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Abstract. The defocusing action ground state of the nonlinear Schrödinger
equation can be characterized via three different but equivalent minimization
formulations. In this work, we propose some deep neural network (DNN) ap-
proaches to compute the action ground state through the three formulations. We
first consider the unconstrained formulation, where we propose the DNN with
a shift layer and demonstrate its necessity towards finding the correct ground
state. The other two formulations involve the Lp+1-normalization or the Nehari
manifold constraint. We enforce them as hard constraints into the networks by
further proposing a normalization layer or a projection layer to the DNN. Our
DNNs can then be trained in an unconstrained and unsupervised manner. Sys-
tematical numerical experiments are conducted to demonstrate the effectiveness
and superiority of the approaches.
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1 Introduction

The nonlinear Schrödinger equation (NLS) is widely applied in fields such as quan-
tum physics, nonlinear optics, fluid dynamics, and plasma physics [3, 7, 11, 15, 16,
19, 40, 43, 44, 49, 51, 54]. Under the influence of an external potential field, the NLS
equation reads as:

i∂tψ(x,t)=−1

2
∆ψ(x,t)+V (x)ψ(x,t)+β|ψ(x,t)|p−1ψ(x,t), t>0, (1.1a)

x=(x1,··· ,xd)>∈Rd, (1.1b)

where β ∈R and p> 1 are given parameters, ψ(x,t) :Rd×R→C is the unknown
complex-valued wave function. Here, V (x) is a real-valued potential function. A
commonly employed example of such a potential is the harmonic oscillator potential,
defined as

V (x)=
1

2

d∑
j=1

γ2jx
2
j with γj≥0.

The parameter β characterizes the strength of the nonlinear self-interaction, with
β>0 corresponding to a defocusing interaction and β<0 corresponding to a focusing
interaction. The standing wave/stationary solution of the NLS equation (1.1) is
considered key quantities for understanding the evolution of wave systems. By
setting ψ(x,t)=eiωtφ(x) in (1.1), the stationary solution φ(x) satisfies the following
elliptic equation:

−1

2
∆φ(x)+V (x)φ(x)+β|φ(x)|p−1φ(x)+ωφ(x)=0, x∈Rd, (1.2)

where ω∈R represents the given chemical potential. In fact, there can be infinitely
many nontrivial solutions (φ(x) 6≡ 0) that satisfy (1.2) [12, 50]. Among these non-
trivial solutions, the one that minimizes the action functional

Sω(φ) :=
1

2
‖∇φ‖2L2 +

∫
Rd

V |φ|2dx+
2β

p+1
‖φ‖p+1

Lp+1 +ω‖φ‖2L2 (1.3)

is referred to as the action ground state, denoted by φg [11, 12].
The action ground state is of great importance in mathematical and physical

studies [4, 11, 15, 19, 24, 25, 37, 38, 53]. Particularly, it is needed in the computations
of the multichannel dynamics in NLS [47–49]. Also, the recent works [22, 30, 37]
reveal its non-equivalence with the energy ground state, making its computation to
own more independent interests. It can be rigorously defined as follows. Note that


