Finally, by the same argument with the proof of (2.10), we immediately get
(3.23). O

3.2.2 The first kind of resonance
If zero is the first kind of resonance of H, by using (3.3) and (3.7) one has
REO) =Rg (V)= RE (o (1814, 81 JuRs ()
— R (Vo (S14] 1+ 48,81 +QA3,Q ) v RE (XY)
—REAHUT L (NvRE(MY). (3.25)

In order to obtain the estimates (3.12), compared with the analysis of regular case,
it is enough to estimate to prove the following proposition.

Proposition 3.4. Assume that |V (z|) < (1+]|z|)~ . Then for 0<a <3,

sup
z,y€R3

/0 XN e ™ N0 27V AT [RE(AuS AL | SivRE(AY)] (x,y)d)\‘

3+a

Sl

sup
z,y€R3

| e N (2 [RE (05148 0 RS ()] (2,0) |
0

34+a

S
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Proof. Here we use the orthogonality S;v=0, by the same argument with the proof
of Proposition 3.2, we obtain that this proposition holds. O

3.2.3 The second kind of resonance

If zero is the second kind of resonance of H, using (3.3) and (3.8) one has
REON) =R (X) = BE (V) (A 38,42,,8 JoRE (V) = R (X)o (A 2542, .9,
FAT25, A2 27252>UR0i()\4) ~RE(\Y <)\_152A2_ A28,
FATISIAZ, 80 JoRE(N) — B (Ao (143, + 42,51 +QA3,Q) v R (V)
—REAY (NvRE(AY). (3.26)

In order to prove Theorem 3.2(iii), combining with the proof of regular case and
the first kind resonance, it is enough to estimate integrals with the following three
terms:

Qo1 (N) =Ry (A)o(A2%A4%515:)vRy (M), (3.27a)
Qo2(N) =Ry (A)o(A 2942, )vRy (M), (3.27b)
9273()\) = R(:)t()\4)v()\_152142_1’1)1)}%6‘:()\4). (327C)

Since (F*)'(0)#0, where

1
Ry (\)(@.y) = g FE (M=),
so it doesn’t satisfy the condition of Lemma 3.2(ii), hence we can’t make full use of
the orthogonality of Sy (i.e., Soz;v=0, 1=1,2,3). In order to using orthogonality
Sexjv =0 to improve the time decay of H a/de—ith P,.(H), we will subtract some
specific operator to satisfy the conditions of Lemma 3.2(ii). Then we can make full
use of the orthogonality of Ss.

Let .
~. et _o—p
F (p)ZTﬂU’ peER.
Recall that Go= 24, then
1 ~
RF(\* —Go=—F*(\|z— 3.28
o (A)(@y) = Go= o I (Az—yl), (3.28)

F*(p) € C2(R) and (F£)'(0)=0. Hence F*(p) satisfies the condition of Lemma
3.2(ii). We now begin to estimates the terms 9;(\) (i=1,2,3) in (3.27).



24 P. Li, Z. Wan, H. Wang and X. Yao / Ann. Appl. Math., 41 (2025), pp. 1-41
Firstly, we deal with the first term () in (3.27). We have

Qo1 (N) =(R5 (A" —Go)v(A\ 5542 5 | So)v(R5 (A" —Go)
+ (R(T(/\él) — Go)U()\igsgAQ,g’l 52) X UGO
+G0/U()\_3SQA2_3 152) (Rg()(l) — Go) +G0/U<>\_352A2_37152)'UG0
3:F2—3,1(/\) +F2—3,2()‘) +F—3 3()‘) +F2—3,4()‘)‘ (3.29)

Proposition 3.5. Assume |V ()| S(1+|z])7"7. Let I3 ;()) (j=1,2,3) be operators
defined in (3.29). Then

sup / XN)e XTI, () (@g)dA| S 17, 0<a<s, (3.30a)

z,yeR3'J0

sup X (A 6_“’\4)\3+a1"2_ () (z,y)dN| <t _HTQ, 0<a<4, j=2,3. (3.30b
3,7 ~

z,yeR3'J0

Proof. (i) We first show the first integral estimates. We write
=2+
K12,N (t;x,y)

- / ooe_it’\4)\3+ag00(2_N)\) [(Ry(AY)—=Go)v(ASA% 5 1 So)v(RE (M) —Go) | (z,y)dA.

Recall that

1 ~
RE O ()~ Go= o F=(Na—y))

n (3.28), then by Lemma 3.2(ii) and the orthogonality Syx;v(z)=Sv(z)=0 (j=
1,2,3), we have
[(R5 (M) —Go)v(A 25242 5 1 S2)v (R () —Go) ] (z,y)
1 ~ -
Fi()\|x—u2|)v(u2)(52A2,3’1Sg)(uz,ul)v(ul)Fi()\\y—ul|)du1du2

T 6ATIN Jg
(F%) (Ajz—0aus)) ~.
647r2)\/R6// (1=61)(1= 92( No—fyua| o0 2z +(FF) P (Nz—zua|) cos” az)
) (Aly—=61ui]) ~4
H(FH D (Ay—0 dfydo
( Ny—Or] St )@ Ay =11 ) cos” al) 1dbafus [*us|*o(uz)v(ur)

(SQA 152)(U2,U1)dU1dU2
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Furthermore,

K1 N(tvmay

" FEY(Nz—6us)
—itA* y 24« 2—N/\ ( 2
" Gdn? /Re/o / / AT ol )< Az —0Osus)| St

+(F%)® (A —yus]) cos? aQ)(< ;’;Myeluejum 200+ (FH) O (Aly )

X COS2041> d)\i| (]_ —81) (]_ —02) |’LL1 |2 |U2|2U(UQ)’U(’LL1)(SQA2_37ISQ) (uz,ul)d91d6’2du1du2.

Let
Ef:]:{:/(t;x7y7617927u17u2)

00 ) [RERY; Mxz—0 .
:/ ezt,\4>\2+a900(2N)\)<(F ) ( |JZ 2U2|>Sin2a2+(Fi)(2)<)\|x_62u2‘)COS2062>

0 )\|$—62U2|
(fi)’(kly—%ul!) .2 ) (2) 2
F AMy—0 d\

><< Ny—0rin]| sin“ oy + (F%)¥ (A|y—01uq]) cos 041) :
then

Rl [ [ [ 1B ol oo

X |(SQA_37152)(UQ,U]_)‘de]_deQdU]_dug. (331)
Let
s=27NN, r=2Vy—0uy| and ry=2"|x—0Oyus|,

then

Ef:]%f(t;xvyaelae%ulyuﬂ)
* ﬁi)’(2N3|x—02u2])
:2(3+a)N/ —it24N st 24 ( (
0 ‘ ° 900(S> 2NS|,T—92U,2|

F)(2Ns|y—0
XCOSQOzQ> <( 2)]55|;’y91u11|u1‘)sm ap+(F*)@ )(2Ns|y—01u1|)0082a1>ds

sin? o+ (F) @ (2N 5|z —Oyus) )

2

__5(3+a)N T it o4a (F2)(r8) . o (N2 (. 2
=2 e s gpo(s)H —————=sin“a;+(F7)"¥(r;s)cos“a; ) ds.
0 r;s

j=1
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By integration by parts, we obtain that

|E1 N(t x y,01,02,U1,U2)|

3+a ~i\,
g, (s EE)(rss) g2 o (FEYD(y
N1+’t’24N <‘/ ®o(s ))H( s sin® o+ (F=) (155 )cos? ozj)ds’

2 / ) .
j=1 !

9(3+a)N
T It

(ygl NG00, 02,01 ,02) | 1ET (6,0,01,0,u1, 1)) (3.32)

We first estimate the term ng’ﬁ(t;x,yﬁl,@z,ul,u2). Let
Fi ~
Os H( sm oz]—i-(Fi)(Q) (rjs)0032aj> eFirspFires _lel a, (T15,725),

lhen
AN 4 N
2.+ —q 3 _ _ —
|€277N(t;$’y’91’927 1’u )‘5‘/ e it2 S e:l:z? s(|:c quz|+|y 91u1\)8 2+a¢ (S)

X FE (2N |z —0Oaus,2V s|y—61u1])].

a,02

Note that
‘8’“ Ns|w—0qus|,2V s|ly—01ui|) <1, k=0,1,

by Lemma 2.1 with z=(z,y,0;,02,u1,us) and

aq, 012(

U(2)=|z—Oous|+|y—bOrus|, ®(2Vs,2)=FF  (2Vs|z—0us|, 2 sly—01us]),

1,02

we obtain that S;ﬁ is bounded by (1+t[2*V)Oy, v(t). Similarly, we get that Slzﬁ is
controlled by the same bound. Hence Efﬁ is bounded by by (1+[¢[2*V)Ox, x(¢). By
(3.32) and Holder’s inequality we obtain that K v is bounded by 2GTNOy v (t).
By the same summing way with the proof of (2.10), we immediately obtain (3.30a).

For the term I'?,()\). We use the orthogonality Syz;u=0, i=1,2,3 for the left
hand of I'? 3 ,(X) and Syv=0 for the right hand of I'?5,()), by the same argument
with the proof of the term I'” (), we immediately obtain the desired conclusion.
Similarly, we also get the desired integral estimate for the term F2_373()\). ]

Proposition 3.6. Assume that |V (z)| S (1+|z|)~"7. Let I3 4(\) be an operator
defined in (3.29). Suppose that

Ka,t(x7y) ::/ X(A)e—it)\4>\3+a1‘\2_374()\) (Z)’J,y)d/\, (333)
0
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is the integral kernel of the operator K, .. Then for any 0 <a <3,

14+«
sup |KM x y)|<\2€|’i
z,yeR3

In particular, if GOUSQA2_3’ISQUGO7£O; then

+a

||Koct||L1—>L°°N|t|_7a |t|>1
Proof. Note that

[z —y|

2, ,(\)=Gov(\ 25,42, S5)vGy  and Go=— 2
, ’ T

then

Ka,t<x7y> :/ X()\>€7it)\4 A® [GOUS2A2—3,1SZUGO] (%,y)d)\
0

1 % "
=517 / W) / o) (S2A% 152 (urua)o(us)

X |y—U2‘dU1dUQ.

Referring to Stein’s book [23, p. 356], one has

/ X XA 1], e[ 1

0

By the orthogonality Sov=0 and Holder’s inequality, we obtain that
}GO/USQAZ_&ISQUGO(I',y)‘

~am3] [ (== feo(an) (S 4 2) ) ) 1y =l =l

<H|u1|v(u1 ||L2HS2A2_3 1*S”2||L2_,L2H|u2|v Us HL2 1.

Hence,
1+«

sup |Kou(z,y)| ST,
z,yeR3
which gives
1+a
[ Kol poe STE

Next, assume that there exists o >0 such that

14+a+o
4 )

[ Kol 1o SIET It >1.



28 P. Li, Z. Wan, H. Wang and X. Yao / Ann. Appl. Math., 41 (2025), pp. 1-41

According to the hypothetical condition GongAz_&ngng # 0, there exist f,g€
LY(R?) with || f|lzr=]lg|lz: =1 and constant D >0 such that

(Koifrg)| = ] ( /0 OOX(/\)e‘it’\4/\o‘d)\) -<G0v52A2_ 31520Gy f,g>‘ > DJt|~ .

Then
14+a+o

D~ T LT = DR

As a result, we obtain that D=0 as |t| — 0o, which is a contradiction. Hence,

| Kol ~IH 75, > 1.
Thus the proof of this proposition is completed. n
Secondly, we estimate the second term €252(A) in (3.27). We have
Qoo (N) =(Ry (AY) = Go)v(A 282 A%, 1 S v Ry (M) +Gov (A28, A%, 1 S v Ry (AY)
=2, 1 (N)+T25,5(N). (3.34)

Proposition 3.7. Assume that |V (z)| S (1+|x[)7"7. Let I?,;(A) (=1,2) be a
family of operators defined in (3.34). Then

s | [TXO0e T, @ SHEL 0sass 3a5)
z,yeR3'J0
supg/ X(/\)e_it’\4/\3+°T2_272()\)(x,y)d)\)§|t|_2+Ta, 0<a<3. (3.35b)
z,yeR 0

Proof. By Lemma 3.2(i) and (ii), using the same method with the proof of Propo-
sition 3.5, we obtain (3.35a). By using Lemma 3.2(i), by the same arguments with
the proof of Proposition 3.2, we immediately obtain (3.35b). O

Finally, we deal with the term € 3(A) in (3.27). We have
s\ =(RENY) — Go)o(A 1 $542  JoRE () +Gov(A 15342, JoRE(XY)
=12 (V) +T2 (V). (3.36)
Similar to the proof of Proposition 3.7, we obtain the following proposition.

Proposition 3.8. Assume that |V (z)| < (1+z])7"7. Let I, ;(X) (j=1,2) be op-
erators defined in (3.36). Then

sSup / X()‘)eiit)\Zl)‘SJraIQ—l,l(A)('xay)d)“ S ‘trngaa OSO‘§37 (3373)
z,yeR3'J0

sup. / X(/\)e_it”\4/\3+QF2_172()\)(x,y)d)\’ St - 0<a<3. (3.37b)
z,yeR 0
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Combining with Propositions 3.5-3.8 and the proof of the first kind resonance,
we immediately obtain that for 0 <a <3,

[ H% e ™ P, (H)x( |55

HL1—>L°° ~

Let F,; be an operator with the integral kernel

Fuae) =Kaa(r)+ | X 04[025(0) 412,40
0

+F2_2,2<)\)+F2_172()\):| (:U,y)d)\, (338)
where Koy, I%5,(A) (1=2,3), I'?,,(A) and I'? | , () are operators defined in (3.33),
(3.29), (3.34) and (3.36). By using the estimates (3.30b), (3.33), (3.35b) and (3.37h),

we obtain that
24«

Foi=Kao;+O(t|777), 0<a<3, (3.39)

and
1Pz S5, 0<a<s. (3.40)

Combining with Propositions 3.5-3.8 and the proof of the first kind resonance again,
we immediately obtain that for 0 <a <3,

3+a

| H 5 e ™ P, (H)(H) = Foullpiore SIEH 7, (3.41)

which gives (3.14).
Hence the proof of Theorem 3.2(iii) in the second kind resonance is completed.

3.2.4 The third kind of resonance
If zero is the third kind of resonance of H, then using (3.3) and (3.9) one has

RO =R () = RE (V)0 (X183 D33 )uRs (X*)
_RE(N! ( 352,4513’152)@33@4)
—REOM (A 25,4%, S+ A" 251A32252>UR0 ()

Ry (Ao (148,443,551 +QA3,Q) v R (XY

(A%)v
(VoA

—Roi(xl)v( A8, A%, +)\*1A§1,252+>\*151A3117351>vR(T(X*)
(Xo(s

— REAMOD (NvRE(AY). (3.42)
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In order to prove Theorem 3.2(iii) in the third kind resonance, we need to analyze
what contribution the term A\~*S3D3S3 has in Stone’s formula (3.10). By a simple
calculation, we obtain that

R (Mu(A183D553)vRS (M) — Ry (A*)v(A*S5D355)vRy (A*)
=(R§ (A" =Ry (A"))v(A*S5D355) v Ry (A*)
+Ry (A o(A1S3D585)v (R (M) — Ry (A)).
Proposition 3.9. Let [V (z)|<(1+|z|)"2~. Then for any z,y €R3 and 0<a <3,

2+2a

‘ /0 e N[ (RE (V) — Ry (V)0 (A S5 DaSs) 0 RS (] (2. d)\‘<|t\ ,

2+2a

‘/OOOX(A)e‘WA?’*“ [Ry (A v(A183D583)v (R (M) — Ry (A1) ] (z,y d)\‘<|t|

Proof. We only estimate the first integral, similarly for the second integral. We
write

Ky (ta,y) = /O eI 27V [(RE (W) — Ry (\)

(X183 D553)vRY (AY)] (2,y)dA. (3.43)
Let
_ e?—e~ P et —e P
Ro(p)=——— and F*(p)=———
D p
Then

Ro(Mr—yl), REO) = — F*(Az—y]).

R§ O =y (V) = -

8\

Note that Ry€ C?(R) and (Ry)'(p) =0, but

(Ro)(p)=—75 #0.

Let
_ — 21 _ elr—e~i jp?
F(p)ZRo(p)+§p2, F(P)ZTﬂL?-

Hence, F'€ C°(R) and (F)®(p)=0, k=1,2. By the orthogonality Ssv= Ssz;v =
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Sszix;v=0 (i,j=1,2,3), one has
[(Rg (X)) =Ry (A1) v(A*S5D3S3)vRy (AY)] (2,y)

1 _
~Gdn2 6/ Ro(Alx—wug|)v(us)(S3D3S3) (uz,ur)v(ur) F(A|y —u |)duydus
T )\ R6

1 5 2i
647N /RG (RO(A|x_u2|)+§A2|5E—U2|2)U(U2)(53D353)(u2,u1)v(u1)

X FT(Ay—uq|)duidus

1 _
:—26/ F(Nz—us|)v(ug)(S3D3S3) (ug,uy )v(u ) FT (Ny—ui|)duidus.
64 )\ R6

By Lemma 3.2(iii), one has

(0RO SD8) 0)

F’ (Alz—baua|) FO(Nz—0yus) .
= (1—05) >3
1287?2)\2 /RG/O / 2 )\2|x 02u2|2 >\|:E—92u2| COS(v9SIN~ (v

— F®) (X2 —60us|) cos® 042} (F*) (Aly—61u1]) cosaydb, 0,
X |u2\3v(u2)v(u1)|u1|(S3D353)(u2,u1)du1du2.

Furthermore, we have

Kf’ﬁ(tl’y

_i\4 _ F’()\|$—92U2’) F(Q)()\]x—equ\)
— itA* y 1+ N .
N 12871' /]R‘i/ / |:/ A QDO(Z /\) [( )\2|$—92U2|2 )\|$—92U2| >

X 3cosagsin®ay — F®) ()\|x—92u2|)cos3a2} (FTY (Ny—601uy |)Cosa1d/\} (1—0,)2d0, 0,

X |U2|3|U1 |U(U2)U(U1) (SngSg)(U,Q,Ul)duldUQ

1 1,1
::_12871'2/ / / Ei’;\r/(txayaeh‘g%ulaw)(l—92)2d9192|u2|3|ul’U(Uﬂv(“l)
rs.Jo Jo

X (SngSg)(UQ,U1>dU1du2. (344)

Let s=2"N)\, then

E3t :2(2+a)N/OO@_it24NS451+a (s) [(Fl(QNS,$_92U2U _F(Q)(2N$’$—92U2D>
LN 0 (2N 5)2| 2 — Oqus|? 2N sz — Oqus|

x 3cosagsin?ay — F® (2N 5|z —0yus|) cos® 062:| (F1) (2N s|y—01u1|) cosay ds.
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Let
r=2y—0u| and  ry=2N|r—0Oyus|.
Then by using integration by parts,
(2+

o F'(ros)  F®(rys)
At < ’/ —it2tNst g ((—24a << _ >3 )
| 1N~1_’_‘t24N< eo(s )) (r25)2 195 coSQpsin” g

—F®)(rys)cos® 042) (F+)/(7“15)008041d3’+‘/0 6_“24NS45_2+Q<P0(8)

F/(T'QS) F(2)(T‘28) . 9 5(3) n
x@s[(< (052 1o >3cosagsm g —F®) (1r95)cos’ a2>(F )(rls)cosal}ds‘

9(24+a) iy

W('gl N (t;x y791>927u17u2)‘+}53,’;\;(75;%,3/,91,92;1‘1>U2)D-

For 53; Note that

F’(TQS) F(Q) (7“25) 9 3) N
&[(( (r5)? R— )BCosazsm g — F®)(rys)cos® a2>(F )(rls)cosal]

_ar1s jires —1 17
=" F, as (T18,T25),

then we have
}8§;| < ‘/ e_it24NS4ei(rl+r2)ss_3+2ag00(S)Falm(rls,rzs)ds‘.
0
Since
|08 Fo 0n (2N sz —b3us|, 2Vsly—61ui])| ST, k=0,1,
by Lemma 2.1 with z=(x,y,0,02,u1,us) and

U (2) =r1+ro=|z—0byus|+ |y —b1us,
D(2Vs,2) = Foy 0y (2N |2 —O3us |, 2V |y — 0114 |),

we obtain that 55’; is bounded by (1+4[t|2*¥)Opn, ~(¢). Similar to obtain that Sf;\; is
controlled by the same bound. Hence Ef;{, is bounded by 22+¥N@y v (t). By (3.44)
and Holder’s inequality we obtain that K f’]j\[, is bounded by 2+INQy v (1). O

In the proof of Proposition 3.9, for the projection operator Ss in the right hand
of the integral (3.43), we only use the orthogonality S3v=0. As a result, we don’t
get the same decay estimate as in the regular case. Similarly in the second kind of
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resonance case, we will subtract a specific operator to get the same decay estimate
rate as the regular case. Note that

Ry (AHv(A 485 D3S3)v R (M) — Ry (A)v(A*S3D3S5)v Ry (A*)

(A

=(R{(A")— Ry (\"))v(A*S3D583)vRg (AY)
+ Ry (A u(A*S3D555)v(Ry (M) — Ry (A1)
=(R{ (A" - N —Go)

Ry (M) v(AS3D383)v(Ry (A*) —
(R§ (A1) =Ry (A)v(A*S3D5.83)vGo
(Ry (A)—=Go)v(A*S3D385)v(R{ (M) — Ry (AY))
+Gov(A*95D35;3)v( Ry (M) — Ry (A))
=0 4,1 (M) +1° 4, 2(A) +F?i4,3()‘) +F?i4,4()‘)‘ (3.45)
Hence, in order to complete the proof of Theorem 3.2(iii) in the third kind resonnace,

combining with the analysis of the second kind of resonance case, it suffices to show
the following proposition.

Proposition 3.10. Assume that |V (z)| S (14|2z])7>". Let T%3,(A) (j=1,---,4) be
operators defined in (3.45). Then

e / XM)e’WA?’”‘”Fij(A)wdA’<|tI*3m, 0<a<3, j=1,3,
z,yeR3'J0 ’

sup / x(A)e—“A“A“?ariM(A)g;ydx‘<|t|—2““, 0<a<3, j=24.
z,y€R3

Proof. By the same argument with the proof of Proposition 3.5 and Proposition 3.9,
we obtain that this proposition holds. Here we omit these details. O

We write

Fus(esy) = Fasay) + / KO N [T3 ()T, (V)] () dA.
0

By using the estimate (3.40) and Proposition 3.10, we obtain that

14+«

[ Foillpiore SJET1, 0<a<3.

Combining with Propositions 3.5-3.10 and the proof of the second kind resonance
again, we immediately obtain that for 0 <a <3,

3+«

| e Py (HX(H) = Fagll oo 5115

Thus the proof of Theorem 3.2(iii) is completed. O
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4 High energy dispersive estimates

In this subsection, we are devoted to establishing the decay bounds of Theorem 1.1
for high energy. Furthermore, it suffices to prove the following theorem.

Theorem 4.1 (High Energy Dispersive Estimate). Let |V (z)|<S{x)~%~. Assume that
H=A?+V(z)(x€R?) has no positive embedding eigenvalues and P,.(H) denotes the
projection onto absolutely continuous spectrum space of H. Then

3+a

|H%e " Py (H)X(H)||p1one SIEHT 1, 0<a<3. (4.1)
To complete the proof of Theorem 4.1, we will use the following Stone’s formula,
Hie "M p, (H Z > / T2V NAHORE(NY) fdN,  (4.2)
N=N{+1 +
and the resolvent identity,
REON) = REN) —REOV)VREQOD + REOOVREOYVRE (V). (43)

Combining with Proposition 2.1, it is enough to establish the following Propositions
4.1 and 4.2.

Proposition 4.1. Assume that |V (2)| S (1+|z])3. Let Oy, n(t) be a function
defined in (2.2) and N> N'. Then for each x, y and 0 <o <3,
[ a2 RSN REO] (r.0)dA] S257 O, (1)
0

Moreover,

| RN N ROV RS ) )| S
0

sup
z,y€R3

Proof. We write
L sltizg)i= [ e N2 NN [REOOV RG] ()
0
Then

/O XN e ™ N [REOHV RE(A]( Z LEy(tz,y).

N=N'+1
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Let F*(p)= % then

1
E(\4 =—F*\z—yl).
REO)(.9) = g3 F= ()
Set s=2"")\, one has
L y(t;a,y)
_ / 3 / TN TR0 9 N N RE () (2,0 )V () BEOY) () d iy
R
2(2+a

o L] et o) P2 sha - P sl sV ()i
R3
- / By (t,,00)V (un)dus.

By using integration by parts, we have

+ 2+IN e~ t2Nst g (g—2ta + (9N + (9N
|E1,N| 1+|t|24N ‘ Yo (S))F (2 S|l‘—u1|)F (2 S|y_u1|)d8‘

+)/ e_“24N54s_2+°‘900(3)83(Fi(2N3|:B—u1\)Fi(2N3|y—u1|)>ds’>
0
2(2+a)N N .
112w (|51,N(t;x7y7u1>|+|52,N<t;x7yuu1)‘>- (4.4)

:l: .
For 527 N oince

0, (Fi(2Ns\x—u1|)Fi(2N3‘y—U1D)
:Sfle:tiQNsﬂzful|+|y*U1|)

x (PN sl =) B 2 sly—aur )+ F(2Y sl — ) FE (2% sly—au ) )

where

, +in—1 1)e—PFp 1— e PFip
Fli(p>:pe:|:zp(Fi)/(p):< p )+(p+ )6 Fi e ‘
p p
Then we have

oo
|g§|,:N| 5 ‘ / 6—it24Ns4 e:l:i2Ns(|m—u1|+|y—u1|)8—3+2a(p0<8) (Fft(QNsll’—ul |)
0

X Foi(QNs|y—u1|)+Foi(QNs\x—u1|)F1i(2Ns|y—u1\))ds‘.
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Since N > N, then
|€2:‘7:N<t;$7y>| S‘/ e_it24NS4e:ti2NS(|x_U1‘+|y_u1‘)S_3+2a(p0(8) (Fft(2N8|ZE—U1|)

0
X i (2 sly— i)+ Fi(2V sl — ) FiE (2 sly—wi]) ) s

Noting that for k=0,1,
|08 (FE (2 sl —ua| ) P (2 sly—wi ) | S 1,
|08 (F (2N s|z—ua ) Fi (2% sly—wi])) | S 1,

then by Lemma 2.1 with z=(z,y,u), V(2)=|z—us|+|y—u|, and

(2 s5;2) = (B (2 sla—ui ) B (2 sly— i)+ 5 (2" sla—ui ) FE(2Vsly—wi])),

we obtain that EijN is bounded by (1+4[¢[24V)On, n(¢). Similarly, EfN is controlled
by the same bound. By (4.4), we obtain that EfN is bounded by 2G+9N@ y n(1).
Hence we have

Ly ()| S28FN 0N, v(t) [V (ur)duy S23H9NO N, n(1).
R3
Finally, by the same summing way with the proof of (2.10), we immediately obtain

the desired conclusion. O

In order to deal with the term RE(AY)V RE(A)V RE (M), we need to give a lemma
as follows, see [10].

Lemma 4.1. Let k>0 and |V (z)| S (1+]x]) 7%= such that H=A?>+V has no
embedded positive eigenvalues. Then for any o >k+1, Ri;(\) € B(L(R?),L? (R?))
are C*-continuous for all \>0. Furthermore,

—3(k+1)

||8§R$<)‘)HLg(R3)HL2_U(R3):O(p\’ 4 ) as A— —+oo.

Proposition 4.2. Assume that |V (z)| < (1+|z|)™". Let Oy, n(t) be a function
defined in (2.2) and N> N'. Then for each x,y and 0<«a <3,

‘/ eI (27NN [REHV REAYV RE(AY)] (ffay)d)“
0
52(3+Q)N®N07N(t)’ (45)

Moreover,

3+a

| R R GOV ROV RO | S (40

sup
z,y€R3
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Proof. In order to get (4.5), it’s equivalent to prove that

L wltizg)im [N (2 AV REODY (RS (V) (1) ()
0
(B (XD)"(,))dA
is bounded by 2G3+NQ .y (1).
In fact, let F*(p)= M then

Ry (\)(2,y) = — F=(Nz—yl).

8TA

Hence
<VRi WOV (R (A (x,9))(), R§ (M)(,-))
—— (VRE AV (FE\x=y)) (), FTAz—-]))

64 2)\2
1
=612 A2E F(Nzyy).
Let s=2"V)\, then
2(2+a)N

/ e 2N a0 (s) By (2N 85, y) ds.
0

By using integration by parts, we have

LiN(t;%y)i:W

2+

a —i AN 4 _ a Lﬁt .
|L2 v(tzy) |N1+|t|24N (‘/ " o (5))35E2 (2N37$ay)d3

+‘/ 124N g 4 _ agpg(S)as(EQL’i(QNS;iL‘,y))dS’>
2+o¢

W(m(t,x,y)meﬂ (t:2.9) ). (47)

For &£, . Since
0, (B (2 s,9)) =(VO, (Ry (2¥sh) V (F=(2s]x—y)) (), FT(2Vs]z—]))
+(VRy VsV (9, F(2Vs]x—y) (), FF(2Vsle—))
+{VRy VsV (F (25| —y)) (), O,FF(2Vsle—) )
=By (2N siw,) + By (2N sy, )+ Eoy (2N sim,y),
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then we have
Exn (ti2,y) = / e M gm0 (5) (EyyT + Byt + By ™) (2 si,y) ds
0
=E N (B, y) +Ea n (t2,y) +E3 5 (B2,y). (4.8)

We first deal with the first term Szil N Let o> k’—i—H—l then

1
s B (2" s:0.) | SY_IVO [0S BE s g2
k=0

<27 V<1, k=0,1.

2

Note that s&€suppyyC [%,1], by using integration by parts again, we obtain that

1 o
}Sifv tx,y)}ﬁ—éw ‘/ e”t24Ns485 (s":’”“gpo(s)Ele’i(QNs;x,y))ds‘
1+t)2 0
1

SW. (4.9)

Next, we deal with the second term 5;;?\, Let

: l—e Pt
FH(p)=e™E (p), B ()=~

then
OsF* (2N s|x—y|) =2V [« —y| (F*) (2" s —y|) i= 2"l (2N 55—y ),

where .
(£ip—1)+(p+1)ePet™?

FiE(p) =pe¥™?(F*) (p) = )

Thus

EQLQ’i(QNs;x,y) :e:l:iQNs(|$|+|y\)S—1<VRV(QNS)V(eii2N5(|*—y|—|y\)F1:|:(2N8| *_yD) ()7

Tk B (N |} e ) 1 B (Y g ).

Furthermore,
2(2+a)N

Oo—i4Ns4 2N s(|x — o N,
sjgﬁv(ta;y) W/ =12t 2V allal+yl) g () BLE(ON g1 ) ds.
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Note that

|OF (27 s(vl=lo) e (2N 55—y ) | S 2N (), k=0,1,
|0F (eFi2" sllo—I=leh FF (2N s |2 —])) | S 28V (1), k=0,1.

Since |V (z)| < (1+4]x])~*", then by Holder’s inequality, we have

1
0.E357 (2" s;,)| D207 IN|V () ()7L ok R (21!
k=0
<972V <7,

~Y

) HL%—)L{U

By Lemma 2.1 with z=(z,y) and
\If(z):]:)c\—l—]y|,<1>(2Ns;z):EQLZ’?][\,(ZNS;x,y),

we get that 53;?(, is bounded by (1+¢]2*V)Op, n(t). By the same argument we get
that S;;?V is bounded by (1+¢[2*V)On, n(t). By (4.8), we have

& (t29)| S (L4 [E2) O, v (1) S (1+[]2MY) O v ().

1
1+ [¢[24N

Similarly, we obtain that Sf[]\% is bounded by (1+¢[2*V)Ox, n(t). By (4.7), we obtain
that L3 y is bounded by 2¢TNOy, v (t). Thus Ly is bounded by 26TNOy v (t).

Finally, by the same summing way with the proof of (2.10), we immediately
obtain the desired conclusion (4.6). O
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