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Abstract. The defocusing action ground state of the nonlinear Schrödinger
equation can be characterized via three different but equivalent minimization
formulations. In this work, we propose some deep neural network (DNN) ap-
proaches to compute the action ground state through the three formulations. We
first consider the unconstrained formulation, where we propose the DNN with
a shift layer and demonstrate its necessity towards finding the correct ground
state. The other two formulations involve the Lp+1-normalization or the Nehari
manifold constraint. We enforce them as hard constraints into the networks by
further proposing a normalization layer or a projection layer to the DNN. Our
DNNs can then be trained in an unconstrained and unsupervised manner. Sys-
tematical numerical experiments are conducted to demonstrate the effectiveness
and superiority of the approaches.
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1 Introduction

The nonlinear Schrödinger equation (NLS) is widely applied in fields such as quan-
tum physics, nonlinear optics, fluid dynamics, and plasma physics [3, 7, 11, 15, 16,
19, 40, 43, 44, 49, 51, 54]. Under the influence of an external potential field, the NLS
equation reads as:

i∂tψ(x,t)=−1

2
∆ψ(x,t)+V (x)ψ(x,t)+β|ψ(x,t)|p−1ψ(x,t), t>0, (1.1a)

x=(x1,··· ,xd)>∈Rd, (1.1b)

where β ∈R and p> 1 are given parameters, ψ(x,t) :Rd×R→C is the unknown
complex-valued wave function. Here, V (x) is a real-valued potential function. A
commonly employed example of such a potential is the harmonic oscillator potential,
defined as

V (x)=
1

2

d∑
j=1

γ2jx
2
j with γj≥0.

The parameter β characterizes the strength of the nonlinear self-interaction, with
β>0 corresponding to a defocusing interaction and β<0 corresponding to a focusing
interaction. The standing wave/stationary solution of the NLS equation (1.1) is
considered key quantities for understanding the evolution of wave systems. By
setting ψ(x,t)=eiωtφ(x) in (1.1), the stationary solution φ(x) satisfies the following
elliptic equation:

−1

2
∆φ(x)+V (x)φ(x)+β|φ(x)|p−1φ(x)+ωφ(x)=0, x∈Rd, (1.2)

where ω∈R represents the given chemical potential. In fact, there can be infinitely
many nontrivial solutions (φ(x) 6≡ 0) that satisfy (1.2) [12, 50]. Among these non-
trivial solutions, the one that minimizes the action functional

Sω(φ) :=
1

2
‖∇φ‖2L2 +

∫
Rd

V |φ|2dx+
2β

p+1
‖φ‖p+1

Lp+1 +ω‖φ‖2L2 (1.3)

is referred to as the action ground state, denoted by φg [11, 12].
The action ground state is of great importance in mathematical and physical

studies [4, 11, 15, 19, 24, 25, 37, 38, 53]. Particularly, it is needed in the computations
of the multichannel dynamics in NLS [47–49]. Also, the recent works [22, 30, 37]
reveal its non-equivalence with the energy ground state, making its computation to
own more independent interests. It can be rigorously defined as follows. Note that
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the variation of Sω(φ) is given by

δSω(φ)

δφ
=

(
−1

2
∆+V +β|φ|p−1+ω

)
φ=:Hφ(φ),

and so the elliptic equation (1.2) can be expressed as Hφ(φ)=0. With the function
space

X=
{
φ∈H1(Rd) :

∫
Rd

V (x)|φ(x)|2dx<∞
}
,

the action ground state can be given as originally in [11] by the minimization with
a natural constraint:

φg∈argmin{Sω(φ) : φ∈X\{0}, Hφ(φ)=0}. (1.4)

Theoretically, (1.4) can be equivalently defined by using a Nehari manifold con-
straint [4,13,24,39], which we refer as the Nehari constrained formulation. Alterna-
tively, the recent work [39] characterizes the problem (1.4) equivalently by minimiz-
ing a quadratic functional on an Lp+1 unit sphere, leading to the Lp+1-normalization
formulation. Moreover, in the defocusing case, [39] has shown that the constraint
in (1.4) can be disregarded, allowing for an unconstrained minimization formula-
tion. Thus, the action ground state for the defocusing NLS has three different but
equivalent formulations. Based on these formulations, a series of numerical methods
have been proposed, including the classical gradient flow method, also known as
the imaginary time evolution method, and several constrained optimization tech-
niques [38, 39, 53]. These methods are powerful but classical discretizations, which
inevitably suffers from problems such as the curse-of-dimensionality and the multiple
physical parameter-dependence.

Deep neural networks (DNNs) have become a powerful tools in many areas,
and have already been extensively applied to solve scientific computing problems.
Despite the fact that there are currently no effective DNN methods to solve the
action ground state, some feasible DNN methods have emerged to tackle its “twin
counterpart”, the energy ground state. For detailed reviews of the energy ground
state and its relationship with the action ground state, we refer the readers to [1,2,
7, 9, 13, 14, 18, 20, 21, 27, 35, 55–57]. The existing DNNs for the energy ground states
include some supervised learning methods [5, 6, 34], while in practical problems,
obtaining the labeled datasets can be very costly. Therefore, unsupervised learning
methods based on DNNs would be preferred. Recently, a normalized deep neural
network (norm-DNN) is proposed for computing the energy ground states of Bose-
Einstein condensation via the minimization of the Gross-Pitaevskii energy functional
under unitary mass normalization [8]. The idea of norm-DNN can also be extended
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to solve other constrained minimization problems, for instance the initial-terminal
value problems [17] and of course the action ground state.

In this paper, we consider the defocusing action ground states under three differ-
ent formulations and design corresponding DNNs based on the relevant properties
of the action ground states. Firstly, for the unconstrained formulation of the ac-
tion ground state, we propose a DNN that incorporates key techniques such as
a shift layer and Gaussian pre-training. Numerical experiments demonstrate that
these techniques effectively mitigate the “local non-positivity” issue in the approx-
imate solution and accelerate convergence to the ground state solution. Then, for
the other two constrained formulations, we advocate the introduction of a normal-
ization layer and a projection layer to handle the constraints, thus proposing the
Lp+1-normalized DNN and the Nehari projected DNN. Systematical investigations
are carried out through extensive numerical experiments, and the results show that
compared to the conventional DNNs with soft-type penalties in the loss function,
our novel DNN approaches have better accuracy and efficiency in solving the con-
strained action ground state problems. Comparisons are also made between the
three proposed DNN approaches, and the Lp+1-normalized DNN is identified as the
most effective one. At last, some more techniques are introduced to further improve
the performance the proposed DNN methods.

The rest of this paper is structured as follows. Section 2 provides the necessary
preliminaries for the problem. Section 3 details the development of the DNN with a
shift layer. The design of the normalization layer to address the Lp+1-normalization
constraint is discussed in Section 4. Section 5 introduces the DNN designed for the
Nehari constrained formulation. Section 6 compares the proposed DNN approaches
and explores some applications and extensions. Some conclusions are summarized
in Section 7.

2 Preliminary

In this section, we shall first give a brief overview of three equivalent formulations
of the action ground state, and then go through some features of the action ground
state, as well as the traditional numerical methods. Finally, we present the back-
grounds for the classical deep neural networks (DNNs).

2.1 Formulations for action ground state

Compared to the original definition of the action ground state (1.4), which refers
to the solutions of the elliptic equation (1.2) that minimize the action functional
Sω(φ) (1.3), in the defocusing case, the three equivalent formulations of the action
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ground state are typically used in the design of numerical methods [38,39,53]. Prior
to formally stating the details of these formulations, we first present a fundamental
assumption regarding the ground state problem:

Assumption 2.1. Assume that the potential function V (x)≥ 0 (∀x ∈ Rd) and
lim|x|→∞V (x) =∞. Let β > 0, 1< p< (d+2)/(d−2) for d≥ 3 and 1< p<∞ for
d=1,2, and ω<−λ0, where

λ0 :=inf

{
1

2
‖∇u‖2L2 +

∫
Rd

V |u|2dx : ‖u‖L2 =1

}
.

Under the assumptions in Assumption 2.1 about V (x) and other parameters, the
action functional (1.3) is uniformly bounded in X, and the constraint in (1.4) can be
removed, meaning that the action ground state can be obtained by solving an un-
constrained minimization problem [39]. Specifically, the unconstrained formulation
of the action ground state is described by the following unconstrained minimization
problem:

φg∈argmin{Sω(φ) : φ∈X\{0}}. (2.1)

The second formulation, referred to as the Lp+1-normalization formulation, as-
serts that the action ground state can also be obtained by minimizing a quadratic
functional on an Lp+1 unit sphere [38, 39]. Let’s denote the Lp+1 unit sphere by
Sp+1 ={u∈X : ‖u‖Lp+1 = 1} and present a quadratic functional (i.e., the quadratic
part in the action functional (1.3)) as

Q(u) :=
1

2
‖∇u‖2L2 +

∫
Rd

V |u|2dx+ω‖u‖2L2 . (2.2)

By solving the quadratic minimization problem

u∗∈argmin{Q(u) : u∈Sp+1}, (2.3)

then the action ground state φg can be obtained through

φg(x)=

(
Q(u∗)

−β

) 1
p−1

u∗(x). (2.4)

The third formulation characterizes the action ground state by minimizing the
action functional (1.3) under a Nehari manifold constraint, which is referred to as
the Nehari constrained formulation [4, 13, 24, 39]. The Nehari functional is defined
as the L2-inner product of Eq. (1.2) with φ:

Kω(φ) :=
1

2
‖∇φ‖2L2 +

∫
Rd

V |φ|2dx+β‖φ‖p+1
Lp+1 +ω‖φ‖2L2 ,
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and the set of nontrivial φ in X\{0} that satisfy Kω(φ)=0 forms the so-called Nehari
manifold:

Nω :={φ∈X\{0},Kω(φ)=0},

which includes all nontrivial solutions of (1.2). The action ground state defined in
(1.4) can be expressed as the minimizer of action functional (1.3) on Nehari manifold
Nω, i.e.,

φg∈argmin{Sω(φ) : φ∈Nω}. (2.5)

For the Nehari manifold, we have the following proposition:

Proposition 2.1 ( [38]). When ω <−λ0, for any φ∈H1(Rd)\{0}, there exists a
unique σω(φ)>0 such that Kω(σω(φ)φ)=0, where

σω(φ)=

[
‖∇φ‖2L2 +2

∫
RdV |φ|2dx+2ω‖φ‖2L2

−2β‖φ‖p+1
Lp+1

] 1
p−1

. (2.6)

This proposition indicates that any φ∈X\{0} can be projected onto the Ne-
hari manifold Nω using the projection operator defined in (2.6), which allows us to
effectively manage the Nehari manifold constraint in problem (2.5).

2.2 Features of action ground state and traditional
numerical method

Let us provide some important mathematical features for the action ground states
from the theoretical studies [4, 22, 24, 39]. Based on the assumptions regarding the
potential function V (x) and other parameters in Assumption 2.1, the action ground
state satisfies:

(i) If the potential function V (x) is smooth, the ground state φg ∈C∞ decays
exponentially fast to zero when |x|→∞;

(ii) When the potential function V (x) is isotropic, with a shift in the phase eiξφg
for any ξ∈R, action ground state φg can be chosen non-negative.

We will design the DNN approaches based on these features to achieve accurate
and efficient approximations of the action ground state, with detailed specifications
provided in the subsequent sections. Before that, we review a traditional method
for solving the action ground state, known as the gradient flow method. It will
serve as the benchmark for reference action ground state solutions for the subse-
quent DNN approaches. Based on the unconstrained formulation (2.1), a gradient
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flow method with backward-forward Euler temporal discretization scheme (GF-BF)
proposed in [39] reads as

φn+1−φn

τ
=

1

2
∆φn+1−αnφn+1+

(
αn−V −ω−β|φn|p−1

)
φn, n≥0, (2.7)

where τ >0 denotes the time step and αn≥0 represents a stabilization factor. The
stabilization factor αn≥0 aids in the descent of the action functional, allowing for
a larger time step τ to be employed. The computational domain is truncated to a
bounded region U and we adopt

αn=
1

2
max

{
0,max

x∈U

(
V (x)+ω+β|φn(x)|p−1

)}
,

following the recommendation in [39].

2.3 Standard DNN and its training

DNNs are a class of artificial neural networks composed of multiple layers, designed
to mimic the structure and function of the human brain for processing and ana-
lyzing complex data. Due to their powerful capability to handle high-dimensional
and large-scale data, DNN have achieved remarkable success in fields like computer
vision, natural language processing, and speech recognition [10,32,33,42,45]. Math-
ematically, a DNN with L hidden layers can be represented as a composite function

f(y0;θ)=FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1(y0), θ :={Wl,bl}, (2.8)

where the affine transformation of the l-th layer Fl is defined as:

Fl(yl−1)=Wlyl−1+bl, yl−1∈Rnl−1 , 1≤ l≤L+1,

with Wl∈Rnl×nl−1 representing the weight matrix and bl∈Rnl being the bias vector
for nl∈N+. The final layer FL+1 serves as the output layer and Fl for 1≤ l≤L are
called the hidden layers, with nl neurons in each layer. Specifically, n0 and nL+1

represent the dimensions of input and output, respectively. Furthermore, σ :R→R
serves as the activation function that acts on each component of Fl, i.e., σ◦F∈Rnl .
Selecting an appropriate activation function is a crucial topic for specific problems,
and we will elaborate on this in detail in Section 6. For simplicity, we will consider
the fully connected neural network (FCNN), where each hidden layer contains the
same number of neurons, i.e., n1=n2=···=nL=W . In this setting, the ‘depth’ of the
network is defined as the total number of hidden layers L, and the ‘width’ refers to
the number of neurons W in each hidden layer. This uniform configuration allows
for a more straightforward analysis of network properties.
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To apply the deep learning algorithm, we need to define the following optimiza-
tion problem:

min
θ
{Loss(θ)}, (2.9)

where Loss(θ) represents the optimization objective, also known as the loss function.
Since the three different formulations of the action ground state are all minimiza-
tion problems, the functional that needs to be minimized in each formulation can
naturally serve as the loss function. In other words, the action functional Sω (1.3)
or quadratic functional Q (2.2) is employed as the loss function Loss(θ) for training
the DNNs and optimizing the parameters θ. Note that we must rely on numerical
integration to compute the Sω (1.3) and Q (2.2) in practical applications, which
necessitates truncating the entire space Rd to a bounded region U and discretizing
the integral accordingly. Due to the exponential decay of the action ground state
in the far field, the truncation error would be negligible. Here, for the three DNN
approaches, we select a fixed, uniformly distributed grid of points, {xj}Nj=1⊂U , over
the domain U as the training set. Then, the Loss(θ) is the Riemann sum and the
quadrature error can be very small.

In machine learning, the primary approach to solve (2.9) is the gradient de-
scent method: update the parameters as θn+1 = θn−τ∇Loss(θn) for n≥ 0, where
θ0 is the initial guess of parameters and τ denotes the learning rate. We use the
Xavier method (also known as Glorot initialization) for parameter initialization,
which reduces issues related to vanishing or exploding gradients, thereby stabilizing
the training process [26]. Regarding the choice of learning rate, we adopt a com-
monly used strategy that enhances training stability and accelerates convergence:
gradually decreasing the learning rate during the training process [28, 45]. Unless
otherwise stated, the initial learning rate is set to τ =0.001 in this paper, decaying
by a factor of 0.99 every 100 steps. To avoid the additional troubles so that we can
focus on the development of the network in this paper, the Adam optimizer [31] will
be utilized for (2.9), which is a special optimization method widely considered in
deep learning. Given a threshold tol>0, the stopping criterion for training is defined
as∣∣∣∣∣∣

100(j+2)∑
k=100(j+1)

Loss(θk)−
100(j+1)∑
k=100j

Loss(θk)

∣∣∣∣∣∣
/∣∣∣∣∣∣

100(j+1)∑
k=100j

Loss(θk)

∣∣∣∣∣∣<tol, j=0,1,2,··· , (2.10)

which indicates that the mean value of the loss function over adjacent 100 iterations
stabilizes. To quantify the accuracy of the proposed DNN, we shall compute the
relative error as

error :=‖φθ−φg‖2/‖φg‖2 , (2.11)
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which measures the difference between φθ and φg. Here, φθ represents the numerical
solution given by DNN approach, and φg refers to the exact solution φg obtained by
the high-resolution GF-BF method. The L2-norm in (2.11) is computed by taking
the square root of the Riemann sum across a significantly finer grid than that used
for training. This finer grid serves as the test set, and the number of test points
is 2048 for one-dimensional (1D) problems and 400×400 for two-dimensional (2D)
problems.

3 DNN approach based on the unconstrained

formulation

In this section, we consider the unconstrained formulation (2.1) and design a DNN
with a shift layer to solve for the action ground state.

3.1 DNN with a shift layer

The unconstrained formulation (2.1) enables direct minimization of the action func-
tional (1.3) without considering the constraint. Based on the property that the
ground state can be chosen as non-negative through a phase shift, we consider the
following DNN with a shift layer:

φT (x;θ)=T ◦FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1(x), x∈Rd. (3.1)

The distinct layer T is referred to as the shift layer (also introduced in [8]):

T (y)=y−minx(y), (3.2)

where y = y(x) :Rd→RnL+1 and the minimization is acting on each component of
y. It provides a non-negativity restriction and facilitates the convergence of the
DNN to the ground state rather than the excited state during the training process,
which will be clarified by subsequent numerical experiments. The activation function
σ=tanh is utilized to the DNN with a shift layer (3.1), owing to its smoothness and
differentiability, which contribute to its popularity in neural network architectures.
Based on the unconstrained formulation (2.1), the optimization objective in this
approach is the action functional (1.3), thus we let Loss :=Sω(φT ). As mentioned
in Section 2, we truncate the computational domain to a bounded domain U and
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discretize it. In practical, the loss that we will use in (2.9) is defined by

Loss(θ)=
|U |
N

N∑
j=1

[1

2
|∇φT (xj;θ)|2+V (xj)|φT (xj;θ)|2+

2β

p+1
|φT (xj;θ)|p+1

+ω|φT (xj;θ)|2
]
, (3.3)

where |U | denote the measure of U and {xj}Ni=1⊂U represents the discrete quadrature
points for training.

3.2 Numerical experiment

Here we would like to start with the 1D case to elucidate the principles and per-
formance of our proposed DNN with a shift layer (3.1). By truncating the domain
to (−I,I), we construct a training set consisting of equidistant nodes defined as
xj=−I+2Ij/N, j=0,1,··· ,N , the DNN with a shift layer (3.1) is then employed to
solve the following problem:

θ∗=argmin
θ

2I

N

N∑
j=1

[1

2
|∇φT (xj;θ)|2+V (xj)|φT (xj;θ)|2+

2β

p+1
|φT (xj;θ)|p+1

+ω|φT (xj;θ)|2
]
. (3.4)

Through numerical experiments, we will demonstrate the necessity of the shift layer
T (3.2), the acceleration effects of Gaussian pre-training, and the influence of net-
work architecture on approximation performance.

3.2.1 Necessity of shift layer

Since the parameters in DNNs are all real-valued, the action ground state would be
determined up to a phase shift and a valid approximation of the action ground state
by the DNN should be either |φg| or −|φg|. Due to the inherent randomness in the
initialization and optimization algorithms, standard DNNs (2.8) may result in that
some part of φθ converges to |φg| while some other part converges to −|φg|, which
leads to a local minima/excited state instead of the correct action ground state. The
introduction of the shift layer T is aimed at overcoming this issue, and its necessity
will be demonstrated through the following numerical experiment. We examine a
1D example to illustrate the performance of DNNs, with/without the shift layer T
(3.2), in approximating the ground state solution.
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Example 3.1. Let d=1, p=3, β=10, ω=−30 in NLS (1.1), employ the harmonic
oscillator potential V (x) = 1

2
x2, and fix the computational domain U = (−12,12).

The exact action for the ground state is Sω(φg)=−371.1406, which can be obtained
using the GF-BF method.

The standard DNN (2.8) without the shift layer in the 1D case can be written
as follows:

f(x;θ)=FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1(x), x∈R, (3.5)

and our proposed DNN with a shift layer (3.1) is expressed as:

φT (x;θ)=T ◦FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1(x), x∈R, (3.6)

where T (y)=y−minx(y), y=y(x) :R→R. Setting the activate function as σ=tanh
and the hyper-parameters as L∈{1,2,3,4}, W ∈{10,50,70}, tol=10−6, N=128, we
apply both the DNNs with/without the shift layer T (3.2) to compute the action
ground state for Example 3.1.

We present the relative errors (2.11) for the DNNs with/without a shift layer in
Table 1 and display the corresponding action functional values Sω(φθ) in Table 2. As
shown in Table 1, the relative error (2.11) for the standard DNN (3.5) without the
shift layer T always exceed one, indicating an invalid approximation of the action
ground state. In contrast, when the shift layer T is applied, the relative error of
φT can reduce to 5.03×10−3. From Table 2, we find that the action functional
value Sω(φθ) of the DNN with a shift layer (3.6) is smaller and closer to the action
minimum Sω(φg), while Sω(φθ) of the standard DNN (3.5) is lager. These results
indicate that the standard DNN (3.5), which does not include the shift layer T ,
produces some excited states rather than the ground states. Besides, Fig. 1 shows
the exact and numerical solutions as well as the associated pointwise errors obtained
from the DNNs with/without a shift layer for L=3, W=50. Fig. 1(a) reveals that the
output of the standard DNN (3.5) is “locally non-positive”: for x<0, the standard
DNN converges to |φg|, while for x> 0, it converges to −|φg|, resulting in a jump
at x= 0. When the shift layer T is applied, the output of the DNN with a shift
layer φT (3.6) is constrained to be non-negative. Thus, the pointwise error of the
DNN with a shift layer is significantly lower than that of the standard DNN (3.5),
as shown in Fig. 1(b). The numerical experiments show that the incorporation of
the shift layer T in the DNN (3.1) avoids the phenomenon of “locally non-positive”
in the numerical solution and guides the training of the DNN to converge to the
ground state rather than the excited state, highlighting its crucial role in accurately
capturing the ground state. The above conclusion also holds for the following two
DNNs introduced later. Consequently, in the subsequent network configurations, we
also add the shift layer T (3.2).
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Table 1: Relative error (2.11) for Example 3.1 with or without shift layer T .

Error(2.11)
L

W
10 50 70

with T
1 3.13E-2 4.55E-2 3.74E-2
2 1.51E-2 2.93E-2 1.34E-2
3 1.02E-2 5.13E-3 1.73E-2
4 6.34E-3 8.18E-3 5.03E-3

without T
1 2.00E+0 1.72E+0 2.00E+0
2 1.40E+0 1.40E+0 2.00E+0
3 1.40E+0 1.40E+0 1.42E+0
4 1.40E+0 1.42E+0 1.40E+0

Table 2: Numerical action Sω(φθ) for Example 3.1 with or without shift layer T (Sω(φg)=−371.1406).

Sω(φθ) L
W

10 50 70

with T
1 -370.8961 -370.6021 -370.7846
2 -371.0802 -370.8877 -371.0891
3 -371.1089 -371.1332 -371.0541
4 -371.1285 -371.0835 -371.1291

without T
1 -370.0822 -370.0549 -370.0848
2 -370.1351 -370.0336 -370.0342
3 -370.1357 -370.1370 -370.1346
4 -370.1315 -370.0715 -370.1387

3.2.2 Gaussian pre-training

Experience with traditional methods for solving the action ground state suggests
that the ground state solution is localized and smooth, resembling a Gaussian func-
tion. Consequently, Gaussian functions are often employed as initial data for tra-
ditional methods to compute the action ground state [38, 39]. We borrow this idea
to the training of the DNN with a shift layer (3.1). Specifically, prior to the formal
training phase, a Gaussian function is used for pre-training to obtain a better initial
value θ0 for solving (3.4). In Example 3.1, we set the hyper-parameters as L= 2,
W = 70, tol= 10−6, N = 128. The DNN with a shift layer (3.1), initialized with
Xavier initialization, is first trained for 1000 iterations to fit a Gaussian function
φ0 =2e−x

2/10 and the loss function for the Gaussian pre-training is defined as:

Loss(θ) :=
1

N

N∑
j=1

[φT (xj;θ)−φ0(xj)]
2 .
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Figure 1: Results for Example 3.1 with L=3, W=50: (a) profiles of the exact solution φg and numerical
solutions with or without T ; (b) pointwise errors for the numerical solutions.

Subsequently, the normal training process begins to approximate the ground state.

We evaluate the effects of Gaussian pre-training for DNN with a shift layer (3.1),
denoting the two networks as φGT (with pre-training) and φT (without pre-training).
Table 3 presents the total number of iterations during training, the computational
time (in seconds) and the relative error (2.11) for φGT and φT . It is evident that
Gaussian pre-training enhances both the efficiency and the accuracy significantly.
Fig. 2 presents several relevant results. From Fig. 2(a), it can be seen that Gaussian
pre-training provides an initial value that is closer to the ground state compared to
Xavier initialization, which explains the excellent results achieved through its appli-
cation. As shown in Figs. 2(e) and (f), after performing the Gaussian pre-training,
the DNN with a shift layer can achieve a faster decrease in both the relative error
(2.11) and the action functional value. We refer to the DNN that uses the Gaussian
pre-training but without the shift layer T as φG. It is important to emphasize that
while Gaussian pre-training improves performance, it cannot substitute for the role
of the shift layer T , as it does not prevent the numerical solution from exhibit-
ing “locally non-positive” behavior, as illustrated in Figs. 2(b) and (d). Therefore,
we will apply the shift layer and perform Gaussian pre-training for all subsequent
DNNs.

Table 3: Number of iterations, computational time and error (2.11) for DNN (3.1) with or without
Gaussian pre-training.

Iterations Time Error (2.11)

φT 9300 54s 1.34E-2
φGT 6100 35s 3.67E-3
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Figure 2: Results for Example 3.1 with L= 2, W = 70: (a) initial profile of φT from Gaussihan pre-
training or Xavier method; (b) exact solution φg, numerical solutions φGT with T and pre-training, φT
with T but without pre-training, φG with pre-training but without T ; (c), (d) pointwise errors; (e), (f)
the change of error (2.11) and Sω(φθ)−Sω(φg) during the iterations (in logarithmic scale).

3.2.3 Influence of network architecture

Then we investigate the impact of the network architecture on the DNN with a
shift layer (3.1), with the hyper-parameters set as L∈{1,2,3,4}, W ∈{10,50,70},
tol= 10−7, N = 256. Table 4 presents the errors (2.11) obtained by DNNs with
different depths and widths. As observed, with the increase in network width and
depth, the errors (2.11) consistently decrease, allowing for a better approximation
of the ground state. This aligns with the general understanding of neural networks,
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Table 4: Error (2.11) of the DNNs with a shift layer with different architecture.

W =10 W =50 W =70

L=1 3.15E-2 6.42E-2 4.33E-2
L=2 9.05E-3 4.46E-3 6.76E-3
L=3 8.16E-3 1.24E-3 5.12E-3
L=4 8.95E-3 1.63E-3 1.59E-3

which suggests that wider and deeper networks possess greater expressive capability,
resulting in improved model performance and approximation ability [23, 41].

Let φWL represent the DNN (3.1) with width W and depth L. We consider the
following cases: φ10

1 , φ70
1 , φ10

4 and φ70
4 . Their profiles are shown in Fig. 3(a). It can

be observed that when the DNN is not wide enough or deep enough, the DNN (3.1)
does not learn the details (at the corners of the ground state) effectively. Fig. 3(b)
clearly shows that the pointwise errors of φ70

4 is significantly lower, and it achieves
a lower relative error and a reduced action functional value with fewer training
steps, as shown in Figs. 3(c) and (d). These results indicate that when the network
architecture is increased to L= 4 and W = 70, the DNN approach of φ70

4 exhibits
both high accuracy and efficiency.

Remark 3.1. Notably, our method and the Deep Ritz method [23] share some
similarity. They both solve elliptic equations by transforming them into some op-
timization problems. However, we remark here that they are in fact essentially
different. The elliptic equation that can be addressed by Deep Ritz possesses a
unique solution, which according to Ritz theorem, is completely equivalent to find-
ing the global minimum of the associated variational problem. In contrast, Eq. (1.2)
that we aim to solve has infinitely many solutions, and the action ground state is
a special one. Moreover, the action ground state solution is not unique either. It
is determined up to a phase shift. Therefore, the proposed DNN approach is not a
direct Deep Ritz method.

4 DNN approach based on the Lp+1-normalization

formulation

In this section, we present an Lp+1-normalized DNN to approximate the ground
state based on the Lp+1-normalized formulation (2.3). Compared to the methods of
unconstrained formulation, prior research on solving action ground states with tradi-
tional numerical methods have indicated that constrained approaches can sometimes
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Figure 3: Some DNNs (3.1) with different architecture for Example 3.1: (a) the profiles of exact solution
and numerical solutions; (b) pointwise errors; (c,d) the change of error (2.11) and Sω(φθ)−Sω(φg)
during the iterations (in logarithmic scale).

exhibit higher computational efficiency [38]. Therefore, developing effective DNN
approaches for these constrained formulations is of significant importance.

4.1 Lp+1-normalized DNN

As outlined in Section 2, once the minimizer u∗ of the quadratic functional Q(u)
(2.2) on the Lp+1 unit sphere Sp+1 is determined, the ground state can be obtained
through the transformation given by (2.4). Therefore, the ground state problem is
transformed into solving (2.3) to obtain the minimizer u∗. To accomplish this, we
design an Lp+1-normalized deep neural network (Lp+1-norm DNN), which is
expressed in the following form:

uL(x;θ)=L◦T ◦FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1(x), x∈Rd, (4.1)

where the Lp+1-normalization layer L is defined as:

L(y) :=
y

‖y‖Lp+1

, y=y(x) :Rd→RnL+1 . (4.2)
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Then the output of Lp+1-norm DNN (4.1) satisfies uL∈Sp+1. The shift layer T is
defined as (3.2), and the activation function in (4.1) is chosen to be σ=tanh.

Naturally, the quadratic functional Q defined by (2.2) is utilized as the loss
function to train the Lp+1-norm DNN (4.1) and optimize its parameters, i.e., Loss:=
Q(uL). After truncating the computational domain as U and selecting integration
points {xj}Nj=1⊂U , we have

Loss(θ)=
|U |
N

N∑
j=1

[
1

2
|∇uL(xj;θ)|2+V (xj)|uL(xj;θ)|2+ω|uL(xj;θ)|2

]
. (4.3)

Thus, the constrained optimization problem (2.3) defined in the function space Sp+1

is transformed into an unconstrained minimization (2.9) in finite dimensional param-
eter space, where the loss function Loss(θ) in (2.9) is defined by (4.3). It is important
to note that uL approximates not the ground state φg but rather the minimizer u∗ of
the quadratic minimization problem (2.3). The approximation of the ground state
represented as φL can be obtained through the following transformation:

φL(x) :=

(
Q(uL)

−β

) 1
p−1

uL(x). (4.4)

4.2 Numerical experiment

We will demonstrate the superiority of the normalization layer (4.2) in addressing
the constraint in 1D case, followed by an investigation into the impact of network
architecture on the approximation performance of the Lp+1-norm DNN (4.1). The
constrained problem (2.3) by Lp+1-norm DNN now takes the form:

θ∗=argmin
θ

2I

N

N∑
j=1

[
1

2
|∇uL(xj;θ)|2+V (xj)|uL(xj;θ)|2+ω|uL(xj;θ)|2

]
.

4.2.1 Superiority of Lp+1-normalization layer

In the Lp+1-norm DNN (4.1), we enforce the Lp+1-normalization as a hard constraint
into the network, thereby introducing the Lp+1-normalization layer L. To demon-
strate the superiority of this approach in handling the constraint, we compare it
with the common soft-constraint way. In detail, we apply the Lp+1-normalization
constraint as a penalty term in the loss function to encourage the network’s output
satisfy uS ∈Sp+1, and the corresponding loss function is defined as

Loss(θ) :=Q(uS)+η ·(‖uS‖Lp+1−1)2 ,
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Figure 4: The variation of the relative error (2.11) of φS with respect to the penalty factor η.
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Figure 5: Results for Example 3.1 with φL and φS : (a) the profiles of exact solution and numerical
solutions; (b) the change of relative error (2.11) during the iterations.

where η denotes the penalty factor, uS represents the DNN without the normal-
ization layer L in (4.1), and the corresponding ground state approximate solution
given by transformation (4.4) is denoted as φS . The second case is the Lp+1-norm
DNN that minimizes the loss function (4.3), yielding the second approximation of
the ground state φL. The hyper-parameters are set as L= 4, W = 50, tol= 10−6,
N = 128 and the Gaussian pre-training is applied for 1000 iterations for the two
cases to fit the function u0 =e−x

2/10/(5π/2)1/8∈Sp+1. To ensure a fair comparison,
the optimal penalty factor for φS should be first determined. Fig. 4 illustrates how
the relative error (2.11) of φS varies with different values of the penalty factor η. By
fitting this relationship with a quadratic curve, we identify η=31490 as the optimal
value, corresponding to the minimum point of the curve. Then we compare the
performance of φS and φL.

Table 5 presents the number of iterations, computation time, and relative errors
of the DNN φS and the Lp+1-norm DNN φL. The results clearly indicate that
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Table 5: Number of iterations, computational time and error (2.11) for φS and φL.

Iterations Time Error (2.11)

φS 23000 124s 6.84E-2
φL 3400 22s 4.51E-3

the φL, generated by the Lp+1-norm DNN (4.1) with the Lp+1-normalization layer
L, achieves a better accuracy with fewer iterations and shorter computation time.
Fig. 5(a) shows that φS , which is produced by the DNN without the normalization
layer, deviates significantly from the exact solution at the corners and has an overall
profile that is poorly learned. In contrast, φL captures most information of the exact
solution φg. Furthermore, as shown in Fig. 5(b), the error (2.11) associated with
φL decreases at a more rapid rate. The comparative results above indicate that, for
solving the action ground state problem under the Lp+1-normalization formulation,
our proposed Lp+1-norm DNN with a hard constraint outperforms the DNN with a
soft penalty constraint.

4.2.2 Influence of network architecture

Then we we conduct a systematic numerical investigation into the influence of the
network architecture on Lp+1-norm DNN (3.1), with the hyper-parameters set as
L∈{1,2,3,4}, W ∈{10,50,70}, tol=10−7, N =256. We apply the Lp+1-norm DNN
approach to solve Example 3.1 and present the errors (2.11) of φL obtained by
networks with different depths and widths in Table 6. It can be observed that
as the width and depth increase, the error consistently decreases, which indicates
that wider and deeper Lp+1-norm DNNs can achieve a better approximation of the
ground state. Setting φWL as the Lp+1-norm DNN (4.1) with width W and depth L,
we consider the following four cases: φ10

1 , φ70
1 , φ10

4 and φ70
4 . Fig. 6 illustrates the exact

and numerical solutions, pointwise errors, the change of relative errors and Sω(φθ)−
Sω(φg) along with iterations obtained from these four different network architectures.
It can be seen that φ70

4 provides the best approximation of the ground state, with
the minimum pointwise error, and achieves optimal accuracy and efficiency. This
pattern aligns with the general understanding of neural networks.

5 DNN approach based on the Nehari constrained

formulation

In this section, we focus on the Nehari constrained formulation (2.5), introducing
a projection layer to handle the constraint, thereby developing a Nehari projected
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Figure 6: Some Lp+1-norm DNNs with different architecture for Example 3.1: (a) the profiles of
exact solution and numerical solutions; (b) pointwise errors; (c,d) the change of error (2.11) and
Sω(φθ)−Sω(φg) during the iterations (in logarithmic scale).

Table 6: Error (2.11) of Lp+1-norm DNNs with different architecture.

W =10 W =50 W =70

L=1 6.78E-2 6.86E-2 8.18E-2
L=2 6.36E-2 4.40E-2 6.98E-3
L=3 6.37E-2 7.17E-3 3.87E-3
L=4 4.55E-2 4.05E-3 2.49E-3

deep neural network to compute the action ground state. Numerical experiments will
demonstrate the effectiveness of this network in approximating the action ground
state.

5.1 Nehari projected DNN

The Nehari constrained formulation (2.5) requires seeking the minimizer of the ac-
tion functional Sω(φ) over the Nehari manifold Nω. According to Proposition 2.1,
any function φ∈X\{0} can be projected onto the Nehari manifold, meaning that
σω(φ)φ∈Nω, where the projection coefficient σω(φ) is defined by (2.6). Moreover,



62 Z. Chang, Z. Wen and X. Zhao / Ann. Appl. Math., 41 (2025), pp. 42-76

drawing inspiration from the superiority of the Lp+1-normalization layer, we propose
adding a projection layer into the network to perform this operation. Adopting this
strategy leads to the establishment of a Nehari projected deep neural network
(Nehari-proj DNN), which is expressed in the following specific form:

φN (x;θ)=N ◦T ◦FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1(x), x∈Rd, (5.1)

where T denotes the shift layer defined by (3.2), N represents the Nehari projection
layer, expressed as N (y) :=σω(y)y. The projection coefficient σω(y) is defined as:

σω(y)=

[
‖∇y‖2L2 +2

∫
RdV |y|2dx+2ω‖y‖2L2

−2β‖y‖p+1
Lp+1

] 1
p−1

, (5.2)

where y = y(x) :Rd→RnL+1 . The Nehari projection layer N ensures the output
of Nehari-proj DNN satisfies Kω(φN (x;θ)) = 0, thus φN (x;θ)∈Nω. Although the
projection coefficient (5.2) contains a gradient, the capability of DNNs to compute
gradients via automatic differentiation and the chain rule makes the calculation
of (5.2) is easy. Once the DNN is defined, we need to specify the loss function.
The minimization objective in Nehari constrained formulation (2.5) is the action
functional (1.3), thus we use the action functional Sω to define the loss function, as in
(3.3). Consequently, the ground state problem under the Nehari manifold constraint
(2.5) is transformed into the parameter minimization problem (2.9) through the
Nehari-proj DNN.

5.2 Numerical experiment

We utilize the Nehari-proj DNN φN (4.1) to solve for the ground state in the 1D
Example 3.1, with the hyper-parameters set to L∈{1,2,3,4}, W ∈{10,50,70}, tol=
10−7, N = 256. Gaussian pre-training is conducted for 1000 iterations to obtain
the suitable initial parameters θ0, and the initial function φ0 should satisfy the
Nehari manifold constraint . Specifically, we pre-train the Nehari-proj DNN by the
projected function φ0=σω(φ̃0)φ̃0∈Nω, where φ̃0=e−x

2/10 is a Gaussian function and
σω(·) is defined in (2.6).

Table 7 displays the errors (2.11) recorded for Nehari-proj DNNs with varying
depths and widths, where the minimum error in Table 7 can reduce to 1.38×10−3,
indicating that the Nehari-proj DNN provides a valid approximation. Moreover, as
the network width and depth increase, a consistent reduction in errors is observed,
facilitating a more accurate approximation of the ground state. Setting φWL as
the Nehari-proj DNN (5.1) with width W and depth L, we present the exact and
numerical solutions, pointwise errors and the change of error (2.11) and Sω(φθ)−
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Table 7: Error (2.11) of Nehari-proj DNNs with different architecture.

W =10 W =50 W =70

L=1 1.04E-1 6.23E-2 1.46E-1
L=2 5.41E-2 2.93E-2 2.90E-2
L=3 3.34E-2 2.97E-2 3.95E-2
L=4 5.74E-3 1.95E-3 1.38E-3

Sω(φg) along with iterations for φ10
1 , φ70

1 , φ10
4 , and φ70

4 in Fig. 7. From the profiles of
the numerical solutions provided in Fig. 7(a), it can be seen that φ70

4 gives the best
approximation, while the approximations of the other three DNNs are quite poor.
From Figs. 7(b) and (c), it can also be observed that φ70

4 has the smallest pointwise
error and the highest accuracy. The optimal efficiency of φ70

4 is demonstrated in
Fig. 7(d). The numerical results above demonstrate that the Nehari-proj DNN
can effectively solve the action ground state problem under the Nehari constrained
formulation, and appropriately increasing the network architecture can yield better
approximations of the ground state.
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Figure 7: Some Nehari-proj DNNs with different architecture for Example 3.1: (a) the profiles of exact
solution and numerical solution; (b) pointwise errors; (c,d) the change of error (2.11) and Sω(φθ)−
Sω(φg) during the iterations (in logarithmic scale).
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6 Applications and extensions

In this section, we will compare the performance of the proposed deep neural network
(DNN) approaches and extend the DNN appraoch to address the harmonic-plus-
optical lattice potential and 2D cases. Additionally, we will discuss improvement in
both accuracy and efficiency.

6.1 Comparison of the DNN approaches

The three previously proposed DNN approaches are designed based solely on dif-
ferent formulations of the action ground state, and theoretical analysis alone can
not clearly determine which method performs better. Therefore, we will conduct
numerical experiments to compare their efficiency.

We use the three proposed DNN approaches to solve the Example 3.1 and set
the hyper-parameters as L=4, W=70, N=256. We apply the Gaussian pre-training
for 1000 iterations to fit a Gaussian function φ0 =e−x

2/10, and then train the DNN
with a shift layer (3.1), the Lp+1-norm DNN (4.1), and the Nehari-proj DNN (5.1)
to approximate the ground state solution. To ensure a fair comparison, a unified
criterion for stopping the training is established as follows:∣∣∣∣∣∣

100(j+2)∑
k=100(j+1)

Sω(φθk)−
100(j+1)∑
k=100j

Sω(φθk)

∣∣∣∣∣∣
/∣∣∣∣∣∣

100(j+1)∑
k=100j

Sω(φθk)

∣∣∣∣∣∣<10−7, j=0,1,2··· ,

where the φθk represents the DNN approximation obtained at the k-th training step.
Table 8 presents the number of iterations, computation time and relative error (2.11)
of these DNN approaches under different formulations. It can be seen that the Lp+1-
norm DNN approach is the most efficient, requiring the fewest training iterations and
taking only about half the computational time of the other two methods. Fig. 8(c)
further shows how the relative error (2.11) of the three DNN approaches varies
with computation time during the calculation process. It can be observed that the
Lp+1-norm DNN reduces the error (2.11) the fastest, making it the best one.

Table 8: Comparison of the DNN approaches: DNN with a shift layer φT ; φL given by Lp+1-norm
DNN; Nehari-proj DNN φN .

Iterations Time Error (2.11)

φT 13500 72s 1.59E-3
φL 3500 28s 2.42E-3
φN 5500 82s 1.38E-3
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Figure 8: Error (2.11) during computational time for different DNN approaches: DNN with a shift layer
φT ; φL given by Lp+1-norm DNN; Nehari-proj DNN φN .

The conclusion from the above comparison guides us to apply the Lp+1-normalized
DNN approach for solving the ground state in the subsequent numerical experiments.

6.2 Application to harmonic-plus-optical lattice potential

The harmonic-plus-optical lattice potential proposed in nonlinear optics research
consists of a harmonic term and a periodic optical lattice term, where the trian-
gular terms of the latter incorporate some high-frequency information [29]. When
utilizing the DNN approach to address the ground state problem defined by this
potential function, we will clarify the role of the activation function in influencing
the approximation performance of the DNN, thereby emphasizing the importance of
selecting an appropriate activation function for specific problems. To this end, a 1D
example concerning the harmonic-plus-optical lattice potential will be examined.

Example 6.1. Take d=1, p=3, β=10, ω=−30 in NLS (1.1), employ the harmonic-
plus-optical lattice potential V (x)= 1

2
x2+25sin2(πx

3
), and fix the computational do-

main U=(−12,12). Here, the exact action for the ground state is Sω(φg)=−136.7589,
which can be obtained using the GF-BF method.

The Lp+1-norm DNN (4.1) is utilized to solve Example 6.1, with hyper-parameters
set to W = 10, L∈{2,3,4}, tol= 10−5, N = 128 and the activation functions ‘tanh’
and ‘sin’ are employed to the Lp+1-norm DNN (4.1). Table 9 and Fig. 9 present
the performance of the Lp+1-norm DNNs with two different activation functions.
As illustrated in Fig. 9(a), the Lp+1-norm DNN defined by the activation function
‘tanh’ only captures three wave structures of the ground state but fails to learn
the two wave structures at the edges, indicating a significant limitation in captur-
ing local features of high-frequency fluctuations. Table 9 further shows that the
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Table 9: Number of iterations, computational time and error (2.11) of Lp+1-norm DNN (4.1) with
‘tanh’ or ‘sin’ as the activation function.

σ W×L Iterations Time Error (2.11)

tanh
10×2 46200 331s 3.20E-1
10×3 8500 47s 3.59E-1
10×4 4800 28s 3.75E-1

sin
10×2 8900 43s 5.38E-2
10×3 6100 33s 3.19E-2
10×4 2800 16s 2.76E-2

corresponding error (2.11) consistently remains on the order of 10−1. In contrast,
the Lp+1-norm DNN defined by activation function ‘sin’ can fully capture the local
oscillations of the ground state, with the error reduced to 10−2, demonstrating a
superior approximation performance. Moreover, the comparison of iterations and
computational time presented in Table 9 indicates that the Lp+1-norm DNN defined
by ‘sin’ requires significantly less computational cost, allowing the action functional
to decrease at a faster rate to lower levels, as shown in Fig. 9(d). We conclude that,
compared to activation function ‘tanh’, ‘sin’ is more suitable for use in Lp+1-norm
DNN to approximate the action ground state influenced by optical potential.

6.3 Application to two-dimensional problem

We now consider the 2D case, i.e., d=2 and x=(x,y) in NLS (1.1). The straight-
forward extension of the Lp+1-norm DNN approach to 2D case then considers the
optimization:

θ∗=argmin
θ

|U |
Nx×Ny

Nx∑
j=1

Ny∑
k=1

[1

2
|∇uL(xj,yk;θ)|2+V (xj,yk)|uL(xj,yk;θ)|2

+ω|uL(xj,yk;θ)|2
]
, (6.1)

with

uL(x,y;θ)=L◦T ◦FL+1◦σ◦FL◦σ◦···◦F2◦σ◦F1(x,y). (6.2)

Now a 2D example will be examined.

Example 6.2. Take d= 2, p= 3, β= 400, ω=−10 in NLS (1.1), and employ the
harmonic oscillator potential V (x,y)= 1

2
(x2+y2). The computational domain is fixed

as U=(−6,6)×(−6,6). Set the hyper-parameters as L∈{1,2,3,4}, W ∈{10,50,70},
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Figure 9: Lp+1-norm DNNs with different activation functions for Example 6.1 with L=4, W=10: (a)
the profiles of exact solution and numerical solutions; (b) pointwise errors; (c), (d) the change of error
(2.11) and Sω(φθ)−Sω(φg) during the iterations (in logarithmic scale).

tol=10−7 and Nx=Ny=64. The activation function σ=tanh is used in Lp+1-norm
DNN (4.1). Here, the exact action for the ground state is Sω(φg)=−2.5234.

Table 10 presents the relative errors (2.11) of Lp+1-norm DNN (6.2) with varying
widths and depths. It is evident that as the network structure expands, the error
can be reduced to 1.67×10−2. Analogous to the 1D case, wider and deeper networks
yield superior approximation results. Under the configuration of L= 4, W = 70,
we show the profiles of the solutions and corresponding pointwise errors in Fig. 10.
It can be observed that the Lp+1-norm DNN offers valid approximation, with the
pointwise errors remaining consistently below 1%.

Next, we solve the ground state of the NLS (1.1) defined by the harmonic-plus-
optical lattice potential in 2D case.

Example 6.3. Take d= 2, p= 3, β= 400, ω=−10 in NLS (1.1), and employ the
harmonic-plus-optical lattice potential

V (x,y)=
1

2
(x2+y2)+

5

2

(
sin2

(πx
3

)
+sin2

(πy
3

))
.
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Figure 10: Results for Example 6.2 with L=4, W =70: (a) exact solution φg; (b) numerical solution
of Lp+1-norm DNN; (c) pointwise errors.

The computational domain is fixed as U = (−6,6)×(−6,6). Setting the hyper-
parameters as L∈ {1,2,3,4}, W ∈ {10,50,70}, tol= 10−7 and Nx =Ny = 64. The
activation function σ= sin is used in (4.1). Here the exact action for the ground
state is Sω(φg)=−1.0922.

According to the conclusions regarding the activation function obtained in the 1D
case, we choose ‘sin’ as the activate function for the harmonic-plus-optical lattice
potential and apply the Lp+1-norm DNN (4.1) to solve Example 6.3. Table 11
presents the relative errors (2.11) of Lp+1-norm DNN with varying widths and depths

Table 10: Error (2.11) of Lp+1-norm DNNs with different architecture in Example 6.2.

W =10 W =50 W =70

L=1 2.58E-1 1.86E-1 1.57E-1
L=2 1.22E-1 4.42E-2 3.52E-2
L=3 1.23E-1 2.12E-2 1.70E-2
L=4 3.95E-2 1.85E-2 1.67E-2
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Table 11: Error (2.11) of Lp+1-norm DNNs with different architecture in Example 6.3.

W =10 W =50 W =70

L=1 1.81E-1 1.87E-1 1.81E-1
L=2 1.88E-1 1.15E-1 1.44E-1
L=3 1.62E-1 7.53E-2 6.09E-2
L=4 1.16E-1 5.21E-2 3.69E-2

in Example 6.3 and Fig. 11 presents the numerical results for L=4, W =70, which
shows that the activation function ‘sin’ continues to effectively enable the Lp+1-norm
DNN to approximate the action ground state in the 2D case exactly.

The above results show that the proposed DNN approach can work well for 2D
problems and the techniques we developed in 1D case can be straightforwardly ex-
tended to the 2D case. However, one more issue encountered in the high-dimensional
case is the grid points used to approximate the action functional, e.g., the (xj,yk)
in (6.1). Equal partitioning is not feasible in very high dimensions, so the common
approach is to use random sampling instead. To demonstrate the capacity of the
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Figure 11: Results for Example 6.3 with L=4, W =70: (a) exact solution φg; (b) numerical solution
of Lp+1-norm DNN; (c) pointwise errors.
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Figure 12: Results for Example 6.2 with L=4, W =70: (a) exact solution φg; (b) numerical solution
of Lp+1-norm DNN with Nb=1000 randomly generated training points; (c) pointwise errors.

proposed DNN approach with random sampling, we consider the 2D ground state
problem in Example 6.2. Now, we randomly generate some points according to the
uniform distribution in computational domain U . The total number of the gener-
ated points is denoted as Nb=1000, which is much less than that used in Example
6.2 to train the DNN, i.e., Nb<64×64=4096. The other setup remains the same as
before, and we train the Lp+1-norm DNN with L=4,W =70.

Fig. 12 illustrates the profiles of the solutions and corresponding pointwise errors
for Nb = 1000. Obviously, the Lp+1-norm DNN continues to perform exceptionally
well in capturing the action ground state. In addition, we compare the number
of iterations, computation time and error (2.11) of the fixed uniform grid points

Table 12: Number of iterations, computational time and error (2.11) for Lp+1-norm DNNs with ran-
domly selected training points and fixed equally distributed training points.

Iterations Time Error (2.11)

fixed uniform grid points 37100 464.1s 1.67E-2
randomly generated grid points 40300 412.6s 3.37E-2
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and random points in Table 12. As we can see, even with random points, Lp+1-
norm DNN is still able to achieve accuracy comparable to that of uniform grid
points. Furthermore, in terms of computational efficiency, although the number of
iterations increases, the reduction in the size of the training set leads to a further
decrease in both computation time and storage consumption.

6.4 Further improvement of accuracy and efficiency

In previous studies, our emphasis was on developing DNNs better suited for approx-
imating the action ground state under different formulations, without conducting
specific analyses on accuracy or efficiency. The subsequent discussion will illustrate
that the accuracy and efficiency can be further improved. In the comparison of the
three DNN approaches, the efficiency of the DNN with a shift layer (3.1) was inferior
to that of the Lp+1-norm DNN (4.1). Here, we utilize the DNN with a shift layer
(3.1) to solve the 1D Example 3.1 as a case study to discuss how to improve the
accuracy and efficiency.

We begin with the improvement of accuracy. The best accuracy achieved in
the previous 1D numerical experiments was only on the order of 10−3. However,
by utilizing deeper and wider networks, along with implementing stricter stopping
criteria, the accuracy can be improved to 10−5. The DNN with a shift layer (3.1)
is employed to compute Example 3.1, with hyper-parameters set as L∈{9,13,15},
W ∈{70,90,110,130}, N=256. Stricter stopping criteria were established to prevent
premature termination of training. Specifically, training will stop when both of
the following conditions are met: 1) the criterion for the change in the loss function
defined by (2.10) is satisfied (with tol=10−7); 2) the number of iterations exceeds 105.
The errors corresponding to networks of varying widths and depths are presented in
Table 13, indicating that the minimum error has been reduced to 2.17×10−5. It is
noteworthy that both the Lp+1-norm DNN and Nehari-proj DNN can also achieve
comparable improvements in accuracy, reaching the order of 10−5.

Next, the focus shifts to enhancing efficiency. Previously, the Adam optimizer
was employed due to its widespread application in deep learning, adaptive learning
rates, and stability. However, the selection of an optimizer is a critical consider-

Table 13: Error (2.11) of the DNN with a shift layer for different architecture in Example 3.1.

W =70 W =90 W =110 W =130

L=9 3.59E-5 4.30E-5 2.50E-5 4.14E-5
L=13 2.01E-4 3.83E-5 3.57E-5 2.93E-5
L=15 2.23E-5 2.17E-5 4.78E-5 3.04E-5
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Table 14: Number of iterations, computational time and error (2.11) for some DNNs with a shift layer
(3.1) using Adam and L-BFGS.

Iterations Time Error (2.11)

Adam 7200 41s 4.93E-3
L-BFGS 91 0.6s 3.20E-3

ation. Here, the L-BFGS optimizer is considered, recognized for its exceptional
performance in high-precision optimization tasks [36]. The DNN with a shift layer
(3.1) is utilized to compute Example 3.1, with the hyper-parameters set as L= 3,
W =50, tol=10−6, N=128. In this context, the shift layer T originally defined by
(3.2), is replaced with the activation function σ=softplus, which similarly ensures
positive outputs, serving the same purpose as the shift layer. Table 14 presents
the relevant data for the DNN with a shift layer (3.1) under both optimizers. It
is evident that to achieve comparable error levels, the L-BFGS optimizer requires
significantly fewer iterations and less computational time than Adam. However, the
conclusion that the L-BFGS optimizer enhances computational efficiency cannot be
extended to the other two constrained DNNs. Accelerating the convergence of DNNs
is a crucial and intricate topic that will be further explored in future research.

7 Conclusions

In this paper, we proposed three different deep neural networks (DNNs) to solve the
action ground state of the nonlinear Schrödinger equation based on three equiva-
lent formulations of the problem. Firstly, for the unconstrained formulation of the
action ground state, we proposed the DNN with a shift layer, which can efficiently
produce the correct approximation of the ground state solution. For the other two
constrained formulations, we implemented a normalization layer or a projection
layer to the DNN to exactly satisfy the constraints, which lead to the proposed
Lp+1-normalized DNN and the Nehari projected DNN. These proposed three DNNs
provide effective unsupervised learning methods for computing the action ground
state. Systematical numerical experiments have been conducted to demonstrate the
effectiveness and superiority of the key techniques we proposed, including the intro-
duction of the shift layer, Gaussian pre-training, the imposition of hard constraints
in the network, and the selection of activation functions. Comparisons between the
three DNN approaches were made, and some applications and extensions were fur-
ther made. Future works will consider the applications of the proposed approaches
to real high-dimensional problems and the physical parameter-generalizations.
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